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The paper starts with a discussion involving the Sobolev constant on geodesic balls and then follows with a derivation of a lower
bound for the first eigenvalue of the Laplacian onmanifolds with small negative curvature.The derivation involves Moser iteration.

1. Introduction

The Laplacian is one of the most important operator on
Riemannian manifolds, and the study of its first eigenvalue is
also an interesting subject in the field of geometric analysis.
In general, people would like to estimate the first eigenvalue
of Laplacian in terms of geometric quantities of themanifolds
such as curvature, volume, diameter, and injectivity radius. In
this sense, the first interesting result is that of Lichnerowicz
and Obata, which proved the following result in [1]: let 𝑀𝑛
be an 𝑛-dimensional compact Riemannian manifold without
boundary with Ric (𝑀) ≥ (𝑛 − 1), then the first eigenvalue
of Laplacian on 𝑀

𝑛 will satisfy that 𝜆
1
(𝑀) ≥ 𝑛, and the

inequality becomes equality if and only if𝑀𝑛 ≅ 𝑆
𝑛.

The above result implies that the first eigenvalue of the
Laplacian will have a lower bound less than 𝑛 if the Ricci
curvature of manifolds involved has a lower bound 𝑛 − 1

except on a small part where the Ricci curvature satisfied
that Ric (𝑀) ≥ 0. Now a natural question arises: what is the
lower bound of the first eigenvalue of Laplacian on such a
manifold? In [2], Petersen and Sprouse gave a lower bound
under the assumption that the bad part of the manifolds is
small in the sense of 𝐿𝑝-norm, where 𝑝 is a constant larger
than half of the dimension of the manifold. In this paper, we
are interested in the lower bound of the first eigenvalue under
the global pinching of the Ricci curvature and we obtain a
universal estimate of this lower bound on a certain class of
manifolds.

2. A Sobolev Constant on the Geodesic Ball

The Sobolev inequality is one of the most important tools
in geometric analysis, and the Sobolev constant plays an
important part in the study of this field. In this section, we
will obtain a general Sobolev constant only depending on the
dimension of the manifold on the geodesic ball with small
radius.

Definition 1. Let 𝐵
𝑝
(𝑅) ⊆ 𝑀 be a geodesic ball with radius

𝑅; we define the Sobolev constant 𝐶
𝑠
(𝑅) on it to be the

infimum among all the constant 𝐶 such that the inequality
||𝑓||
2

2𝑛/(𝑛−2)
≤ 𝐶||∇𝑓||

2

2
holds for all 𝑓 ∈ 𝑊

1.2

0
(𝐵
𝑝
(𝑅)).

Definition 2. Let 𝐵
𝑝
(𝑅) ⊆ 𝑀 be a geodesic ball with radius

𝑅; we define the isoperimetric constant 𝐶
0
(𝑅) on it to be the

supremum among all the constant 𝛼 such that the inequality
Area (𝜕Ω) ≥ 𝛼Vol (Ω)1−(1/𝑛) holds for all Ω ⊆ 𝐵

𝑝
(𝑅) with

smooth boundary.
For any fixed point 𝑝 and radius 𝑅, Croke proves that the

equality𝐶
𝑠
(𝑅) = 4((𝑛−1)/(𝑛−2))

2

𝐶
0
(𝑅)
−2 holds [3], but one

expects the constant 𝐶
𝑠
(𝑅) to be independent on the location

of the point 𝑝, under some assumptions. In what follows, we
will give an upper bound to 𝐶

𝑠
(𝑅) independent of the point

𝑝.
Let 𝑀 be an 𝑛-dimensional Riemannian manifold, 𝑆𝑀

is the unit tangent bundle of 𝑀, and 𝜋 : 𝑆𝑀 → 𝑀 is
the canonical projective map. Ω ⊆ 𝑀, 𝜉 ∈ 𝑆Ω, 𝛾

𝜉
(𝑡) is the
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normalized geodesic from 𝜋(𝜉) with the initial velocity 𝜉. We
define some notations as follows:

𝜏 (𝜉) = sup {𝜏 > 0 | 𝛾
𝜉
(𝑡) ∈ Ω, ∀𝑡 ∈ (0, 𝜏)} . (1)

𝐶(𝜉) is the arc length from 𝜋(𝜉) to the cut locus point
along 𝛾

𝜉
(𝑡). Consider

𝑈Ω = {𝜉 ∈ 𝑆Ω | 𝐶 (𝜉) ≥ 𝜏 (𝜉)} ,

𝑈
𝑥
= (𝜋 | 𝑈Ω)

−1

(𝑥) ; 𝜔
𝑥
=
𝜇
𝑥
(𝑈
𝑥
)

𝑐
𝑛−1

; 𝜔 = inf
𝑥∈Ω

𝜔
𝑥
,

(2)

where 𝜇
𝑥
is the standard surface measure of the unit sphere,

𝑐
𝑛−1

is denoted to be the area of the unit sphere 𝑆𝑛−1.

Definition 3. Using the Notation above, 𝜔 = inf
𝑥∈Ω

𝜔
𝑥
is

called the visibility angle ofΩ.
If the manifold has Inj (𝑀) ≥ 𝑖 which ensures that any

minimal geodesic starting from any point in 𝐵
𝑝
(𝑖/2) will

reach the boundary 𝜕𝐵
𝑝
(𝑖/2) before it reaches its cut locus,

then the visibility angle of 𝐵
𝑝
(𝑖/2) for any point 𝑝 which we

denote by 𝜔(𝑖/2) satisfies 𝜔(𝑖/2) = 1.

Lemma 4. Let 𝑀𝑛 be a closed Riemannian manifold with
Inj (𝑀) ≥ 𝑖, then for any 𝑝 ∈ 𝑀, the following Sobolev
inequality holds on 𝐵

𝑝
(𝑖/2): ||𝑓||2

2𝑛/(𝑛−2)
≤ 𝐶||∇𝑓||

2

2
, where

𝑓 ∈ 𝑊
1.2

0
(𝐵
𝑝
(𝑖/2)) and 𝐶 = 𝐶(𝑛).

Proof. Croke proved the following inequality [4]:

Area (𝜕Ω)
Vol (Ω)1−(1/𝑛)

≥
𝑐
𝑛−1

(𝑐
𝑛
/2)
1−(1/𝑛)

𝜔
1+(1/𝑛)

, (3)

whereΩ ⊆ 𝐵
𝑝
(𝑖/2), 𝜕Ω ∈ 𝐶

∞, and𝜔 is just the visibility angle
of the domainΩ.

As discussed above, we will have𝜔(Ω) = 1 ifΩ ⊆ 𝐵
𝑝
(𝑖/2);

then according to Croke’s inequality, we obtain 𝐶
0
(𝑖/2) ≥

𝑐
𝑛−1

/(𝑐
𝑛
/2)
1−(1/𝑛) . The relation between 𝐶

0
(𝑖/2) and 𝐶

𝑠
(𝑖/2)

tells us that 𝐶
𝑠
(𝑖/2) ≤ 𝐶(𝑛), where 𝐶(𝑛) is a constant only

depending on the dimension 𝑛.

Proposition 5. Let𝑀𝑛 be a closed 𝑛-dimensional Riemannian
manifold with Inj (𝑀) ≥ 𝑖, then for all 𝑝 ∈ 𝑀, Vol (𝐵

𝑝
(𝑖/2))

≥ 𝐶
𝑛
𝑖
𝑛, where𝐶

𝑛
is a constant only depending on the dimension

𝑛.

Proof. Also take the inequality of Croke

Area (𝜕Ω)
Vol (Ω)1−(1/𝑛)

≥
𝑐
𝑛−1

(𝑐
𝑛
/2)
1−(1/𝑛)

𝜔
1+(1/𝑛)

, (4)

then the result can easily be derived from the fact that
𝜔(𝑖/2) = 1 and Area (𝜕𝐵

𝑝
(𝑟)) = 𝑑Vol (𝐵

𝑝
(𝑟))/𝑑𝑟 after we

integrate both sides of the inequality.

3. The First Eigenfunction and Eigenvalue

Let 𝑀𝑛 be a closed 𝑛-dimensional Riemannian manifold;
suppose that𝜆

1
(𝑀) is the first eigenvalue of the Laplacian and

𝑢 is the first eigenfunction. In other words, they will satisfy
that Δ𝑢 + 𝜆

1
(𝑀)𝑢 = 0. By linearity, we can assume that

−1 ≤ 𝑢 ≤ 1 and inf
𝑥∈𝑀

𝑢 = −1 for the linearity. For the
convenience, we call it the normalized eigenfunction.Nextwe
will study some properties of the normalized eigenfunction
and the eigenvalue.

Lemma 6. Let 𝑀𝑛 be a closed 𝑛-dimensional Riemannian
manifold with Ric (𝑀) ≥ 0 and Inj (𝑀) ≥ 𝑖. Then, a constant
𝐶
1
(𝑛, 𝑖) > 0 can be found such that 𝜆

1
(𝑀) ≤ 𝐶

1
(𝑛, 𝑖).

Proof. One of the theorems of Yau and Schoen [1] shows that
𝜆
1
(𝑀) ≤ 𝐸

𝑛
/𝑑
2

≤ 𝐸
𝑛
/𝑖
2

≜ 𝐶
1
(𝑛, 𝑖) if Ric (𝑀) ≥ 0, where 𝑑 is

the diameter of the manifold and 𝐸
𝑛
is a constant depending

only on 𝑛.
We will now introduce some notation. Let Ric

−
(𝑥) denote

the lowest eigenvalue of the Ricci curvature tensor at 𝑥. For
a function 𝑓(𝑥) on 𝑀

𝑛, we denote 𝑓
+
(𝑥) = max{𝑓(𝑥), 0}.

Notice that a Riemannian manifold satisfies Ric ≥ 𝑛 − 1 if
and only if ((𝑛 − 1) − Ric

−
)
+
≡ 0.

The well-known Myers theorem shows that a closed
manifold with Ric ≥ 𝑛 − 1 would have a bounded diameter
𝑑 ≤ 𝜋. In other words, one can deduce that 𝑑 ≤ 𝜋 if one has
(1/Vol(𝑀)) ∫

𝑀

((𝑛 − 1) − Ric
−
)
+
𝑑vol = 0. We will show next

a result analogous to the one in [5] which we will use in our
estimation of the eigenvalue.The proof follows identically; so
it will be omitted (the reader can refer to the aforementioned
article).

Lemma 7. Let 𝑀𝑛 be a closed 𝑛-dimensional Riemannian
manifold with Ric (𝑀) ≥ 0, then for any 𝛿 > 0, there exists
𝜖
0
= 𝜖
0
(𝑛, 𝛿) > 0 such that if

1

Vol (𝑀)
∫
𝑀

((𝑛 − 1) − Ric
−
)
+
𝑑vol ≤ 𝜖

0
(𝑛, 𝛿) , (5)

then the diameter will satisfy 𝑑 < 𝜋 + 𝛿. In particular, there
exists 𝜖

1
= 𝜖
1
(𝑛) such that if

1

Vol (𝑀)
∫
𝑀

((𝑛 − 1) − Ric
−
)
+
𝑑vol ≤ 𝜖

1
(𝑛) , (6)

then the diameter will satisfy 𝑑 < 2𝜋. This fact, together with
the volume comparison theorem, implies that Vol (𝑀) ≤

𝐶
2
(𝑛), where 𝐶

2
(𝑛) is also a constant only dependent of 𝑛.

Now, we can get a rough lower bound for the first eigen-
value.

Lemma 8. For 𝑛 ∈ N, let 𝜖
1
= 𝜖
1
(𝑛) > 0 as above and suppose

that𝑀𝑛 is a closed manifold with

Ric (𝑀) ≥ 0,

1

Vol (𝑀)
∫
𝑀

((𝑛 − 1) − Ric
−
)
+
𝑑vol ≤ 𝜖

1
(𝑛) ;

(7)
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then there exists a constant 𝐶
3
(𝑛) > 0 such that 𝜆

1
(𝑀) ≥

𝐶
3
(𝑛).

Proof. The proof mainly belongs to Li and Yau [6]. Let 𝑢 be
the normalized eigenfunction of𝑀, set V = log (𝑎 + 𝑢) where
𝑎 > 1. Then, we can easily get that

ΔV =
−𝜆
1
(𝑀) 𝑢

𝑎 + 𝑢
− |∇V|

2

. (8)

Denote that 𝑄(𝑥) = |∇V|2(𝑥), and we then have by the
Ricci identity on manifolds with Ric (𝑀) ≥ 0:

Δ𝑄 = 2V
2

𝑖𝑗
+ 2V
𝑗
V
𝑗𝑖𝑖
≥ 2V
2

𝑖𝑗
+ 2 ⟨∇V, ∇ΔV⟩ . (9)

For the term V2
𝑖𝑗
, we have

∑

𝑖,𝑗

V
2

𝑖𝑗
≥
(ΔV)2

𝑛
≥
1

𝑛
(𝑄
2

+
2𝜆
1
(𝑀) 𝑢

𝑎 + 𝑢
) , (10)

and for the term ⟨∇V, ∇ΔV⟩, we have

⟨∇V, ∇ΔV⟩ = −
𝑎𝜆
1
(𝑀)

𝑎 + 𝑢
𝑄 − ⟨∇V, ∇𝑄⟩ . (11)

Therefore, assume 𝑥
0
∈ 𝑀 to be the maximum of 𝑄; then at

𝑥
0
, we have

0 ≥
2

𝑛
𝑄 (𝑥
0
) + (

4𝜆
1
(𝑀)

𝑛
−
2 (𝑛 + 2) 𝑎𝜆

1
(𝑀)

𝑛 (𝑎 − 1)
) . (12)

Therefore,

𝑄 (𝑥) ≤ 𝑄 (𝑥
0
) ≤

(𝑛 + 2) 𝑎𝜆
1
(𝑀)

𝑎 − 1
. (13)

Denote 𝛾 to be the minimizing unit speed geodesic join-
ing themaximum andminimumpoints of 𝑢; then integrating
𝑄
1/2 along 𝛾, one will get:

log( 𝑎

𝑎 − 1
) ≤ log(𝑎 +max 𝑢

𝑎 − 1
) ≤ 𝑑(

(𝑛 + 2) 𝑎𝜆
1
(𝑀)

𝑎 − 1
)

1/2

.

(14)

Let 𝑡 = (𝑎 − 1)/𝑎; then for any 𝑡 ∈ (0 1), we have (𝑛 +
2)𝜆
1
(𝑀) ≥ 𝑡(𝑑

−2

(log (1/𝑡))2).
Considering the maximum of the right hand and the

upper bound of the diameter derived in Lemma 7, we can
deduce that a positive constant 𝐶

3
(𝑛) can be found such that

𝜆
1
(𝑀) ≥

4𝑒
−2

(𝑛 + 2) 𝑑
2
≥ 𝐶
3
(𝑛) , (15)

where 𝑑 is the diameter of the manifold.

Corollary 9. If the manifold one discussed satisfies all the
conditions in Lemma 8 and its injectivity radius satisfies
Inj (𝑀) ≥ 𝑖 and if one let 𝑢 to be the normalized eigenfunction,
then there exists a constant 𝐶

4
(𝑛, 𝑖) > 0 such that |∇𝑢|2 ≤

𝐶
4
(𝑛, 𝑖).

Proof. Set 𝑎 = 2 in the (13) from above. Then applying
Lemma 6, one obtains

1

9
|∇𝑢|
2

≤ |∇V|
2

(𝑥) ≤ 2𝐶
1
(𝑛, 𝑖) (𝑛 + 2) ; (16)

therefore,

|∇𝑢|
2

≤ 𝐶
4
(𝑛, 𝑖) . (17)

Proposition 10. Let 𝑀𝑛 be a closed 𝑛-dimensional Rieman-
nian manifold, 𝑢 the first eigenfunction of the Laplacian, and
𝜆
1
(𝑀) the corresponding eigenvalue, thenΔ|𝑢|+𝜆

1
(𝑀)|𝑢| ≥ 0

holds in the sense of distribution. Moreover, if 𝑀𝑛 is compact
with boundary, then the same conclusion holds for its Neumann
boundary value problem.

Proof. From the definition, we know that Δ𝑢 + 𝜆
1
(𝑀)𝑢 = 0

holds on𝑀. Denote

𝑀
+

= {𝑥 ∈ 𝑀 | 𝑢 (𝑥) > 0} ,

𝑀
−

= {𝑥 ∈ 𝑀 | 𝑢 (𝑥) < 0} ,

𝑀
0

= {𝑥 ∈ 𝑀 | 𝑢 (𝑥) = 0} .

(18)

According to the maximum principle of elliptic equation and
the discussion about nodal set and nodal regions in [1], we
can conclude that 𝜕𝑀+ = 𝜕𝑀

−

= 𝑀
0 is a smooth manifold

with dimension 𝑛 − 1.
For all 𝜙 ∈ 𝐶

∞

(𝑀), 𝜙 ≥ 0, integrating by parts we then
have

∫
𝑀

|𝑢| Δ𝜙 + 𝜆
1
(𝑀) 𝜙 |𝑢|

= ∫
𝑀
+

|𝑢| Δ𝜙 + 𝜆
1
(𝑀) 𝜙 |𝑢| + ∫

𝑀
−

|𝑢| Δ𝜙 + 𝜆
1
(𝑀) 𝜙 |𝑢|

= ∫
𝜕𝑀
+

(𝑢
𝜕𝜙

𝜕𝑛+
− 𝜙

𝜕𝑢

𝜕𝑛+
) + ∫
𝑀
+

𝜙 (Δ𝑢 + 𝜆
1
(𝑀) 𝑢)

− ∫
𝜕𝑀
−

(𝑢
𝜕𝜙

𝜕𝑛−
− 𝜙

𝜕𝑢

𝜕𝑛−
) − ∫
𝑀
−

𝜙 (Δ𝑢 + 𝜆
1
(𝑀) 𝑢)

= ∫
𝜕𝑀
−

𝜙
𝜕𝑢

𝜕𝑛−
− ∫
𝜕𝑀
+

𝜙
𝜕𝑢

𝜕𝑛+
≥ 0,

(19)

where 𝑛+ and 𝑛− denote the outward normal direction with
respect to the boundaries of 𝑀+ and 𝑀−, respectively. Note
that 𝜕𝑢/𝜕𝑛− ≥ 0 on 𝜕𝑀

− and 𝜕𝑢/𝜕𝑛
+

≤ 0 on 𝜕𝑀
+ for the

definition of𝑀− and𝑀+. This completes the proof.

When𝑀 has boundary, we can apply the same reasoning,
except that the test function will require 𝜙 ∈ 𝐶

∞

0
(𝑀). This

gives the proof.
As long as the given manifold is compact, one knows

that the first normalized eigenfunction is then determined.
This indicates that the first normalized eigenfunction of
the Laplacian has a close relation with the geometry of
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the manifold. In particular, one would hope to bound the
𝐿
2-norm of first normalized eigenvalue of Laplacian from

below by the geometric quantities. In this sense, we have the
following result.

Theorem 11. Let 𝑀𝑛 be a closed 𝑛-dimensional Riemannian
manifold with Ric (𝑀) ≥ 0 and Inj (𝑀) ≥ 𝑖. If 𝑢 is the
normalized eigenfunction of the Laplacian, then there exists a
constant 𝐶

5
(𝑛, 𝑖) > 0 such that ∫

𝑀

𝑢
2

≥ 𝐶
5
(𝑛, 𝑖).

Proof. We use Moser iteration to get the result. From Propo-
sition 10, we know that Δ|𝑢| + 𝜆

1
(𝑀)|𝑢| ≥ 0 holds on 𝑀 in

the sense of distribution. Set V = |𝑢| and take the point 𝑝 ∈ 𝑀

such that 𝑢(𝑝) = −1.
For 𝑎 ≥ 1, denote 𝑅 = 𝑖/2; 𝜙 is a cut-off function on

𝐵
𝑝
(𝑅), then we have by integrating by parts:

𝜆
1
(𝑀)∫

𝐵
𝑝
(𝑅)

𝜙
2

V
2𝑎

= −∫
𝐵
𝑝
(𝑅)

𝜙
2

V
2𝑎−1

ΔV

= 2∫
𝐵
𝑝
(𝑅)

𝜙V
2𝑎−1

+ (2𝑎 − 1) ∫
𝐵
𝑝
(𝑅)

𝜙
2

V
2𝑎−2

|∇V|
2

≥ 2∫
𝐵
𝑝
(𝑅)

𝜙V
2𝑎−1

+ 𝑎∫
𝐵
𝑝
(𝑅)

𝜙
2

V
2𝑎−2

|∇V|
2

.

(20)

However, using the identity

∫
𝐵
𝑝
(𝑅)

∇ (𝜙V
𝑎

)


2

= ∫
𝐵
𝑝
(𝑅)

∇𝜙


2

V
2𝑎

+ 2𝑎∫
𝐵
𝑝
(𝑅)

𝜙V
2𝑎−1

⟨∇𝜙, ∇V⟩

+ 𝑎
2

∫
𝐵
𝑝
(𝑅)

𝜙
2

V
2𝑎−2

|∇V|
2

,

(21)

we have

𝜆
1
(𝑀) 𝑎∫

𝐵
𝑝
(𝑅)

V
2𝑎

𝜙
2

≥ ∫
𝐵
𝑝
(𝑅)

∇ (𝜙V
𝑎

)


2

− ∫
𝐵
𝑝
(𝑅)

V
2𝑎∇𝜙



2

;

(22)

therefore, using the Sobolev inequality in Lemma 4,

𝜆
1
(𝑀) 𝑎∫

𝐵
𝑝
(𝑅)

V
2𝑎

𝜙
2

+ ∫
𝐵
𝑝
(𝑅)

V
2𝑎∇𝜙



2

≥ ∫
𝐵
𝑝
(𝑅)

∇ (𝜙V
𝑎

)


2

≥
1

𝐶
(∫
𝐵
𝑝
(𝑅)

(𝜙V
𝑎

)
2𝑛/(𝑛−2)

)

(𝑛−2)/𝑛

=
1

𝐶

𝜙V
𝑎

2

2𝑛/(𝑛−2)
.

(23)

Let

𝜙 =

{{{{{{{{{

{{{{{{{{{

{

1, in 𝐵
𝑝
(𝜌) ,

𝜌 + 𝜎 − 𝑟

𝜎
, in

𝐵
𝑝
(𝜌 + 𝜎)

𝐵
𝑝
(𝜌)

,

0, in
𝐵
𝑝
(𝑅)

𝐵
𝑝
(𝜌 + 𝜎)

.

(24)

Putting 𝜙 into the inequality above and we then have by
splitting the integral into three parts and using the values of
𝜙 on each of them:

‖V‖
2𝑎𝑛/(𝑛−2);𝐵

𝑝
(𝜌)

≤ [𝐶(𝜆
1
(𝑀) 𝑎 +

1

𝜎2
)]

1/2𝑎

‖V‖
2𝑎;𝐵
𝑝
(𝜌+𝜎)

,

(25)

where we denote ||𝑓||
𝑝;Ω

= (∫
Ω

𝑓
𝑝

)
1/𝑝 only for emphasizing

the integral domain.
Set

{𝑎
𝑗
} : 𝑎
0
= 1, 𝑎
1
=

𝑛

𝑛 − 2
, . . . , 𝑎

𝑗
= (

𝑛

𝑛 − 2
)

𝑗

, . . . ,

{𝜎
𝑗
} : 𝜎
0
=
𝑅

4
, 𝜎
1
=
𝑅

8
, . . . , 𝜎

𝑗
=

𝑅

2−(2+𝑗)
, . . . ,

{𝜌
𝑗
} : 𝜌
−1
= 𝑅, . . . , 𝜌

𝑗
= 𝑅 −

𝑗

∑

𝑠=0

𝜎
𝑙
, . . . .

(26)

And putting {𝑎
𝑗
}, {𝜎
𝑗
}, {𝜌
𝑗
} into (25), we can derive after

iteration that

‖V‖
2𝑎
𝑗+1
; 𝐵
𝑝
(𝜌
𝑗
)
≤ [𝐶(𝜆

1
(𝑀)𝑎
𝑗
+

1

𝜎
2

𝑗

]

1/2𝑎
𝑗

‖V‖
2𝑎
𝑗
;𝐵
𝑝
(𝜌
𝑗−1
)

≤

𝑗

∏

𝑠=0

[𝐶(𝜆
1
(𝑀) 𝑎

𝑠
+

1

𝜎2
𝑠

)]

1/2𝑎
𝑠

‖V‖
2;𝐵
𝑝
(𝑅)
.

(27)

Let 𝑗 → +∞, then

‖V‖
∞;𝐵
𝑝
(𝑅/2)

≤

∞

∏

𝑗=0

[𝐶(𝜆
1
(𝑀)𝑎
𝑗
+

1

𝜎
2

𝑗

]

1/2𝑎
𝑗

‖V‖
2;𝐵
𝑝
(𝑅)
. (28)

The product can be estimated as follows:

∞

∏

𝑗=0

[𝐶(𝜆
1
(𝑀) 𝑎

𝑗
+

1

𝜎
2

𝑗

)]

1/2𝑎
𝑗

≤

∞

∏

𝑗=0

[𝐶(𝜆
1
(𝑀) +

16

𝑅2
)]

1/2𝑎
𝑗

4
𝑗/2𝑎
𝑗 .

(29)

The right hand will converge to a fixed number by using
the fact that∏∞

𝑗=0
𝐵
𝜇
𝑗

= 𝐵
𝜇/(𝜇−1) and the fact∑∞

𝑗=0
𝑗𝜇
−𝑗 is finite

for some 𝐵 ∈ 𝑅, 𝜇 > 1. From 𝜆
1
(𝑀) ≤ 𝐶

1
(𝑛, 𝑖), we can find a

positive constant 𝐶
5
(𝑛, 𝑖) > 0 such that

‖V‖
∞;𝐵
𝑝
(𝑅/2)

≤ 𝐶
−1/2

5
(𝑛, 𝑖) ‖V‖

2;𝐵
𝑝
(𝑅)

≤ 𝐶
−1/2

5
(𝑛, 𝑖) ‖V‖

2;𝑀
.

(30)

Therefore,

∫
𝑀

𝑢
2

≥ 𝐶
5
(𝑛, 𝑖) . (31)
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4. The Lower Bound of the First Eigenvalue

Using the same notation as above, we can state the following
result.

Theorem 12. For 𝑛 ∈ N, 𝑖, 𝛿 ∈ R+, there is an 𝜖 = 𝜖(𝑛, 𝑖, 𝛿) >

0 such that any closed manifold 𝑀
𝑛 with Ric (𝑀) ≥ 0,

Inj (𝑀) ≥ 𝑖 and

1

Vol (𝑀)
∫
𝑀

((𝑛 − 1) − Ric
−
)
+
𝑑vol ≤ 𝜖 (32)

will satisfy that 𝜆
1
(𝑀) ≥ 𝑛 − 𝛿.

Proof. Assume that 𝑢 is the normalized eigenfunction of
Laplacian on 𝑀

𝑛, let 𝑄(𝑥) = |∇𝑢|
2

+ (𝜆
1
(𝑀)/𝑛)𝑢

2, direct
computation shows that

1

2
Δ𝑄 = 𝑢

2

𝑖𝑗
+ 𝑢
𝑗
𝑢
𝑖𝑖𝑗
+ 𝑅
𝑖𝑗
𝑢
𝑖
𝑢
𝑗
+
𝜆
1
(𝑀)

𝑛
|∇𝑢|
2

+
𝜆
1
(𝑀)

𝑛
𝑢Δ𝑢

≥
1 − 𝑛

𝑛
𝜆
1
(𝑀) |∇𝑢|

2

+ 𝑅
𝑖𝑗
𝑢
𝑖
𝑢
𝑗
.

(33)

Integrating both sides on𝑀𝑛, we have

0 ≥
1 − 𝑛

𝑛
𝜆
1
(𝑀)∫

𝑀

|∇𝑢|
2

𝑑vol + ∫
𝑀

𝑅
𝑖𝑗
𝑢
𝑖
𝑢
𝑗
𝑑vol

≥
1 − 𝑛

𝑛
𝜆
1
(𝑀)∫

𝑀

|∇𝑢|
2

𝑑vol + ∫
𝑀

Ric
−
|∇𝑢|
2

𝑑vol

=
1 − 𝑛

𝑛
𝜆
1
(𝑀)∫

𝑀

|∇𝑢|
2

𝑑vol + (𝑛 − 1) ∫
𝑀

|∇𝑢|
2

𝑑vol

− ∫
𝑀

[(𝑛 − 1) − Ric
−
] |∇𝑢|

2

𝑑vol;

(34)

therefore,

𝜆
1
(𝑀) ≥ 𝑛 −

Vol (𝑀)

𝜆
1
(𝑀) ∫

𝑀

|𝑢|
2

𝑑vol
1

Vol (𝑀)

× ∫
𝑀

((𝑛 − 1) − Ric
−
)
+
|∇𝑢|
2

𝑑vol

(35)

if we suppose that

1

Vol (𝑀)
∫
𝑀

((𝑛 − 1) − Ric
−
)
+
𝑑vol ≤ 𝜖

1
(𝑛) . (36)

If 𝜖
1
is the one obtained in Lemma 7, then one has:

𝜆
1
(𝑀) ≥ 𝑛 −

𝐶
2
𝐶
4

𝐶
3
𝐶
5

1

Vol (𝑀)
∫
𝑀

((𝑛 − 1) − Ric
−
)
+
𝑑vol.

(37)

Finally, if one chooses

0 < 𝜖 = 𝜖 (𝑛, 𝑖, 𝛿) ≤ min{𝜖
1
, 𝛿
𝐶
3
𝐶
5

𝐶
2
𝐶
4

} , (38)

then 𝜆
1
(𝑀) ≥ 𝑛 − 𝛿 as long as (1/Vol (𝑀)) ∫

𝑀

((𝑛 − 1) −

Ric
−
)
+
𝑑vol ≤ 𝜖, and this proves the theorem.
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