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Received 22 December 2012; Accepted 12 February 2013

Academic Editor: Norio Yoshida
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Here we show that the main results in the papers by Yalcinkaya (2008), Yalcinkaya and Cinar (2010), and Yalcinkaya, Cinar,
and Simsek (2008), as well as a conjecture from the last mentioned paper, follow from a slight modification of a result by G.
Papaschinopoulos and C. J. Schinas. We also give some generalizations of these results.

1. Introduction

Studying difference equations and systems which possess
some kind of symmetry attracted some attention recently
(see, e.g., [1–25] and the related references therein).

Paper [23] studied the following system of difference
equations:

𝑥
𝑛+1

=

𝑦
𝑛
𝑥
𝑛−1

+ 𝑎

𝑦
𝑛
+ 𝑥
𝑛−1

,

𝑦
𝑛+1

=

𝑥
𝑛
𝑦
𝑛−1

+ 𝑎

𝑥
𝑛
+ 𝑦
𝑛−1

, 𝑛 ∈ N
0
.

(1)

In [24], authors claim that they study the system

𝑥
𝑛+1

=

𝑦
𝑛
+ 𝑥
𝑛−1

𝑦
𝑛
𝑥
𝑛−1

+ 𝑎

,

𝑦
𝑛+1

=

𝑥
𝑛
+ 𝑦
𝑛−1

𝑥
𝑛
𝑦
𝑛−1

+ 𝑎

, 𝑛 ∈ N
0
,

(2)

while in [25], the authors studied the system

𝑥
𝑛+1

=

𝑥
𝑛
𝑦
𝑛−1

+ 𝑎

𝑥
𝑛
+ 𝑦
𝑛−1

,

𝑦
𝑛+1

=

𝑦
𝑛
𝑥
𝑛−1

+ 𝑎

𝑦
𝑛
+ 𝑥
𝑛−1

, 𝑛 ∈ N
0
,

(3)

where 𝑎 > 0.
Since 𝑎 > 0, it is clear that the change of variables

(𝑥
𝑛
, 𝑦
𝑛
) → (√𝑎𝑥

𝑛
√𝑎𝑦
𝑛
) , (4)

reduces systems (1) and (3) to the case 𝑎 = 1. The authors
of [24] claim that the change of variables (4) reduces (2) to
the case 𝑎 = 1 too; however by using the change system (2)
becomes

𝑥
𝑛+1

=

𝑦
𝑛
+ 𝑥
𝑛−1

𝑎 (𝑦
𝑛
𝑥
𝑛−1

+ 1)

,

𝑦
𝑛+1

=

𝑥
𝑛
+ 𝑦
𝑛−1

𝑎 (𝑥
𝑛
𝑦
𝑛−1

+ 1)

, 𝑛 ∈ N
0
.

(5)

Therefore, in fact, [24] studied only system (2) for the case
𝑎 = 1.
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Based on this observation we may, and will, assume that
𝑎 = 1 in systems of difference equations (1)–(3).

In themain results in [23–25] it is proved that when 𝑎 = 1,
the positive equilibrium point (𝑥, 𝑦) = (1, 1) of systems (1)–
(3) is globally asymptotically stable.

The authors of [25] finish their paper by the statement
that they believe that the results therein can be conveniently
extended to the following higher order system of difference
equations:

𝑥
𝑛+1

=

𝑥
𝑛
𝑦
𝑛−𝑙
+ 𝑎

𝑥
𝑛
+ 𝑦
𝑛−𝑙

,

𝑦
𝑛+1

=

𝑦
𝑛
𝑥
𝑛−𝑙
+ 𝑎

𝑦
𝑛
+ 𝑥
𝑛−𝑙

, 𝑛 ∈ N
0
,

(6)

when 𝑙 ∈ N \ {1}.
Here, among others, we show that all the results and con-

jectures mentioned above follow from a slight modification
of a result in the literature published before papers [23–25].
For related systems see also [2, 5–10, 12, 17–20].

2. Main Results

Let R
+
= (0, +∞) and R𝑛

+
be the set of all positive 𝑛-

dimensional vectors. The following theorem was proved in
[4].

Theorem A. Let (𝑀, 𝑑) be a complete metric space, where
𝑑 denotes a metric and 𝑀 is an open subset of R𝑛, and let
𝑇 : 𝑀 → 𝑀 be a continuous mapping with the unique
equilibrium 𝑥

∗

∈ 𝑀. Suppose that for the discrete dynamic
system

𝑥
𝑛+1

= 𝑇𝑥
𝑛
, 𝑛 ∈ N

0
, (7)

there is a 𝑘 ∈ N such that for the 𝑘th iterate of 𝑇, the following
inequality holds:

𝑑 (𝑇
𝑘

𝑥, 𝑥
∗

) < 𝑑 (𝑥, 𝑥
∗

) , (8)

for all 𝑥 ̸= 𝑥
∗. Then 𝑥∗ is globally asymptotically stable with

respect to metric 𝑑.

The part-metric (see [21]) is a metric defined on R𝑛
+
by

𝑝 (𝑋, 𝑌) = − log min
1≤𝑖≤𝑛

{

𝑥
𝑖

𝑦
𝑖

,

𝑦
𝑖

𝑥
𝑖

} , (9)

for arbitrary vectors 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛
+
and 𝑌 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
)
𝑇

∈ R𝑛
+
.

It is known that the part-metric 𝑝 is a continuous metric
on R𝑛

+
, (R𝑛
+
, 𝑝) is a complete metric space, and that the

distances induced by the part-metric and by the Euclidean
norm are equivalent on R𝑛

+
(see, e.g., [4]).

Based on these properties and Theorem A, the following
corollary follows.

Corollary 1. Let𝑇 : R𝑛
+
→ R𝑛
+
be a continuousmapping with

a unique equilibrium 𝑥
∗

∈ R𝑛
+
. Suppose that for the discrete

dynamic system (7), there is some 𝑘 ∈ N such that for the part-
metric 𝑝 inequality

𝑝 (𝑇
𝑘

𝑥, 𝑥
∗

) < 𝑝 (𝑥, 𝑥
∗

) (10)

holds for all 𝑥 ̸= 𝑥
∗. Then 𝑥∗ is globally asymptotically stable.

Some applications of various part-metric-related inequal-
ities and some asymptotic methods in studying difference
equations related to symmetric ones can be found, for
example, in [1, 3–5, 10, 11, 13–16, 22] (see also the related
references therein).

In Lemma 2.3 in [10], Papaschinopoulos and Schinas
formulated a variant of the following result, without giving a
proof.However, the part concerning the equality in inequality
(12) below, is not mentioned, but it is crucial in applying
Corollary 1 (see inequality (10)). For this reason, the com-
pleteness and the benefit of the reader we will give a complete
proof of it.

Proposition 2. Let 𝑓 : R2𝑚
+

→ R
+
, 𝑔 : R2𝑚

+
→ R

+

be continuous functions. We suppose that the system of two
difference equations,

𝑢
𝑛+𝑚

= 𝑓 (𝑢
𝑛
, 𝑢
𝑛+1
, . . . , 𝑢

𝑛+𝑚−1
, V
𝑛
, V
𝑛+1
, . . . , V

𝑛+𝑚−1
) ,

v
𝑛+𝑚

= 𝑔 (𝑢
𝑛
, 𝑢
𝑛+1
, . . . , 𝑢

𝑛+𝑚−1
, V
𝑛
, V
𝑛+1
, . . . , V

𝑛+𝑚−1
) ,

(11)

has a unique positive equilibrium (𝑤, 𝑤). Suppose also that
there is an 𝑟 ∈ N such that for any positive solution (𝑢

𝑛
, V
𝑛
)
𝑛∈N0

of system (11), the following inequalities:

(𝑢
𝑛
− 𝑢
𝑛+𝑟
) (

𝑤
2

𝑢
𝑛

− 𝑢
𝑛+𝑟
) ≤ 0,

(V
𝑛
− V
𝑛+𝑟
) (

𝑤
2

V
𝑛

− V
𝑛+𝑟
) ≤ 0, 𝑛 ∈ N

0
,

(12)

hold, with the equalities if and only if 𝑢
𝑛
= 𝑤, for every 𝑛 ∈ N

0
,

and V
𝑛
= 𝑤, for every 𝑛 ∈ N

0
, respectively.Then the equilibrium

(𝑤, 𝑤) is globally asymptotically stable.

Proof. First, we prove that for every 𝑛 ∈ N
0

min{
𝑢
𝑛+𝑟

𝑤

,

V
𝑛+𝑟

𝑤

,

𝑤

𝑢
𝑛+𝑟

,

𝑤

V
𝑛+𝑟

} > min{
𝑢
𝑛

𝑤

,

V
𝑛

𝑤

,

𝑤

𝑢
𝑛

,

𝑤

V
𝑛

} ,

(13)

if and only if (𝑢
𝑛
, V
𝑛
) ̸= (𝑤, 𝑤).

To prove (13), it is enough to prove that

min{
𝑢
𝑛+𝑟

𝑤

,

𝑤

𝑢
𝑛+𝑟

} > min{
𝑢
𝑛

𝑤

,

𝑤

𝑢
𝑛

} , (14)

if and only if 𝑢
𝑛
̸= 𝑤, and

min{
V
𝑛+𝑟

𝑤

,

𝑤

V
𝑛+𝑟

} > min{
V
𝑛

𝑤

,

𝑤

V
𝑛

} , (15)

if and only if V
𝑛
̸= 𝑤.
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The proofs of inequalities (14) and (15) are the same (up
to the interchanging letters 𝑢 and V) so it is enough to prove
(14).

Now note that if the equality holds in the first inequality
in (12), then we have that

𝑢
𝑛
= 𝑢
𝑛+𝑟

or 𝑤

𝑢
𝑛

=

𝑢
𝑛+𝑟

𝑤

, (16)

from which, in both cases, it easily follows that

min{
𝑢
𝑛+𝑟

𝑤

,

𝑤

𝑢
𝑛+𝑟

} = min{
𝑢
𝑛

𝑤

,

𝑤

𝑢
𝑛

} . (17)

On the other hand, if (17) holds, then we easily obtain that
one of the equalities in (16) holds, and consequently it follows
that the equality holds in the first inequality in (12). Hence, by
one of the assumptions, we have that (17) holds if and only if
𝑢
𝑛
= 𝑤 for every 𝑛 ∈ N

0
.

Now suppose that the first inequality in (12), is strict.
Then, if 𝑢

𝑛
> 𝑢
𝑛+𝑟

, directly follows that𝑤/𝑢
𝑛+𝑟

> 𝑤/𝑢
𝑛
, while

from the first inequality in (12) it follows that 𝑢
𝑛+𝑟
/𝑤 > 𝑤/𝑢

𝑛
.

Hence

min{
𝑢
𝑛+𝑟

𝑤

,

𝑤

𝑢
𝑛+𝑟

} >

𝑤

𝑢
𝑛

, (18)

from which inequality (14) easily follows.
If 𝑢
𝑛
< 𝑢
𝑛+𝑟

, then 𝑢
𝑛+𝑟
/𝑤 > 𝑢

𝑛
/𝑤, while from the first

inequality in (12), it follows that 𝑤/𝑢
𝑛+𝑟

> 𝑢
𝑛
/𝑤. From these

two inequalities, we have that

min{
𝑢
𝑛+𝑟

𝑤

,

𝑤

𝑢
𝑛+𝑟

} >

𝑢
𝑛

𝑤

, (19)

and consequently (14).
If (14) and (15) hold then if 𝑢

𝑛
̸= 𝑤 and V

𝑛
̸= 𝑤, inequality

(13) immediately follows by using the following elementary
implication: if 𝑎 > 𝑏 and 𝑐 > 𝑑, then min{𝑎, 𝑐} > min{𝑏, 𝑑}.

If 𝑢
𝑛
̸= 𝑤 and V

𝑛
= 𝑤, then from the second inequality in

(12), we have that V
𝑛+𝑟

= V
𝑛
= 𝑤. Hence

min{
V
𝑛+𝑟

𝑤

,

𝑤

V
𝑛+𝑟

} = min{
V
𝑛

𝑤

,

𝑤

V
𝑛

} = 1 > min{
𝑢
𝑛

𝑤

,

𝑤

𝑢
𝑛

} ,

(20)

which alongwith (14) implies (13).The case 𝑢
𝑛
= 𝑤 and V

𝑛
̸= 𝑤

directly follows from the case 𝑢
𝑛
̸= 𝑤 and V

𝑛
= 𝑤, by the

symmetry.
Finally, note that if 𝑢

𝑛
= V
𝑛
= 𝑤, then from (12), we have

that𝑢
𝑛+𝑟

= 𝑢
𝑛
= 𝑤 and V

𝑛+𝑟
= V
𝑛
= 𝑤, so that the first equality

in (20) holds and

min{
𝑢
𝑛+𝑟

𝑤

,

𝑤

𝑢
𝑛+𝑟

} = min{
𝑢
𝑛

𝑤

,

𝑤

𝑢
𝑛

} = 1, (21)

from which it follows that both minima in (13) are equal,
finishing the proof of the claim.

Now we define the map 𝑇 : R2𝑚
+

→ R2𝑚
+

as follows:

𝑇 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚−1
, 𝑥
𝑚
, 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚−1
, 𝑦
𝑚
)

= (𝑥
2
, . . . , 𝑥

𝑚
, 𝑓 (𝑥
1
, . . . , 𝑥

𝑚
, 𝑦
1
, . . . , 𝑦

𝑚
) ,

𝑦
2
, . . . , 𝑦

𝑚
, 𝑔 (𝑥
1
, . . . , 𝑥

𝑚
, 𝑦
1
, . . . , 𝑦

𝑚
)) .

(22)

Then we get

𝑇 (𝑢
𝑛
, 𝑢
𝑛+1
, . . . , 𝑢

𝑛+𝑚−2
, 𝑢
𝑛+𝑚−1

, V
𝑛
, V
𝑛+1
, . . . , V

𝑛+𝑚−2
, V
𝑛+𝑚−1

)

= (𝑢
𝑛+1
, . . . , 𝑢

𝑛+𝑚−1
, 𝑢
𝑛+𝑚

, V
𝑛+1
, . . . , V

𝑛+𝑚−1
, V
𝑛+𝑚

) ,

(23)

and by induction

𝑇
𝑠

(𝑢
𝑛
, 𝑢
𝑛+1
, . . . , 𝑢

𝑛+𝑚−2
, 𝑢
𝑛+𝑚−1

, V
𝑛
, V
𝑛+1
, . . . , V

𝑛+𝑚−2
, V
𝑛+𝑚−1

)

= (𝑢
𝑛+𝑠
, . . . , 𝑢

𝑛+𝑚−2+𝑠
, 𝑢
𝑛+𝑚−1+𝑠

,

V
𝑛+𝑠
, . . . , V

𝑛+𝑚−2+𝑠
, V
𝑛+𝑚−1+𝑠

) ,

(24)

for every s ∈ N.
By using inequality (13) and the fact that the inequalities

1 ≥ 𝑎
𝑖
> 𝑏
𝑖
, 𝑖 ∈ 𝐼 ⊆ {1, . . . , 𝑚}, 𝐼 ̸= 0, along with equalities 𝑎

𝑖
=

𝑏
𝑖
= 1, 𝑖 ∈ {1, . . . , 𝑚} \ 𝐼, imply the inequality min

1≤𝑖≤𝑚
𝑎
𝑖
>

min
1≤𝑖≤𝑚

𝑏
𝑖
, we have that for each vector �⃗� ∈ R2𝑚

+
such that

�⃗� ̸= (𝑤, 𝑤, . . . , 𝑤) =: �⃗� ∈ R2𝑚
+
,

𝑝 (𝑇
𝑟

(�⃗�) , �⃗�) = − logmin{
𝑢
𝑛+𝑟

𝑤

,

𝑤

𝑢
𝑛+𝑟

, . . . ,

𝑢
𝑛+𝑟+𝑚−1

𝑤

,

𝑤

𝑢
𝑛+𝑟+𝑚−1

,

V
𝑛+𝑟

𝑤

,

𝑤

V
𝑛+𝑟

, . . . ,

V
𝑛+𝑟+𝑚−1

𝑤

,

𝑤

V
𝑛+𝑟+𝑚−1

}

< − logmin{
𝑢
𝑛

𝑤

,

𝑤

𝑢
𝑛

, . . . ,

𝑢
𝑛+𝑚−1

𝑤

,

𝑤

𝑢
𝑛+𝑚−1

,

V
𝑛

𝑤

,

𝑤

V
𝑛

, . . . ,

V
𝑛+𝑚−1

𝑤

,

𝑤

V
𝑛+𝑚−1

}

= 𝑝 (�⃗�, �⃗�) ,

(25)

from which the proof follows by Corollary 1.

It is not difficult to see that the following extension of
Proposition 2 can be proved by slight modifications of the
proof of Proposition 2.

Proposition 3. Let 𝑓
𝑖
: R𝑙𝑚
+

→ R
+
, 𝑖 = 1, . . . , 𝑙, be

continuous functions. Suppose that the system of difference
equations

𝑢
(1)

𝑛+𝑚
= 𝑓
1
(𝑢
(1)

𝑛
, 𝑢
(1)

𝑛+1
, . . . , 𝑢

(1)

𝑛+𝑚−1
, . . . , 𝑢

(𝑙)

𝑛
, 𝑢
(𝑙)

𝑛+1
, . . . , 𝑢

(𝑙)

𝑛+𝑚−1
) ,

...

𝑢
(𝑖)

𝑛+𝑚
= 𝑓
𝑖
(𝑢
(1)

𝑛
, 𝑢
(1)

𝑛+1
, . . . , 𝑢

(1)

𝑛+𝑚−1
, . . . , 𝑢

(𝑙)

𝑛
, 𝑢
(𝑙)

𝑛+1
, . . . , 𝑢

(𝑙)

𝑛+𝑚−1
) ,

...

𝑢
(𝑙)

𝑛+𝑚
= 𝑓
𝑙
(𝑢
(1)

𝑛
, 𝑢
(1)

𝑛+1
, . . . , 𝑢

(1)

𝑛+𝑚−1
, . . . , 𝑢

(𝑙)

𝑛
, 𝑢
(𝑙)

𝑛+1
, . . . , 𝑢

(𝑙)

𝑛+𝑚−1
)

(26)
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has a unique positive equilibrium (𝑤, . . . , 𝑤) ∈ R𝑙
+
, and that

there is an 𝑟 ∈ N such that for any solution (𝑢(1)
𝑛
, . . . , 𝑢

(l)
𝑛
)
𝑛∈N0

⊂

R𝑙
+
of system (26), the following inequalities:

(𝑢
(𝑖)

𝑛
− 𝑢
(𝑖)

𝑛+𝑟
)(

𝑤
2

𝑢
(𝑖)

𝑛

− 𝑢
(𝑖)

𝑛+𝑟
) ≤ 0, 𝑛 ∈ N

0
, 𝑖 = 1, . . . , 𝑙,

(27)

hold, with the equalities if and only if 𝑢(𝑖)
𝑛
= 𝑤, for every 𝑛 ∈ N

0
,

and 𝑖 = 1, . . . , 𝑙. Then the equilibrium (𝑤, . . . , 𝑤) is globally
asymptotically stable.

Nowwe use Proposition 2 in proving the results in papers
[23–25].

Corollary 4. Let 𝑘, 𝑙 ∈ N
0
, 𝑘 ̸= 𝑙. Consider the system

𝑥
𝑛+1

=

𝑥
𝑛−𝑘
𝑦
𝑛−𝑙
+ 1

𝑥
𝑛−𝑘

+ 𝑦
𝑛−𝑙

,

𝑦
𝑛+1

=

𝑦
𝑛−𝑘
𝑥
𝑛−𝑙
+ 1

𝑦
𝑛−𝑘

+ 𝑥
𝑛−𝑙

, 𝑛 ∈ N
0
.

(28)

Then the positive equilibrium point (𝑥, 𝑦) = (1, 1) of system
(28) is globally asymptotically stable with respect to the set
R𝑚
+
× R𝑚
+
, where𝑚 = max{𝑘, 𝑙}.

Proof. Wemay assume that𝑚 = 𝑘. From system (28), we have
that

𝑥
𝑛+1

− 𝑥
𝑛−𝑘

=

1 − 𝑥
2

𝑛−𝑘

𝑦
𝑛−𝑙
+ 𝑥
𝑛−𝑘

,

𝑥
𝑛+1

−

1

𝑥
𝑛−𝑘

=

𝑦
𝑛−𝑙
(𝑥
2

𝑛−𝑘
− 1)

𝑥
𝑛−𝑘

(𝑦
𝑛−𝑙
+ 𝑥
𝑛−𝑘
)

,

(29)

𝑦
𝑛+1

− 𝑦
𝑛−𝑘

=

1 − 𝑦
2

𝑛−𝑘

𝑥
𝑛−𝑙
+ 𝑦
𝑛−𝑘

,

𝑦
𝑛+1

−

1

𝑦
𝑛−𝑘

=

𝑥
𝑛−𝑙
(𝑦
2

𝑛−𝑘
− 1)

𝑦
𝑛−𝑘

(𝑥
𝑛−𝑙
+ 𝑦
𝑛−𝑘
)

(30)

from which it follows that

(𝑥
𝑛+1

− 𝑥
𝑛−𝑘
) (𝑥
𝑛+1

−

1

𝑥
𝑛−𝑘

) ≤ 0,

(𝑦
𝑛+1

− 𝑦
𝑛−𝑘
) (𝑦
𝑛+1

−

1

𝑦
𝑛−𝑘

) ≤ 0

(31)

so that condition (12) in Proposition 2 is fulfilled with 𝑟 =
𝑘 + 1.

Clearly if

𝑥
𝑛
= 1 = 𝑦

𝑛
for every 𝑛 ≥ −max {𝑙, 𝑘} , (32)

then in (31) equalities follow. On the other hand, if equality
holds in the first inequality in (31), we have that

𝑥
𝑛+1

= 𝑥
𝑛−𝑘

or 𝑥
𝑛+1

=

1

𝑥
𝑛−𝑘

. (33)

If 𝑥
𝑛+1

= 𝑥
𝑛−𝑘

, then from the first equality in (29) we have
that 𝑥

𝑛−𝑘
= 1, while if 𝑥

𝑛+1
= 1/𝑥

𝑛−𝑘
, then from the second

equality in (29), we have that 𝑥
𝑛−𝑘

= 1.
By symmetry (see (30)), we have that if equality holds

in the second inequality in (31), then 𝑦
𝑛−𝑘

= 1. Therefore,
equalities in (31) hold if and only if (𝑥

𝑛−𝑘
, 𝑦
𝑛−𝑘
) = (1, 1).

Hence all the conditions of Proposition 2 are fulfilled from
which it follows that the positive equilibrium (1, 1) is globally
asymptotically stable with respect to the set R𝑚

+
×R𝑚
+
.

Remark 5. Corollary 4 extends and gives a very short proof
of the main result in [23], which is obtained for 𝑘 = 1 and
𝑙 = 0. Further, it also extends and gives a very short proof
of the main result in [25], which is obtained for 𝑘 = 0 and
𝑙 = 1. Moreover, it confirms the conjecture in [25], which is
obtained for 𝑘 = 0 and 𝑙 ∈ N \ {1}.

Corollary 6. Let 𝑘, 𝑙 ∈ N
0
, 𝑘 ̸= 𝑙. Consider the system

𝑥
𝑛+1

=

𝑥
𝑛−𝑘

+ 𝑦
𝑛−𝑙

𝑥
𝑛−𝑘
𝑦
𝑛−𝑙
+ 1

,

𝑦
𝑛+1

=

𝑦
𝑛−𝑘

+ 𝑥
𝑛−𝑙

𝑦
𝑛−𝑘
𝑥
𝑛−𝑙
+ 1

, 𝑛 ∈ N
0
.

(34)

Then the positive equilibrium point (𝑥, 𝑦) = (1, 1) of system
(34) is globally asymptotically stable with respect to the set
Rm
+
× R𝑚
+
, where𝑚 = max{𝑘, 𝑙}.

Proof. Wemay assume that𝑚 = 𝑘. From system (34), we have
that

𝑥
𝑛+1

− 𝑥
𝑛−𝑘

=

𝑦
𝑛−𝑙
(1 − 𝑥

2

𝑛−𝑘
)

𝑥
𝑛−𝑘
𝑦
𝑛−𝑙
+ 1

,

𝑥
𝑛+1

−

1

𝑥
𝑛−𝑘

=

𝑥
2

𝑛−𝑘
− 1

𝑥
𝑛−𝑘

(𝑥
𝑛−𝑘
𝑦
𝑛−𝑙
+ 1)

,

𝑦
𝑛+1

− 𝑦
𝑛−𝑘

=

𝑥
𝑛−𝑙
(1 − 𝑦

2

𝑛−𝑘
)

𝑥
𝑛−𝑙
𝑦
𝑛−𝑘

+ 1

,

𝑦
𝑛+1

−

1

𝑦
𝑛−𝑘

=

𝑦
2

𝑛−𝑘
− 1

𝑦
𝑛−𝑘

(𝑥
𝑛−𝑙
𝑦
𝑛−𝑘

+ 1)

(35)

from which it follows that

(𝑥
𝑛+1

− 𝑥
𝑛−𝑘
) (𝑥
𝑛+1

−

1

𝑥
𝑛−𝑘

) ≤ 0,

(𝑦
𝑛+1

− 𝑦
𝑛−𝑘
) (𝑦
𝑛+1

−

1

𝑦
𝑛−𝑘

) ≤ 0.

(36)

Hence condition (12) in Proposition 2 is fulfilled with 𝑟 =
𝑘 + 1. On the other hand, similarly as in the proof of
Corollary 4 it is proved that equalities in (36) hold if and
only if (𝑥

𝑛−𝑘
, 𝑦
𝑛−𝑘
) = (1, 1). Hence all the conditions of

Proposition 2 are fulfilled from which it follows that the
positive equilibrium (1, 1) is globally asymptotically stable
with respect to the set R𝑚

+
× R𝑚
+
.
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Remark 7. Corollary 6 extends and gives a very short proof
of the main result in [24], which is obtained for 𝑘 = 1 and
𝑙 = 0.

Remark 8. Corollary 6 is also a consequence of Corollary 4.
Namely, by using the change of variables (𝑥

𝑛
, 𝑦
𝑛
) =

(1/𝑢
𝑛
, 1/V
𝑛
), system (34) is transformed into the system

V
𝑛+1

=

V
𝑛−𝑘
𝑢
𝑛−𝑙
+ 1

V
𝑛−𝑘

+ 𝑢
𝑛−𝑙

,

𝑢
𝑛+1

=

𝑢
𝑛−𝑘

V
𝑛−𝑙
+ 1

𝑢
𝑛−𝑘

+ V
𝑛−𝑙

, 𝑛 ∈ N
0
,

(37)

which is system (28). In particular, this shows that systems (1)
and (2), for the case 𝑎 = 1, are equivalent and consequently
the results in [23, 24].

Remark 9. Similar type of issues appear in some literature on
scalar difference equations (see, e.g., related results in papers
[1, 5, 11, 13]).

It is of some interest to extend results in Corollaries 4 and
6 by using Proposition 2. The next result is of this kind and it
extends a result in [5].

Corollary 10. Let 𝑓 ∈ 𝐶(R𝑘
+
,R
+
) and 𝑔 ∈ 𝐶(R𝑙

+
,R
+
) with

𝑘, 𝑙 ∈ N, 0 ≤ 𝑟
1
< ⋅ ⋅ ⋅ < 𝑟

𝑘
and 0 ≤ 𝑚

1
< ⋅ ⋅ ⋅ < 𝑚

𝑙
≤ 𝑟
𝑘
and

satisfy the following two conditions:

(H1) [𝑓(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
)]
∗

= 𝑓(𝑢
∗

1
, 𝑢
∗

2
, . . . , 𝑢

∗

𝑘
),

(H2) 𝑓(𝑢∗
1
, 𝑢
∗

2
, . . . , 𝑢

∗

𝑘
) ≤ 𝑢
∗

𝑘
,

where 𝑎∗ := max{𝑎, 1/a}.
Then (𝑥, 𝑦) = (1, 1) is the unique positive equilibrium of

the system of difference equations

𝑥
𝑛
=

𝑓 (𝑥
𝑛−𝑟1−1

, . . . , 𝑥
𝑛−𝑟𝑘−1

) 𝑔 (𝑦
𝑛−𝑚1−1

, . . . , 𝑦
𝑛−𝑚𝑙−1

) + 1

𝑓 (𝑥
𝑛−𝑟1−1

, . . . , 𝑥
𝑛−𝑟𝑘−1

) + 𝑔 (𝑦
𝑛−𝑚1−1

, . . . , 𝑦
𝑛−𝑚𝑙−1

)

,

𝑛 ∈ N,

𝑦
𝑛
=

𝑓 (𝑦
𝑛−𝑟1−1

, . . . , 𝑦
𝑛−𝑟𝑘−1

) 𝑔 (𝑥
𝑛−𝑚1−1

, . . . , 𝑥
𝑛−𝑚𝑙−1

) + 1

𝑓 (𝑦
𝑛−𝑟1−1

, . . . , 𝑦
𝑛−𝑟𝑘−1

) + 𝑔 (𝑥
𝑛−𝑚1−1

, . . . , 𝑥
𝑛−𝑚𝑙−1

)

,

𝑛 ∈ N,

(38)

and it is globally asymptotically stable.

Proof. Let

𝑓
𝑛
= 𝑓 (𝑥

𝑛−𝑟1−1
, . . . , 𝑥

𝑛−𝑟𝑘−1
) ,

𝑔
𝑛
= 𝑔 (𝑦

𝑛−𝑚1−1
, . . . , 𝑦

𝑛−𝑚𝑙−1
) .

(39)

We should determine the sign of the product of the following
expressions:

𝑃
𝑛
:=

𝑓
𝑛
𝑔
𝑛
+ 1

𝑓
𝑛
+ 𝑔
𝑛

− 𝑥
𝑛−𝑟𝑘−1

=

1

𝑓
𝑛
+ 𝑔
𝑛

(𝑓
𝑛
𝑔
𝑛
(1 −

𝑥
𝑛−𝑟𝑘−1

𝑓
𝑛

) + 1 − 𝑥
𝑛−𝑟𝑘−1

𝑓
𝑛
) ,

(40)

𝑄
𝑛
:=

𝑓
𝑛
𝑔
𝑛
+ 1

𝑓
𝑛
+ 𝑔
𝑛

−

1

𝑥
𝑛−𝑟𝑘−1

=

1

𝑥
𝑛−𝑟𝑘−1

(𝑓
𝑛
+ 𝑔
𝑛
)

(𝑔
𝑛
(𝑥
𝑛−𝑟𝑘−1

𝑓
𝑛
− 1)

+𝑓
𝑛
(

𝑥
𝑛−𝑟𝑘−1

𝑓
𝑛

− 1)) .

(41)

From (40) and (41), we see if we show that 𝑥
𝑛−𝑟𝑘−1

𝑓
𝑛
− 1

and (𝑥
𝑛−𝑟𝑘−1

/𝑓
𝑛
) − 1 have the same sign for 𝑛 ∈ N, then 𝑃

𝑛
𝑄
𝑛

will be nonpositive.
We consider four cases.

Case 1. 𝑥
𝑛−𝑟𝑘−1

≥ 1,𝑓
𝑛
≥ 1. Clearly in this case 𝑥

𝑛−𝑟𝑘−1
𝑓
𝑛
−1 ≥

0. By (H1) and (H2), we have that

1 ≤ 𝑓
𝑛
= (𝑓
𝑛
)
∗

= 𝑓 (𝑥
∗

𝑛−𝑟1−1
, . . . , 𝑥

∗

𝑛−𝑟𝑘−1
)

≤ 𝑥
∗

𝑛−𝑟𝑘−1
= 𝑥
𝑛−𝑟𝑘−1

.

(42)

Hence (𝑥
𝑛−𝑟𝑘−1

/𝑓
𝑛
) − 1 ≥ 0 and consequently

(𝑥
𝑛−𝑟𝑘−1

𝑓
𝑛
− 1) (

𝑥
𝑛−𝑟𝑘−1

𝑓
𝑛

− 1) ≥ 0. (43)

Case 2. 𝑥
𝑛−𝑟𝑘−1

≥ 1, 𝑓
𝑛
≤ 1. Since 1/𝑓

𝑛
≥ 1, we obtain

(𝑥
𝑛−𝑟𝑘−1

/𝑓
𝑛
) − 1 ≥ 0. On the other hand, by (H1) and (H2),

we have
1

𝑓
𝑛

= (𝑓
𝑛
)
∗

= 𝑓 (𝑥
∗

𝑛−𝑟1−1
, . . . , 𝑥

∗

𝑛−𝑟𝑘−1
)

≤ 𝑥
∗

𝑛−𝑟𝑘−1
= 𝑥
𝑛−𝑟𝑘−1

,

(44)

so that 𝑥
𝑛−𝑟𝑘−1

𝑓
𝑛
− 1 ≥ 0. Hence (43) follows in this case.

Case 3. Case 𝑥
𝑛−𝑟𝑘−1

≤ 1, 𝑓
𝑛
≥ 1. Then we have that 1/𝑓

𝑛
≤ 1

and consequently (𝑥
𝑛−𝑟𝑘−1

/𝑓
𝑛
)−1 ≤ 0. On the other hand, we

have

𝑓
𝑛
= (𝑓
𝑛
)
∗

= 𝑓 (𝑥
∗

𝑛−𝑟1−1
, . . . , 𝑥

∗

𝑛−𝑟𝑘−1
) ≤ 𝑥
∗

𝑛−𝑟𝑘−1
=

1

𝑥
𝑛−𝑟𝑘−1

,

(45)

so that 𝑥
𝑛−𝑟𝑘−1

𝑓
𝑛
− 1 ≤ 0. Hence (43) follows in this case too.

Case 4. Case 𝑥
𝑛−𝑟𝑘−1

≤ 1, 𝑓
𝑛
≤ 1. Then 𝑥

𝑛−𝑟𝑘−1
𝑓
𝑛
− 1 ≤ 0. On

the other hand, we have

1

𝑓
𝑛

= (𝑓
𝑛
)
∗

= 𝑓 (𝑥
∗

𝑛−𝑟1−1
, . . . , 𝑥

∗

𝑛−𝑟𝑘−1
) ≤ 𝑥
∗

𝑛−𝑟𝑘−1
=

1

𝑥
𝑛−𝑟𝑘−1

,

(46)
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so that (𝑥
𝑛−𝑟𝑘−1

/𝑓
𝑛
)−1 ≤ 0. Hence (43) also holds in this case.

Thus 𝑃
𝑛
𝑄
𝑛
≤ 0, for every 𝑛 ∈ N.

Assume that 𝑃
𝑛
𝑄
𝑛
= 0, then 𝑃

𝑛
= 0 or 𝑄

𝑛
= 0. Using (40)

or (41) along with (43) in any of these two cases, we have that

𝑓
𝑛
=

1

𝑥
𝑛−𝑟𝑘−1

= 𝑥
𝑛−𝑟𝑘−1

, 𝑛 ∈ N. (47)

Hence 𝑥
𝑛−𝑟𝑘−1

= 1, 𝑛 ∈ N.
Let

̂
𝑓
𝑛
= 𝑓 (𝑦

𝑛−𝑟1−1
, . . . , 𝑦

𝑛−𝑟𝑘−1
) ,

�̂�
𝑛
= 𝑔 (𝑥

𝑛−𝑚1−1
, . . . , 𝑥

𝑛−𝑚𝑙−1
) .

(48)

Using the following expressions:

�̂�
𝑛
:=

̂
𝑓
𝑛
�̂�
𝑛
+ 1

̂
𝑓
𝑛
+ �̂�
𝑛

− 𝑦
𝑛−𝑟𝑘−1

=

1

̂
𝑓
𝑛
+ �̂�
𝑛

(
̂
𝑓
𝑛
�̂�
𝑛
(1 −

𝑦
𝑛−𝑟𝑘−1

̂
𝑓
𝑛

) +1 − 𝑦
𝑛−𝑟𝑘−1

̂
𝑓
𝑛
) ,

�̂�
𝑛
:=

̂
𝑓
𝑛
�̂�
𝑛
+ 1

̂
𝑓
𝑛
+ �̂�
𝑛

−

1

𝑦
𝑛−𝑟𝑘−1

=

1

𝑦
𝑛−𝑟𝑘−1

(
̂
𝑓
𝑛
+ �̂�
𝑛
)

( �̂�
𝑛
(𝑦
𝑛−𝑟𝑘−1

̂
𝑓
𝑛
− 1)

+
̂
𝑓
𝑛
(

𝑦
𝑛−𝑟𝑘−1

̂
𝑓
𝑛

− 1)) ,

(49)

it can be proved similarly that �̂�
𝑛
�̂�
𝑛
≤ 0, for every 𝑛 ∈ N, and

that �̂�
𝑛
�̂�
𝑛
= 0, if and only if 𝑦

𝑛−𝑟𝑘−1
= 1, 𝑛 ∈ N.

Finally, let (𝑥∗, 𝑦∗) be a solution of the system

𝑥
∗

=

𝑓 (�⃗�
∗

𝑘
) 𝑔 (�⃗�

∗

𝑙
) + 1

𝑓 (�⃗�
∗

𝑘
) + 𝑔 (�⃗�

∗

𝑙
)

, 𝑦
∗

=

𝑓 (�⃗�
∗

𝑘
) 𝑔 (�⃗�
∗

𝑙
) + 1

𝑓 (�⃗�
∗

𝑘
) + 𝑔 (�⃗�

∗

𝑙
)

. (50)

Then we have that

0 =

𝑓 (�⃗�
∗

𝑘
) 𝑔 (�⃗�

∗

𝑙
) + 1

𝑓 (�⃗�
∗

𝑘
) + 𝑔 (�⃗�

∗

𝑙
)

− 𝑥
∗

=

1

𝑓 (�⃗�
∗

𝑘
) + 𝑔 (�⃗�

∗

𝑙
)

(𝑓 (�⃗�
∗

𝑘
) 𝑔 (�⃗�

∗

𝑙
) (1 −

𝑥
∗

𝑓 (�⃗�
∗

𝑘
)

)

+1 − 𝑥
∗

𝑓 (�⃗�
∗

𝑘
) ) ,

(51)

where �⃗�∗
𝑗
= (𝑧
∗

, . . . , 𝑧
∗

) denotes the vector consisting of 𝑗
copies of 𝑧∗. Then similar to the considerations in Cases (i)–
(iv), it follows that 𝑓(�⃗�∗

𝑘
) = 𝑥

∗

= 1/𝑥
∗, so that 𝑥∗ = 1, and

similarly it is obtained that 𝑦∗ = 1. Hence (𝑥∗, 𝑦∗) = (1, 1) is
a unique positive equilibrium of system (26).

From all above mentioned and by Proposition 2, we get
the result.
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S. Stević would like to express his sincere thanks to Professors
G. Papaschinopoulos and C. J. Schinas for useful conver-
sations and their help during writing this paper. The first
author is supported by the Grant P201/10/1032 of the Czech
GrantAgency (Prague).The fourth author is supported by the
grant FEKT-S-11-2-921 of Faculty of Electrical Engineering
and Communication, Brno University of Technology. This
paper is also supported by the Serbian Ministry of Science
Projects III 41025, III 44006, and OI 171007.

References
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