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We introduce an iterative processwhich converges strongly to a zero of a finite sumofmonotonemappings under certain conditions.
Applications to a convex minimization problem are included. Our theorems improve and unify most of the results that have been
proved in this direction for this important class of nonlinear mappings.

1. Introduction

Let𝐶 be a nonempty subset of a real Banach space𝐸with dual
𝐸
∗. Amapping𝐴 : 𝐶 → 𝐸

∗ is said to bemonotone if for each
𝑥, 𝑦 ∈ 𝐶, the following inequality holds:

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 0. (1)

A monotone mapping 𝐴 ⊂ 𝐸 × 𝐸
∗ is said to be maximal

monotone if its graph is not properly contained in the graph of
any other monotone mapping. We know that if 𝐴 is maximal
monotonemapping, then𝐴−1(0) is closed and convex (see [1]
for more details).

Monotone mappings were introduced by Zarantonello
[2], Minty [3], and Kačurovskĭı [4]. The notion of monotone
in the context of variational methods for nonlinear operator
equations was also used by Văınberg andKačurovskĭı [5].The
central problem is to iteratively find a zero of a finite sum
of monotone mappings 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑁
in a Banach space 𝐸,

namely, a solution to the inclusion problem

0 ∈ (𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑁
) 𝑥. (2)

It is known that many physically significant problems can
be formulated as problems of the type (2). For instance, a

stationary solution to the initial value problem of the evo-
lution equation

𝜕𝑥

𝜕𝑡
+ 𝐹𝑥 ∋ 0, 𝑥 (0) = 𝑥

0
(3)

can be formulated as (2) when the governing maximal
monotone 𝐹 is of the form 𝐹 := 𝐴

1
+𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑁
(see, e.g.,

[6]). In addition, optimization problems often need [7] to
solve a minimization problem of the form

min
𝑥∈𝐸

{𝑓
1
(𝑥) + 𝑓

2
(𝑥) + ⋅ ⋅ ⋅ + 𝑓

𝑁
(𝑥)} , (4)

where 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑁 are proper lower semicontinuous

convex functions from 𝐸 to the extended real line 𝑅 :=

(−∞,∞]. If in (2), we assume that 𝐴
𝑖

:= 𝜕𝑓
𝑖
, for 𝑖 =

1, 2, . . . , 𝑁, where 𝜕𝑓
𝑖
is the subdifferential operator of 𝑓

𝑖
in

the sense of convex analysis, then (4) is equivalent to (2).
Consequently, considerable research efforts have been de-
voted to methods of finding approximate solutions (when
they exist) of equations of the form (2) for a sum of a finite
number of monotone mappings (see, e.g., [6, 8–12]).

A well-knownmethod for solving the equation 0 ∈ 𝐴𝑥 in
a Hilbert space𝐻 is the proximal point algorithm: 𝑥

1
= 𝑥 ∈ 𝐻

and

𝑥
𝑛+1

= 𝐽
𝑟
𝑛

𝑥
𝑛
, (𝑛 = 1, 2, . . .) , (5)
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where 𝑟
𝑛

⊂ (0,∞) and 𝐽
𝑟

= (𝐼 + 𝑟𝐴)
−1 for all 𝑟 > 0.

This algorithm was first introduced by Martinet [10]. In 1976,
Rockafellar [11] proved that if lim inf

𝑛→∞
𝑟
𝑛

> 0 and
𝐴
−1

(0) ̸= 0, then the sequence {𝑥
𝑛
} defined by (5) converges

weakly to an element of 𝐴−1(0). Later, many researchers have
studied the convergence of the sequence defined by (5) in
Hilbert spaces; see, for instance, [8, 12–18] and the references
therein.

In 2000, Kamimura and Takahashi [9] proved that for a
maximalmonotonemapping𝐴 in aHilbert spaces𝐻 and 𝐽

𝑟
=

(𝐼 + 𝑟𝐴)
−1 for all 𝑟 > 0, the sequence {𝑥

𝑛
} defined by

𝑥
𝑛+1

= 𝛼
𝑛
𝑥 + (1 − 𝛼

𝑛
) 𝐽
𝑟
𝑛

𝑥
𝑛
, 𝑛 ≥ 0, (6)

where {𝛼
𝑛
} ⊂ [0, 1] and {𝑟

𝑛
} ⊂ (0,∞) satisfy certain con-

ditions, called Halpern type, converges strongly to a point in
𝐴
−1

(0).
In a reflexive Banach space 𝐸 and for a maximal mono-

tone mapping 𝐴 : 𝐸 → 2
𝐸
∗

, Reich and Sabach [19] proved
that the sequence {𝑥

𝑛
} defined by

0 = 𝜉
𝑛
+ 𝜆
−1

𝑛
(∇𝑓 (𝑦

𝑛
) − ∇𝑓 (𝑥

𝑛
)) , 𝜉

𝑛
∈ 𝐴𝑦
𝑛
,

𝐻
𝑛
= {𝑧 ∈ 𝐸 : ⟨𝜉

𝑛
, 𝑧 − 𝑦

𝑛
⟩ ≤ 0} ,

𝑊
𝑛
= {𝑧 ∈ 𝐸 : ⟨∇𝑓 (𝑥

0
) − ∇𝑓 (𝑥

𝑛
) , 𝑧 − 𝑥

𝑛
⟩ ≤ 0} ,

𝑥
𝑛+1

= Proj𝑓
𝐻
𝑛
∩𝑊
𝑛

(𝑥
0
) , 𝑛 = 1, 2, . . . ,

(7)

where 𝜆
𝑛
> 0 and proj𝑓

𝐶
is the Bergman projection of 𝐸 on to

a closed and convex subset 𝐶 ⊂ 𝐸 induced by a well-chosen
convex function 𝑓, converges strongly to a point in 𝐴

−1

(0).
Furthermore, many authors (see, e.g., [12, 20–25]) have

studied strong convergence of an iterative process of Halpern
type or proximal type to a common zero of a finite family of
maximalmonotonemappings inHilbert spaces (or in Banach
spaces).

Regarding iterative solution of a zero of sum of two max-
imal monotone mappings, Lions and Mercier [6] introduced
the nonlinear Douglas-Rachford splitting iterative algorithm
which generates a sequence {V

𝑛
} by the recursion

V
𝑛+1

= 𝐽
𝐴

𝜆
(2𝐽
𝐵

𝜆
− 𝐼) V

𝑛
+ (𝐼 − 𝐽

𝐵

𝜆
) V
𝑛
, (8)

where 𝐽
𝑇

𝜆
denotes the resolvent of a monotone mapping 𝑇;

that is, 𝐽𝑇
𝜆

:= (𝐼 + 𝜆𝑇)
−1. They proved that the nonlinear

Douglas-Rachford algorithm (8) converges weakly to a point
V, a solution of the inclusion,

0 ∈ (𝐴 + 𝐵) 𝑥, (9)

for 𝐴 + 𝐵maximal monotone mappings in Hilbert spaces.

A natural question arises whether we can obtain
an iterative scheme which converges strongly to
a zero of sum of a finite number of monotone
mappings in Banach spaces or not?

Motivated and inspired by the work mentioned above, it
is our purpose in this paper to introduce an iterative scheme

(see (21)) which converges strongly to a zero of a finite sum of
monotone mappings under certain conditions. Applications
to a convex minimization problem are included. Our theo-
rems improve the results of Lions andMercier [6] andmost of
the results that have been proved in this direction.

2. Preliminaries

Let 𝐸 be a Banach space and let 𝑆(𝐸) = {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1}.
Then, a Banach space 𝐸 is said to be smooth provided that the
limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(10)

exists for each 𝑥, 𝑦 ∈ 𝑆(𝐸). The norm of 𝐸 is said to be
uniformly smooth if the limit (10) is attained uniformly for
(𝑥, 𝑦) in 𝑆(𝐸) × 𝑆(𝐸) (see [1]).

Themodulus of convexity of𝐸 is the function𝛿
𝐸
: (0, 2] →

[0, 1] defined by

𝛿
𝐸
(𝜖) := inf {1 −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 + 𝑦

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
: ‖𝑥‖ =

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 1; 𝜖 =

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩} .

(11)

𝐸 is called uniformly convex if and only if 𝛿
𝐸
(𝜖) > 0, for every

𝜖 ∈ (0, 2] (see [26]).

Lemma 1 (see [27]). Let 𝐸 be a smooth, strictly convex, and
reflexive Banach space. Let 𝐶 be a nonempty closed convex
subset of 𝐸, and let 𝐴 : 𝐶 ⊂ 𝐸 → 𝐸

∗ be a monotone mapping.
Then,𝐴 is maximal if and only if 𝑅(𝐽 + 𝑟𝐴) = 𝐸

∗, for all 𝑟 > 0,
where 𝐽 is the normalized duality mapping from 𝐸 into 2

𝐸
∗

defined, for each 𝑥 ∈ 𝐸, by

𝐽𝑥 := {𝑓
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑓
∗

⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩

2

} , (12)

where ⟨⋅, ⋅⟩ denotes the generalized duality pairing between
members of 𝐸 and 𝐸∗. We recall that 𝐸 is smooth if and only if
𝐽 is single valued (see [1]). If 𝐸 = 𝐻, a Hilbert space, then the
duality mapping becomes the identity map on𝐻.

Lemma 2 (see [27]). Let 𝐸 be a reflexive with 𝐸
∗ as its dual.

Let 𝐴 : 𝐷(𝐴) ⊆ 𝐸 → 𝐸
∗, and let 𝐵 : 𝐷(𝐵) ⊆ 𝐸 →

𝐸
∗ be maximal monotone mappings. Suppose that 𝐷(𝐴) ∩

int𝐷(𝐵) ̸= 0. Then, 𝐴 + 𝐵 is a maximal monotone mapping.

Lemma 3 (see [28]). Let 𝐸 be a reflexive with 𝐸
∗ as its dual.

Let 𝐴 : 𝐷(𝐴) ⊆ 𝐸 → 𝐸
∗ be maximal monotone mapping,

and let 𝐵 : 𝐷(𝐵) ⊆ 𝐸 → 𝐸
∗ be monotone mappings

such that 𝐷(𝐵) = 𝐸, 𝐵 is hemicontinuous (i.e., continuous
from the segments in 𝐸 to the weak star topology in 𝐸

∗) and
carries bounded sets into bounded sets.Then,𝐴+𝐵 is maximal
monotone mapping.

Let 𝐸 be a smooth Banach space with dual 𝐸∗. Let the
Lyapunov function 𝜙 : 𝐸 × 𝐸 → R, introduced by Alber
[29], be defined by

𝜙 (𝑦, 𝑥) =
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑦, 𝐽𝑥⟩ + ‖𝑥‖
2

, for 𝑥, 𝑦 ∈ 𝐸, (13)
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where 𝐽 is the normalized duality mapping from 𝐸 into 2𝐸
∗

. If
𝐸 = 𝐻, a Hilbert space, then (13) reduces to 𝜙(𝑥, 𝑦) =

‖𝑥 − 𝑦‖
2, for 𝑥, 𝑦 ∈ 𝐻.

Let 𝐸 be a reflexive, strictly convex, and smooth Banach
space, and let𝐶 be a nonempty closed and convex subset of𝐸.
The generalized projectionmapping, introduced byAlber [29],
is a mapping Π

𝐶
: 𝐸 → 𝐶 that assigns an arbitrary point

𝑥 ∈ 𝐸 to the minimizer, 𝑥, of 𝜙(⋅, 𝑥) over 𝐶; that is, Π
𝐶
𝑥 = 𝑥,

where 𝑥 is the solution to the minimization problem

𝜙 (𝑥, 𝑥) = min {𝜙 (𝑦, 𝑥) , 𝑦 ∈ 𝐶} . (14)

We know the following lemmas.

Lemma 4 (see [23]). Let 𝐸 be a real smooth and uniformly
convex Banach space, and let {𝑥

𝑛
} and {𝑦

𝑛
} be two sequences

of 𝐸. If either {𝑥
𝑛
} or {𝑦

𝑛
} is bounded and 𝜙(𝑥

𝑛
, 𝑦
𝑛
) → 0, as

𝑛 → ∞, then 𝑥
𝑛
− 𝑦
𝑛
→ 0, as 𝑛 → ∞.

Lemma 5 (see [29]). Let 𝐶 be a convex subset of a real smooth
Banach space 𝐸, and let 𝑥 ∈ 𝐸. Then 𝑥

0
= Π
𝐶
𝑥 if and only if

⟨𝑧 − 𝑥
0
, 𝐽𝑥 − 𝐽𝑥

0
⟩ ≤ 0, ∀𝑧 ∈ 𝐶. (15)

We make use of the function 𝑉 : 𝐸 × 𝐸
∗

→ R defined by

𝑉 (𝑥, 𝑥
∗

) = ‖𝑥‖
2

− 2 ⟨𝑥, 𝑥
∗

⟩ + ‖𝑥‖
2

, ∀𝑥 ∈ 𝐸, 𝑥
∗

∈ 𝐸,

(16)

studied by Alber [29]. That is, 𝑉(𝑥, 𝑦) = 𝜙(𝑥, 𝐽
−1

𝑥
∗

), for all
𝑥 ∈ 𝐸 and 𝑥

∗

∈ 𝐸
∗.

In the sequel, we will make use of the following lemmas.

Lemma 6 (see [29]). Let 𝐸 be a reflexive strictly convex and
smooth Banach space with 𝐸∗ as its dual. Then,

𝑉 (𝑥, 𝑥
∗

) + 2 ⟨𝐽
−1

𝑥
∗

− 𝑥, 𝑦
∗

⟩ ≤ 𝑉 (𝑥, 𝑥
∗

+ 𝑦
∗

) , (17)

for all 𝑥 ∈ 𝐸 and 𝑥∗, 𝑦∗ ∈ 𝐸
∗.

Lemma 7 (see [30]). Let 𝐸 be a smooth and strictly convex
Banach space, 𝐶 be a nonempty closed convex subset of 𝐸, and
𝐴 ⊂ 𝐸 × 𝐸

∗ be a maximal monotone mapping. Let 𝑄
𝑟
be the

resolvent of 𝐴 defined by 𝑄
𝑟
= (𝐽 + 𝑟𝐴)

−1

𝐽, for 𝑟 > 0 and {𝑟
𝑛
}

a sequence of (0,∞) such that lim
𝑛→∞

𝑟
𝑛
= ∞. If {𝑥

𝑛
} is a

bounded sequence of 𝐶 such that 𝑄
𝑟
𝑛

𝑥
𝑛
⇀ 𝑧, then 𝑧 ∈ 𝐴

−1

(0).

Lemma 8 (see [31]). Let 𝐸 be a smooth and strictly convex
Banach space, 𝐶 be a nonempty closed convex subset of 𝐸, and
𝐴 ⊂ 𝐸 × 𝐸

∗ be a maximal monotone mapping, and 𝐴
−1

(0)

is nonempty. Let 𝑄
𝑟
be the resolvent of 𝐴 defined by 𝑄

𝑟
=

(𝐽 + 𝑟𝐴)
−1

𝐽, for 𝑟 > 0. Then, for each 𝑟 > 0

𝜙 (𝑝, 𝑄
𝑟
𝑥) + 𝜙 (𝑄

𝑟
𝑥, 𝑥) ≤ 𝜙 (𝑝, 𝑥) , (18)

for all 𝑝 ∈ 𝐴
−1

(0) and 𝑥 ∈ 𝐶.

Lemma9 (see [32]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers satisfying the following relation:

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑎
𝑛
+ 𝛼
𝑛
𝛿
𝑛
, 𝑛 ≥ 𝑛

0
, (19)

where {𝛼
𝑛
} ⊂ (0, 1) and {𝛿

𝑛
} ⊂ 𝑅 satisfying the following condi-

tions: lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞, and lim sup

𝑛→∞
𝛿
𝑛
≤ 0.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 10 (see [33]). Let {𝑎
𝑛
} be the sequences of real numbers

such that there exists a subsequence {𝑛
𝑖
} of {𝑛} such that 𝑎

𝑛
𝑖

<

𝑎
𝑛
𝑖
+1
, for all 𝑖 ∈ 𝑁. Then, there exists a nondecreasing sequence

{𝑚
𝑘
} ⊂ 𝑁 such that 𝑚

𝑘
→ ∞, and the following properties

are satisfied by all (sufficiently large) numbers 𝑘 ∈ 𝑁:

𝑎
𝑚
𝑘

≤ 𝑎
𝑚
𝑘
+1
, 𝑎

𝑘
≤ 𝑎
𝑚
𝑘
+1
. (20)

In fact,𝑚
𝑘
= max{𝑗 ≤ 𝑘 : 𝑎

𝑗
< 𝑎
𝑗+1

}.

3. Main Result

Theorem 11. Let 𝐶 and 𝐷 be nonempty, closed and convex
subsets of a smooth and uniformly convex real Banach space 𝐸
with 𝐸∗ as its dual. Assume that 𝐶∩ int(𝐷) ̸= 0. Let𝐴

1
: 𝐶 →

𝐸
∗ and 𝐴

2
, 𝐴
3
, . . . , 𝐴

𝑁
: 𝐷 → 𝐸

∗ be maximal monotone
mappings. Assume that 𝐹 := (𝐴

1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑁
)
−1

(0) is
nonempty. Let {𝑥

𝑛
} be a sequence generated by

𝑥
0
= 𝑤 ∈ 𝐶, chosen arbitrarily,

𝑥
𝑛+1

= 𝐽
−1

(𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽(𝐽 + 𝑟

𝑛
𝐴)
−1

𝐽𝑥
𝑛
) , ∀𝑛 ≥ 0,

(21)

where𝐴 = 𝐴
1
+𝐴
2
+ ⋅ ⋅ ⋅ +𝐴

𝑁
, 𝛼
𝑛
∈ (0, 1) and {𝑟

𝑛
} a sequence

of (0,∞) satisfying: lim
𝑛→∞

𝛼
𝑛

= 0, ∑∞
𝑛=1

𝛼
𝑛

= ∞, and
lim
𝑛→∞

𝑟
𝑛
= ∞. Then, {𝑥

𝑛
} converges strongly to 𝑝 = Π

𝐹
(𝑤).

Proof. Observe that by Lemma 2, we have that𝐴
2
+𝐴
3
+⋅ ⋅ ⋅+

𝐴
𝑁
is maximal monotone. In addition, since 𝐶 ∩ int(𝐷) ̸= 0,

the same lemma implies that 𝐴 = 𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑁
is

maximal monotone. Now, let 𝑝 = Π
𝐹
(𝑤), and let 𝑤

𝑛
:=

𝑄
𝑟
𝑛

𝑥
𝑛
:= (𝐽+𝑟

𝑛
𝐴)
−1

𝐽𝑥
𝑛
.Then,we have that𝑥

𝑛+1
= 𝐽
−1

(𝛼
𝑛
𝐽𝑤+

(1−𝛼
𝑛
)𝐽𝑤
𝑛
), and since𝑝 ∈ 𝐴

−1

(0), fromLemma 8, we get that

𝜙 (𝑝, 𝑤
𝑛
) = 𝜙 (𝑝, 𝑄

𝑟
𝑛

𝑥
𝑛
) ≤ 𝜙 (𝑝, 𝑥

𝑛
) . (22)

Now from (21), property of 𝜙, and (22) we get that

𝜙 (𝑝, 𝑥
𝑛+1

) = 𝜙 (𝑝, 𝐽
−1

(𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽𝑤
𝑛
))

=
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑝, 𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽𝑤
𝑛
⟩

+
󵄩󵄩󵄩󵄩𝛼𝑛𝐽𝑤 + (1 − 𝛼

𝑛
)𝐽𝑤
𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛼
𝑛
⟨𝑝, 𝐽𝑤⟩ − 2 (1 − 𝛼

𝑛
) ⟨𝑝, 𝐽𝑤

𝑛
⟩

+ 𝛼
𝑛
‖𝐽𝑤‖
2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝐽𝑤𝑛

󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛
𝜙 (𝑝, 𝑤) + (1 − 𝛼

𝑛
) 𝜙 (𝑝, 𝑤

𝑛
)

≤ 𝛼
𝑛
𝜙 (𝑝, 𝑤) + (1 − 𝛼

𝑛
) 𝜙 (𝑝, 𝑥

𝑛
) .

(23)

Thus, by induction,

𝜙 (𝑝, 𝑥
𝑛+1

) ≤ max {𝜙 (𝑝, 𝑤) , 𝜙 (𝑝, 𝑥
0
)} , ∀𝑛 ≥ 0, (24)



4 Abstract and Applied Analysis

which implies that {𝑥
𝑛
} is bounded. In addition, using

Lemma 6 and property of 𝜙, we obtain that

𝜙 (𝑝, 𝑥
𝑛+1

) = 𝑉 (𝑝, 𝐽𝑥
𝑛+1

)

≤ 𝑉 (𝑝, 𝐽𝑥
𝑛+1

− 𝛼
𝑛
(𝐽𝑤 − 𝐽𝑝))

− 2 ⟨𝑥
𝑛+1

− 𝑝, −𝛼
𝑛
(𝐽𝑤 − 𝐽𝑝)⟩

= 𝜙 (𝑝, 𝐽
−1

(𝛼
𝑛
𝐽𝑝 + (1 − 𝛼

𝑛
) 𝐽𝑤
𝑛
))

+ 2𝛼
𝑛
⟨𝑥
𝑛+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩

≤ 𝛼
𝑛
𝜙 (𝑝, 𝑝) + (1 − 𝛼

𝑛
) 𝜙 (𝑝, 𝑤

𝑛
)

+ 2𝛼
𝑛
⟨𝑥
𝑛+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩

= (1 − 𝛼
𝑛
) 𝜙 (𝑝, 𝑤

𝑛
) + 2𝛼

𝑛
⟨𝑥
𝑛+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩

≤ (1 − 𝛼
𝑛
) 𝜙 (𝑝, 𝑥

𝑛
) + 2𝛼

𝑛
⟨𝑥
𝑛+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩ .

(25)

Furthermore, using property of 𝜙 and the fact that 𝛼
𝑛
→ 0,

as 𝑛 → ∞, imply that

𝜙 (𝑤
𝑛
, 𝑥
𝑛+1

) = 𝜙 (𝑤
𝑛
, 𝐽
−1

(𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽𝑤
𝑛
))

≤ 𝛼
𝑛
𝜙 (𝑤
𝑛
, 𝑤) + (1 − 𝛼

𝑛
) 𝜙 (𝑤

𝑛
, 𝑤
𝑛
)

≤ 𝛼
𝑛
𝜙 (𝑤
𝑛
, 𝑤) + (1 − 𝛼

𝑛
) 𝜙 (𝑤

𝑛
, 𝑤
𝑛
) 󳨀→ 0,

as 𝑛 󳨀→ ∞,

(26)

which implies from Lemma 4 that

𝑤
𝑛
− 𝑥
𝑛+1

󳨀→ 0, as 𝑛 󳨀→ ∞. (27)

Now, following the method of proof of Lemma 3.2 of Maing’e
[33], we consider two cases.

Case 1. Suppose that there exists 𝑛
0
∈ N such that {𝜙(𝑝, 𝑥

𝑛
)}

is nonincreasing for all 𝑛 ≥ 𝑛
0
. In this situation, {𝜙(𝑝, 𝑥

𝑛
)}

is convergent. Since {𝑥
𝑛+1

} is bounded and 𝐸 is reflexive, we
choose a subsequence {𝑥

𝑛
𝑖
+1
} of {𝑥

𝑛+1
} such that 𝑥

𝑛
𝑖
+1

⇀ 𝑧

and lim sup
𝑛→∞

⟨𝑥
𝑛+1

−𝑝, 𝐽𝑤−𝐽𝑝⟩ = lim
𝑖→∞

⟨𝑥
𝑛
𝑖
+1
−𝑝, 𝐽𝑤−

𝐽𝑝⟩. Then, from (27), we get that

𝑤
𝑛
𝑖

⇀ 𝑧, as 𝑖 󳨀→ ∞. (28)

Thus, by Lemma 7, we get that 𝑧 ∈ 𝐴
−1

(0), and hence 𝑧 ∈

𝐹 = (𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑁
)
−1

(0). Therefore, by Lemma 5, we
immediately obtain that lim sup

𝑛→∞
⟨𝑥
𝑛+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩ =

lim
𝑖→∞

⟨𝑥
𝑛
𝑖
+1
−𝑝, 𝐽𝑤 − 𝐽𝑝⟩ = ⟨𝑧 − 𝑝, 𝐽𝑤 − 𝐽𝑝⟩ ≤ 0. It follows

from Lemma 9 and (25) that 𝜙(𝑝, 𝑥
𝑛
) → 0, as 𝑛 → ∞.

Consequently, 𝑥
𝑛
→ 𝑝.

Case 2. Suppose that there exists a subsequence {𝑛
𝑖
} of {𝑛}

such that

𝜙 (𝑝, 𝑥
𝑛
𝑖

) < 𝜙 (𝑝, 𝑥
𝑛
𝑖
+1
) , (29)

for all 𝑖 ∈ N. Then, by Lemma 10, there exist a nondecreasing
sequence {𝑚

𝑘
} ⊂ N such that𝑚

𝑘
→ ∞, satisfying

𝜙 (𝑝, 𝑥
𝑚
𝑘

) ≤ 𝜙 (𝑝, 𝑥
𝑚
𝑘
+1
) ,

𝜙 (𝑝, 𝑥
𝑘
) ≤ 𝜙 (𝑝, 𝑥

𝑚
𝑘
+1
) ,

∀𝑘 ∈ N.

(30)

Thus, following the method of proof of Case 1, we obtain that

lim sup
𝑘→∞

⟨𝑥
𝑚
𝑘
+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩ ≤ 0. (31)

Then, from (25), we have that

𝜙 (𝑝, 𝑥
𝑚
𝑘
+1
) ≤ (1 − 𝛼

𝑚
𝑘

) 𝜙 (𝑝, 𝑥
𝑚
𝑘

)

+ 2𝛼
𝑚
𝑘

⟨𝑥
𝑚
𝑘
+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩ .

(32)

Now, inequalities (30) and (32) imply that

𝛼
𝑚
𝑘

𝜙 (𝑝, 𝑥
𝑚
𝑘

) ≤ 𝜙 (𝑝, 𝑥
𝑚
𝑘

) − 𝜙 (𝑝, 𝑥
𝑚
𝑘
+1
)

+ 2𝛼
𝑚
𝑘

⟨𝑥
𝑚
𝑘
+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩

≤ 2𝛼
𝑚
𝑘

⟨𝑥
𝑚
𝑘
+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩ .

(33)

In particular, since 𝛼
𝑚
𝑘

> 0, we get

𝜙 (𝑝, 𝑥
𝑚
𝑘

) ≤ 2 ⟨𝑥
𝑚
𝑘
+1

− 𝑝, 𝐽𝑤 − 𝐽𝑝⟩ . (34)

Then, from (31), we obtain 𝜙(𝑝, 𝑥
𝑚
𝑘

) → 0, as 𝑘 → ∞.
This together with (32) gives 𝜙(𝑝, 𝑥

𝑚
𝑘
+1
) → 0, as 𝑘 → ∞.

But 𝜙(𝑝, 𝑥
𝑘
) ≤ 𝜙(𝑝, 𝑥

𝑚
𝑘
+1
), for all 𝑘 ∈ 𝑁; thus, we obtain

that 𝑥
𝑘

→ 𝑝. Therefore, from the above two cases, we can
conclude that {𝑥

𝑛
} converges strongly to 𝑝, and the proof is

complete.

Theorem 12. Let 𝐶 be a nonempty, closed, and convex subset
of a smooth and uniformly convex real Banach space 𝐸with 𝐸∗
as its dual. Let𝐴

1
: 𝐶 → 𝐸

∗ be maximal monotone mapping,
and let 𝐴

2
, 𝐴
3
, . . . , 𝐴

𝑁
: 𝐸 → 𝐸

∗ be bounded and
hemicontinuous monotone mappings. Assume that 𝐹 := (𝐴

1
+

𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑁
)
−1

(0) is nonempty. Let {𝑥
𝑛
} be a sequence

generated by

𝑥
0
= 𝑤 ∈ 𝐶, chosen arbitrarily,

𝑥
𝑛+1

= 𝐽
−1

(𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽(𝐽 + 𝑟

𝑛
𝐴)
−1

𝐽𝑥
𝑛
) , ∀𝑛 ≥ 0,

(35)

where 𝐴 = 𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑁
, 𝛼
𝑛
∈ (0, 1) and {𝑟

𝑛
} is a

sequence of (0,∞) satisfying: lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞,

and lim
𝑛→∞

𝑟
𝑛
= ∞. Then, {𝑥

𝑛
} converges strongly to 𝑝 =

Π
𝐹
(𝑤).

Proof. By Lemma 3, we have that 𝐴 = 𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑁
is

maximalmonotone, and hence following themethod of proof
of Theorem 11, we obtain the required assertion.
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If in Theorem 12, we assume that 𝐴
𝑖
, for 𝑖 = 2, . . . , 𝑁, are

continuous monotone mappings, then 𝐴
󸀠

𝑖
𝑠 are hemicontinu-

ous, and hence we get the following corollary.

Corollary 13. Let 𝐶 be a nonempty, closed, and convex subset
of a smooth and uniformly convex real Banach space 𝐸 with
𝐸
∗ as its dual. Let 𝐴

1
: 𝐶 → 𝐸

∗ be a maximal monotone
mapping, and let 𝐴

2
, 𝐴
3
, . . . , 𝐴

𝑁
: 𝐸 → 𝐸

∗ be bounded and
continuous monotone mappings. Assume that 𝐹 := (𝐴

1
+𝐴
2
+

⋅ ⋅ ⋅ + 𝐴
𝑁
)
−1

(0) is nonempty. Let {𝑥
𝑛
} be a sequence generated

by

𝑥
0
= 𝑤 ∈ 𝐶, chosen arbitrarily,

𝑥
𝑛+1

= 𝐽
−1

(𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽(𝐽 + 𝑟

𝑛
𝐴)
−1

𝐽𝑥
𝑛
) , ∀𝑛 ≥ 0,

(36)

where𝐴 = 𝐴
1
+𝐴
2
+ ⋅ ⋅ ⋅ +𝐴

𝑁
, 𝛼
𝑛
∈ (0, 1) and {𝑟

𝑛
} a sequence

of (0,∞) satisfying: lim
𝑛→∞

𝛼
𝑛

= 0, ∑∞
𝑛=1

𝛼
𝑛

= ∞, and
lim
𝑛→∞

𝑟
𝑛
= ∞. Then, {𝑥

𝑛
} converges strongly to 𝑝 = Π

𝐹
(𝑤).

If in Theorem 12, we assume that 𝐴
𝑖
, for 𝑖 = 2, . . . , 𝑁, are

uniformly continuous monotone mapping, then 𝐴
󸀠

𝑖
𝑠 are

bounded and hemicontinuous, and hence we get the follow-
ing corollary.

Corollary 14. Let 𝐶 be a nonempty, closed, and convex subset
of a smooth and uniformly convex real Banach space 𝐸 with
𝐸
∗ as its dual. Let 𝐴

1
: 𝐶 → 𝐸

∗ be a maximal monotone
mapping, and let 𝐴

2
, 𝐴
3
, . . . , 𝐴

𝑁
: 𝐸 → 𝐸

∗ be monotone
uniformly continuous mappings. Assume that 𝐹 := (𝐴

1
+𝐴
2
+

⋅ ⋅ ⋅ + 𝐴
𝑁
)
−1

(0) is nonempty. Let {𝑥
𝑛
} be a sequence generated

by

𝑥
0
= 𝑤 ∈ 𝐶, chosen arbitrarily,

𝑥
𝑛+1

= 𝐽
−1

(𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽(𝐽 + 𝑟

𝑛
𝐴)
−1

𝐽𝑥
𝑛
) , ∀𝑛 ≥ 0,

(37)

where𝐴 = 𝐴
1
+𝐴
2
+ ⋅ ⋅ ⋅ +𝐴

𝑁
, 𝛼
𝑛
∈ (0, 1) and {𝑟

𝑛
} a sequence

of (0,∞) satisfying: lim
𝑛→∞

𝛼
𝑛

= 0, ∑∞
𝑛=1

𝛼
𝑛

= ∞, and
lim
𝑛→∞

𝑟
𝑛
= ∞. Then, {𝑥

𝑛
} converges strongly to 𝑝 = Π

𝐹
(𝑤).

If in Theorem 12 we assume that 𝐴
𝑖
≡ 0, for 𝑖 = 2, . . . , 𝑁,

then we get the following corollary.

Corollary 15. Let 𝐶 be a nonempty, closed, and convex subset
of a smooth and uniformly convex real Banach space 𝐸. Let𝐴 :

𝐶 → 𝐸
∗ be a maximal monotone mapping. Assume that 𝐹 :=

𝐴
−1

(0) is nonempty. Let {𝑥
𝑛
} be a sequence generated by

𝑥
0
= 𝑤 ∈ 𝐶, chosen arbitrarily,

𝑥
𝑛+1

= 𝐽
−1

(𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽(𝐽 + 𝑟

𝑛
𝐴)
−1

𝐽𝑥
𝑛
) , ∀𝑛 ≥ 0,

(38)

where 𝛼
𝑛

∈ (0, 1) and {𝑟
𝑛
} a sequence of (0,∞) satisfying:

lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞, and lim

𝑛→∞
𝑟
𝑛
= ∞. Then,

{𝑥
𝑛
} converges strongly to 𝑝 = Π

𝐹
(𝑤).

If 𝐸 = 𝐻, a real Hilbert space, then 𝐸 is smooth and
uniformly convex real Banach space. In this case, 𝐽 = 𝐼,
identity map on𝐻 andΠ

𝐶
= 𝑃
𝐶
, projectionmapping from𝐻

onto𝐶. Thus, the following corollaries follow fromTheorems
11 and 12.

Corollary 16. Let 𝐶 and 𝐷 be nonempty, closed, and convex
subsets of a real Hilbert space𝐻. Assume that 𝐶 ∩ int(𝐷) ̸= 0.
Let 𝐴

1
: 𝐶 → 𝐻, and let 𝐴

2
, 𝐴
3
, . . . , 𝐴

𝑁
: 𝐷 → 𝐻 be

maximal monotone mappings. Assume that 𝐹 := (𝐴
1
+ 𝐴
2
+

⋅ ⋅ ⋅ + 𝐴
𝑁
)
−1

(0) is nonempty. Let {𝑥
𝑛
} be a sequence generated

by

𝑥
0
= 𝑤 ∈ 𝐶, chosen arbitrarily,

𝑥
𝑛+1

= 𝛼
𝑛
𝑤 + (1 − 𝛼

𝑛
) (𝐼 + 𝑟

𝑛
𝐴)
−1

𝑥
𝑛
, ∀𝑛 ≥ 0,

(39)

where𝐴 = 𝐴
1
+𝐴
2
+ ⋅ ⋅ ⋅ +𝐴

𝑁
, 𝛼
𝑛
∈ (0, 1) and {𝑟

𝑛
} a sequence

of (0,∞) satisfying: lim
𝑛→∞

𝛼
𝑛

= 0, ∑∞
𝑛=1

𝛼
𝑛

= ∞, and
lim
𝑛→∞

𝑟
𝑛
= ∞. Then, {𝑥

𝑛
} converges strongly to 𝑝 = 𝑃

𝐹
(𝑤).

Corollary 17. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space 𝐻. Let 𝐴

1
: 𝐶 → 𝐻 be a maximal

monotone mapping, and let 𝐴
2
, 𝐴
3
, . . . , 𝐴

𝑁
: 𝐻 → 𝐻 be

bounded, hemicontinuous, and monotone mappings. Assume
that 𝐹 := (𝐴

1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑁
)
−1

(0) is nonempty. Let {𝑥
𝑛
} be

a sequence generated by

𝑥
0
= 𝑤 ∈ 𝐶, chosen arbitrarily,

𝑥
𝑛+1

= 𝛼
𝑛
𝑤 + (1 − 𝛼

𝑛
) (𝐼 + 𝑟

𝑛
𝐴)
−1

𝑥
𝑛
, ∀𝑛 ≥ 0,

(40)

where𝐴 = 𝐴
1
+𝐴
2
+ ⋅ ⋅ ⋅ +𝐴

𝑁
, 𝛼
𝑛
∈ (0, 1) and {𝑟

𝑛
} a sequence

of (0,∞) satisfying: lim
𝑛→∞

𝛼
𝑛

= 0, ∑∞
𝑛=1

𝛼
𝑛

= ∞, and
lim
𝑛→∞

𝑟
𝑛
= ∞. Then, {𝑥

𝑛
} converges strongly to 𝑝 = 𝑃

𝐹
(𝑤).

Corollary 18. Let 𝐶 be a nonempty, closed, and convex subset
of a real Hilbert space 𝐻. Let 𝐴

1
: 𝐶 → 𝐻 be a maximal

monotone mapping, and let 𝐴
2
, 𝐴
3
, . . . , 𝐴

𝑁
: 𝐻 → 𝐻 be

uniformly continuous monotone mappings. Assume that 𝐹 :=

(𝐴
1
+𝐴
2
+ ⋅ ⋅ ⋅ +𝐴

𝑁
)
−1

(0) is nonempty. Let {𝑥
𝑛
} be a sequence

generated by

𝑥
0
= 𝑤 ∈ 𝐶, chosen arbitrarily,

𝑥
𝑛+1

= 𝛼
𝑛
𝑤 + (1 − 𝛼

𝑛
) (𝐼 + 𝑟

𝑛
𝐴)
−1

𝑥
𝑛
, ∀𝑛 ≥ 0,

(41)

where𝐴 = 𝐴
1
+𝐴
2
+ ⋅ ⋅ ⋅ +𝐴

𝑁
, 𝛼
𝑛
∈ (0, 1) and {𝑟

𝑛
} a sequence

of (0,∞) satisfying: lim
𝑛→∞

𝛼
𝑛

= 0, ∑∞
𝑛=1

𝛼
𝑛

= ∞, and
lim
𝑛→∞

𝑟
𝑛
= ∞. Then, {𝑥

𝑛
} converges strongly to 𝑝 = 𝑃

𝐹
(𝑤).

4. Application

In this section, we study the problem of finding a minimizer
of a continuously Fréchet differentiable convex functional in
Banach spaces.The followings are deduced fromTheorems 11
and 12.

Theorem 19. Let 𝐶 and 𝐷 be a nonempty, closed, and convex
subsets of a smooth and uniformly convex real Banach space 𝐸.
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Let𝐶∩int(𝐷) ̸= 0. Let𝑓 be a continuously Fréchet differentiable
convex functional, and let ∇𝑓 be maximal monotone on 𝐶. Let
𝑔 be a continuously Fréchet differentiable convex functional,
and let∇𝑔 bemaximalmonotone on𝐷. Assume that𝐹 := (∇𝑓+

∇𝑔)
−1

(0) = {𝑧 ∈ 𝐸 : 𝑓(𝑧) + 𝑔(𝑧) = inf
𝑦∈𝐸

{𝑓(𝑦) + 𝑔(𝑦)}} ̸= 0.
Let {𝑥

𝑛
} be a sequence generated by

𝑥
0
∈ 𝐶 chosen arbitrarily,

𝑥
𝑛+1

= 𝐽
−1

(𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽(𝐽 + 𝑟

𝑛
(∇𝑓 + ∇𝑔))

−1

𝐽𝑥
𝑛
) ,

(42)

where 𝛼
𝑛

∈ (0, 1) and {𝑟
𝑛
} a sequence of (0,∞) satisfying:

lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞, and lim

𝑛→∞
𝑟
𝑛
= ∞. Then,

{𝑥
𝑛
} converges strongly to an element of 𝐹.

Theorem 20. Let 𝐶 be a nonempty, closed, and convex subset
of a smooth and uniformly convex real Banach space. Let 𝑓 be
a continuously Fréchet differentiable convex functional, and let
∇𝑓 bemaximalmonotone on𝐶. Let𝑔 be a continuously Fréchet
differentiable convex functional, and let ∇𝑔 be bounded,
hemicontinuous, and monotone on 𝐸 with 𝐹 := (∇𝑓 +

∇𝑔)
−1

(0) = {𝑧 ∈ 𝐸 : 𝑓(𝑧) + 𝑔(𝑧) = inf
𝑦∈𝐸

{𝑓(𝑦) + 𝑔(𝑦)}} ̸= 0.
Let {𝑥

𝑛
} be a sequence generated by

𝑥
0
∈ 𝐶 chosen arbitrarily,

𝑥
𝑛+1

= 𝐽
−1

(𝛼
𝑛
𝐽𝑤 + (1 − 𝛼

𝑛
) 𝐽(𝐽 + 𝑟

𝑛
(∇𝑓 + ∇𝑔))

−1

𝐽𝑥
𝑛
) ,

(43)

where 𝛼
𝑛

∈ (0, 1) and {𝑟
𝑛
} a sequence of (0,∞) satisfying:

lim
𝑛→∞

𝛼
𝑛
= 0, ∑∞

𝑛=1
𝛼
𝑛
= ∞, and lim

𝑛→∞
𝑟
𝑛
= ∞. Then,

{𝑥
𝑛
} converges strongly to an element of 𝐹.

Remark 21. Our results provide strong convergence theorems
for finding a zero of a finite sum of monotone mappings in
Banach spaces and hence extend the results of Rockafellar
[11], Kamimura andTakahashi [9], and Lions andMercier [6].

Acknowledgments

The authors thank the referee for his comments that consid-
erably improved the paper. The research of N. Shahzad was
partially supported byDeanship of Scientific Research (DSR),
King Abdulaziz University, Jeddah, Saudi Arabia.

References

[1] W. Takahashi, Nonlinear Functional Analysis, Kindikagaku,
Tokyo, Japan, 1988.

[2] E.H. Zarantonello, “Solving functional equations by contractive
averaging,” Tech. Rep. 160, Mathematics Research Centre,
Univesity of Wisconsin, Madison, Wis, USA, 1960.

[3] G. J. Minty, “Monotone (nonlinear) operators in Hilbert space,”
Duke Mathematical Journal, vol. 29, pp. 341–346, 1962.
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[13] H. H. Bauschke, E. Matoušková, and S. Reich, “Projection and
proximal point methods: convergence results and counterex-
amples,” Nonlinear Analysis: Theory, Methods &Applications,
vol. 56, no. 5, pp. 715–738, 2004.

[14] R. E. Bruck and S. Reich, “Nonexpansive projections and
resolvents of accretive operators in Banach spaces,” Houston
Journal of Mathematics, vol. 3, no. 4, pp. 459–470, 1977.
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