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The continuous g-frames in Hilbert 𝐶∗-modules were introduced and investigated by Kouchi and Nazari (2011). They also studied
the continuous g-Riesz basis and a characterization for it was presented by using the synthesis operator. However, we found that
there is an error in the proof. The purpose of this paper is to improve their result by introducing the so-called modular continuous
g-Riesz basis.

Kouchi and Nazari in [1] introduced the continuous g-
frames in Hilbert 𝐶∗-modules and investigated some of their
properties.The following lemma is a useful tool in their study.

Lemma 1 (see [2]). Let 𝐴 be a 𝐶∗-algebra, U and V two
Hilbert 𝐴-modules, and 𝑇 ∈ End∗

𝐴
(U,V). The following

statements are equivalent:

(1) 𝑇 is surjective;

(2) 𝑇∗ is bounded below with respect to norm, that is, there
is𝑚 > 0 such that ‖𝑇∗𝑓‖ ≥ 𝑚‖𝑓‖ for all 𝑓 ∈V;

(3) 𝑇∗ is bounded belowwith respect to inner product, that
is, there is 𝑚 > 0 such that ⟨𝑇∗𝑓, 𝑇∗𝑓⟩ ≥ 𝑚⟨𝑓, 𝑓⟩
for all 𝑓 ∈V.

The authors also defined the continuous g-Riesz basis in
Hilbert 𝐶∗-modules as follows.

Definition 2. A continuous g-frame {Λ
𝑚
∈ End∗

𝐴
(U, 𝑉
𝑚
) :

𝑚 ∈M} for Hilbert 𝐶∗-moduleU with respect to {𝑉
𝑚
: 𝑚 ∈

M} is said to be a continuous g-Riesz basis if it satisfies the
following:

(1) Λ
𝑚
̸= 0 for any𝑚 ∈M;

(2) if ∫
𝑚∈K
Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇(𝑚) = 0, then Λ∗

𝑚
𝑔
𝑚
is equal to zero

for each 𝑚 ∈ M, where {𝑔
𝑚
}
𝑚∈K ∈ ⊕𝑚∈M𝑉𝑚 and K

is a measurable subset ofM.

By using the synthesis operator 𝑇
Λ
for a sequence {Λ

𝑚
∈

End∗
𝐴
(U, 𝑉
𝑚
) : 𝑚 ∈M} defined by

𝑇
Λ
(𝑔) = ∫

𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚) , ∀𝑔 = {𝑔

𝑚
} ∈ ⨁

𝑚∈M

𝑉
𝑚
, (1)

they gave a characterization of continuous g-Riesz basis [1,
Theorem 4.6].

Theorem 3. A family {Λ
𝑚
∈ End∗

𝐴
(U, 𝑉
𝑚
) : 𝑚 ∈ M} is a

continuous g-Riesz basis forU with respect to {𝑉
𝑚
: 𝑚 ∈M} if

and only if the synthesis operator 𝑇
Λ
is a homeomorphism.

We note, however, that in the proof of the above theorem,
they said that “Λ∗

𝑚
𝑓
𝑚
= 0 for any 𝑚 ∈ M, and Λ

𝑚
̸= 0,

so 𝑓
𝑚
= 0”, which is not true, because if Λ

𝑚
has a dense

range, thenΛ∗
𝑚
is one-to-one. We can improve their result by

introducing the following modular continuous g-Riesz basis.

Definition 4. One calls a family {Λ
𝑚
∈ End∗

𝐴
(U, 𝑉
𝑚
) : 𝑚 ∈

M} in Hilbert 𝐶∗-module U a modular continuous g-Riesz
basis if

(1) {𝑓 ∈ U : Λ
𝑚
𝑓 = 0, 𝑚 ∈M} = {0};

(2) there exist constants 𝐴, 𝐵 > 0 such that for any 𝑔 =
{𝑔
𝑚
} ∈ ⊕
𝑚∈M𝑉𝑚,

𝐴




𝑔





2

≤










∫

𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚)










2

≤ 𝐵




𝑔





2

. (⋆)

Theorem 5. A sequence {Λ
𝑚
∈ End∗

𝐴
(U, 𝑉
𝑚
) : 𝑚 ∈ M}

is a modular continuous g-Riesz basis for U with respect to
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{𝑉
𝑚
: 𝑚 ∈ M} if and only if the synthesis operator 𝑇

Λ
is a

homeomorphism.

Proof. Suppose first that {Λ
𝑚
∈ End∗

𝐴
(U, 𝑉
𝑚
) : 𝑚 ∈ M}

is a modular continuous g-Riesz basis for U with synthesis
operator 𝑇

Λ
. Then (⋆) turns to be

𝐴
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𝑇
Λ
(𝑔)
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≤ 𝐵





𝑔






2

, ∀𝑔 = {𝑔
𝑚
} ∈ ⨁

𝑚∈M

𝑉
𝑚
, (2)

showing that 𝑇
Λ
is bounded below with respect to norm.

Hence, by Lemma 1, its adjoint operator𝑇∗
Λ
is surjective. Since

the condition (1) in Definition 4 implies that 𝑇∗
Λ
is injective,

it follows that 𝑇∗
Λ
is invertible and so 𝑇

Λ
is invertible.

Conversely, let 𝑇
Λ
be a homeomorphism. Then 𝑇

Λ
is

surjective, and again by Lemma 1, 𝑇∗
Λ
is injective. So the

condition (1) in Definition 4 holds. Now for any 𝑔 = {𝑔
𝑚
} ∈

⊕
𝑚∈M𝑉𝑚,
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∫
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.

(3)

Therefore, {Λ
𝑚
∈ End∗

𝐴
(U, 𝑉
𝑚
) : 𝑚 ∈ M} is a modular

continuous g-Riesz basis for U with respect to {𝑉
𝑚
: 𝑚 ∈

M}.
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