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In this paper, the problem of the stability for mutually delay-coupled semiconductor lasers system is investigated. By analyzing
the associated characteristic equation, linear stability is investigated and Hopf bifurcations are demonstrated.The new phenomena
such as stability switch is found. The 𝑍

2
equivariant property and the existence of multiple periodic solutions is also discussed.

Numerical simulations are presented to illustrate the results in the paper.

1. Introduction

For many years, coupled nonlinear oscillators have been a
source of growing interest in different research fields, ranging
from physics, chemistry, and engineering to biology, social
sciences and so on [1–5].

Recently, there has been an increasing activity and interest
on the study of delay-coupled semiconductor lasers systems,
because of their practical importance. The spatial separation
of the lasers always results in a time delay in the coupling
due to finite signal propagation times [6]. Time delay is
ubiquitous in most physical and biological systems like
optical bistable devices, electromechanical systems, predator-
prey models, and physiological systems. They can arise from
finite propagation speeds of signals or from finite processing
times in synapses and so on. In many situations, the time
delay in the coupling has been neglected. However, for
semiconductor lasers this is not always justified due to
their large bandwidth and fast time scales of their dynam-
ics.

The objective of [6] is the genetic case of two identical,
mutually delay-coupled semiconductor lasers that receive
each others light. The authors model the coupled lasers
systemwith rate equations for the normalized complex slowly
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where 𝜅 > 0 is the coupled strength, 𝜏
𝑛
> 0 is the delay

time,Ω
1
is the optical frequency of laser 1 operated solitary at

threshold, Ω
2
is the optical angular frequency of the second

laser operated solitary at threshold, and 𝛿 = Ω
1
− Ω
2
.

The remaining parameters are the line width enhancement
factor 𝛼 > 0, the normalized carrier lifetime 𝑇(𝑇 > 0),
and the pump parameter 𝑃(𝑃 > 0). The authors obtained
experimentally bifurcations and multistabilities between the
two lasers.



2 Abstract and Applied Analysis

In this paper we consider the lasers system (1) with Ω
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=

Ω
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Consider the complex coupled semiconductor lasers model
(2) with a single delay 𝜏. Let 𝐸
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The purpose of this paper is to study the properties of sta-
bility and bifurcation in model (3). Because of the optical
frequencies are the same, which leads to a detuning between
the lasers, for achieving high out-put power, the effect of the
time delay between the semiconductor lasers has been more
and more importance. In our study, we need to found that
when the time delay reach a certain value, arbitrarily small
perturbation will make the dynamic performance of the

system (3) have changed. That is to say, if the time delay is
in a certain range, the out-put power is stable or unstable.

We also find some new phenomena such as stability
switch for (3) which is not mentioned in [6]. Couple can lead
synchronization, phase trapping, phase locking, amplitude
death, chaos, bifurcation of oscillators and so on [7–9]. Since
two identical oscillators are coupled symmetrically, then the
most typical patterns of behavior are perfect synchrony or
perfect antisynchrony (in which the oscillators are half a
period out of phase with each other). In Section 3, we give the
𝑍
2
-equivariant property of (3) and the existence of multiple

periodic solutions (synchronous respectively, anti-phased).
The paper is organized as follows. In Section 2, we analyze

the distribution of the characteristic equation associated with
multicoupled, and obtain the existence of the local Hopf
bifurcation and stability of the bifurcating periodic solutions.
Base on the symmetric bifurcation theorem of Golubitsky
[10], we also discussed the 𝑍

2
equivariant property and the

existence ofmultiple periodic solutions in Section 3. To verify
the theoretic analysis, numerical simulations are given in
Section 4.

2. Stability Analysis

It is clear that the origin (0, 0, 0, 0, 0, 0, 0, 0) is a stationary
point of (3). The linearization of (3) at the origin (0, 0, 0, 0,
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Among them, the 𝜅 > 0 is a coupling strength, 𝑃 > 0, 𝛼 > 0,

Ω > 0, and 𝑇 > 0. The zero solution of system (4) is asymp-
totically stable if and only if all the roots of the characteristic
equation associated with system (4) have negative real parts.
The characteristic equation of system (4) is
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− 𝛼𝑃

𝜅2 (𝛽
−
+ Ω)

= {
< 0, 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2,

> 0, 𝜅 > √𝛼2𝑃2 + 𝑃2⋂(𝛽
−
+ Ω) < 0.

(24)

Since the sign of Re(𝑑𝜆/𝑑𝜏) is same as that of Re(𝑑𝜆/𝑑𝜏)−1,
this lemma follows immediately.

Combining (12) and (13) as follows:

𝜆 − 𝑃 − 𝜅𝑒
−𝜆𝜏 cos (Ω𝜏) = ±𝑖 (𝛼𝑃 − 𝜅𝑒

−𝜆𝜏 sin (Ω𝜏)) . (25)

ThenLemmas 1 and 2 allowus to state and prove the following
results.

Lemma 3. Assume that 𝛽
±
are defined by (18) and 𝜏

±

𝑗
are

shown as in Lemma 1.

(1) If 0 < 𝜅 < 𝑃, then (25) has two roots with positive real
parts for all 𝜏 ≥ 0.

(2) If 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2 and arccos(𝑃/𝜅) >

(√𝜅2 − 𝑃2/(𝛼𝑃 + Ω))𝜋, then there exists an integer 𝑚
such that 0 < 𝜏

−

0
< 𝜏
+

0
< ⋅ ⋅ ⋅ < 𝜏

−

𝑚−1
< 𝜏
+

𝑚−1
<

𝜏
−

𝑚
< 𝜏
+

𝑚
< 𝜏
+

𝑚+1
< 𝜏
−

𝑚+1
. In this case, all roots of (25)

have negative real parts when 𝜏 ∈ ⋃
𝑚

𝑗=0
(𝜏
−

𝑗
𝜏
+

𝑗
), (25)

has a pair of roots with positive real parts when 𝜏 ∈

⋃
𝑚

𝑗=0
(𝜏
+

(𝑗−1)
𝜏
−

𝑗
) where 𝜏+

(−1)
= 0, and (25) has at least

a pair of roots with positive real parts when 𝜏 > 𝜏
+

𝑚
. In

addition, when 𝜏 = 𝜏
+

𝑗
and 𝜏 = 𝜏

−

𝑗
, (𝑗 = 0, 1, 2, . . .), all

roots of (25) have negative real parts except the purely
imaginary roots ±𝑖𝛽

+
and ±𝑖𝛽

−
, respectively.

(3) If 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2 and arccos(𝑃/𝜅) <

(√𝜅2 − 𝑃2/(𝛼𝑃 + Ω))𝜋, then there exists an integer 𝑛
such that 0 < 𝜏

+

0
< 𝜏
−

0
< ⋅ ⋅ ⋅ < 𝜏

+

𝑛−1
< 𝜏
−

𝑛−1
<

𝜏
+

𝑛
< 𝜏
+

𝑛+1
< 𝜏
−

𝑛
. In this case, all roots of (25) have

negative real parts when 𝜏 ∈ [0 𝜏
+

0
) ∪ ⋃
𝑛

𝑗=0
(𝜏
−

𝑗−1
𝜏
+

𝑗
),

(25) has a pair of roots with positive real parts when
𝜏 ∈ ⋃

𝑛−1

𝑗=0
(𝜏
+

𝑗
𝜏
−

𝑗
) and (25) has at least a pair of roots

with positive real parts when 𝜏 > 𝜏
+

𝑛
. In addition,

when 𝜏 = 𝜏
+

𝑗
, (𝑗 = 0, 1, 2, . . . , 𝑛) and 𝜏 = 𝜏

−

𝑗
, (𝑗 =

0, 1, 2, . . . , 𝑛 − 1), all roots of (25) have negative real
parts except the purely imaginary roots ±𝑖𝛽

+
and ±𝑖𝛽

−
,

respectively.
(4) If 𝜅 > √𝛼2𝑃2 + 𝑃2⋂(𝛽

−
+ Ω) < 0, then (25) has at

least two part roots with positive real parts for all 𝜏 ≥ 0.

Proof. (1)When 𝜏 = 0, (25) becomes 𝜆 = 𝑃+𝜅±𝑖𝛼𝑃, it is easy
to see that (25) with 𝜏 = 0 has only two roots with positive real
parts.

This shows that (25) has no purely imaginary root. Mean-
while, 𝜏 = 0 is not a root of (25).Thus there is no root appear-
ing on the imaginary axis. Hence (25) has two roots with
positive real parts for all 𝜏 ≥ 0. The proof is complete.

In what follows, we only prove the conclusions in case (2).
In case (3), the proof is similar. We just omit it.

(2) When 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2 and arccos(𝑃/𝜅) >

(√𝜅2 − 𝑃2/(𝛼𝑃+Ω))𝜋, it is not difficult to verify that, 𝜏+
0
> 𝜏
−

0

and |𝜏+
(𝑗+1)

−𝜏
+

𝑗
| < |𝜏
−

(𝑗+1)
−𝜏
−

𝑗
|,𝜏
0
= 𝜏
−

0
is the first value of 𝜏 ≥ 0

such that (25) has imaginary root. From Lemma 2, we know
that

Re(𝑑𝜆
𝑑𝜏

)

𝜏=𝜏
+

𝑗

> 0,

Re(𝑑𝜆
𝑑𝜏

)

𝜏=𝜏
−

𝑗

< 0,

(26)

we have that all the roots of (25) have negative real parts when
𝜏 ∈ ⋃

𝑚

𝑗=0
(𝜏
−

𝑗
𝜏
+

𝑗
). Therefore, together with Lemmas 1 and 2,

means that the lemma is true.
In a similar way, for the equation

𝜆 − 𝑃 + 𝜅𝑒
−𝜆𝜏 cos (Ω𝜏) = ±𝑖 (𝛼𝑃 + 𝜅𝑒

−𝜆𝜏 sin (Ω𝜏)) , (27)

which is the combination of (14) and (15), we can show the
lemma below.

Lemma 4. (1) If 0 < 𝜅 < 𝑃, then (27) has no purely imaginary
root for all 𝜏 ≥ 0.

(2) Assume that 𝜅 > 𝑃, then we have the following.

(i) If 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2, then (27) has a pair of purely
imaginary roots ±𝑖𝛽

±
when 𝜏 = �̃�

±

𝑗
, (𝑗 = 0, 1, 2, . . .),

respectively, and

�̃�
+

𝑗
=
arccos (𝑃/𝜅) + 2𝑗𝜋

𝛽
+
+ Ω

, (28)

�̃�
−

𝑗
=
2𝜋 − arccos (𝑃/𝜅) + 2𝑗𝜋

𝛽
−
+ Ω

. (29)
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(ii) If 𝜅 > √𝛼2𝑃2 + 𝑃2⋂(𝛽
−
+ Ω) < 0, then (27) has

a pair of purely imaginary roots ±𝑖𝛽
±
when 𝜏 = �̃�

±

𝑗
,

respectively, where 𝛽
±
= 𝛼𝑃 ± √𝜅2 − 𝑃2, �̃�

+

𝑗
is defined

by (28) and

�̃�
−

𝑗
=
arccos (𝑃/𝜅) + 2𝑗𝜋

− (𝛽
−
+ Ω)

. (30)

(iii) If 𝜅 = √𝛼2𝑃2 + 𝑃2, then (27) has a pair of purely
imaginary roots ±𝑖𝛽

+
when 𝜏 = �̃�

+

𝑗
, (𝑗 = 0, 1, 2, . . .),

where 𝛽
+
= 2𝛼𝑝 and �̃�+

𝑗
is defined by (28).

(3) If 𝜅 = 𝑃, then (27) has a pair of purely imaginary roots
±𝑖𝛽
+
when 𝜏 = �̃�

+

𝑗
, where 𝛽

+
= 𝛼𝑝 and �̃�+

𝑗
= ((2𝑗+1)𝜋)/(𝛼𝑃+

Ω), (𝑗 = 0, 1, 2, . . .).

By a direct computation, we can obtain that if 𝜅 > 𝑃, then

Re(𝑑𝜆
𝑑𝜏

)

𝜏=�̃�
+

𝑗

> 0,

Re(𝑑𝜆
𝑑𝜏

)

𝜏=�̃�
−

𝑗

{
< 0, for 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2,

> 0, for 𝜅 > √𝛼2𝑃2 + 𝑃2⋂(𝛽
−
+ Ω) < 0.

(31)

In addition, it is easy to see that (27) has a pair of roots with
negative real parts for 𝜅 > 𝑃 and has only two roots with
positive real parts for 0 < 𝜅 < 𝑃, with 𝜏 = 0. Consequently,
by Lemma 4 and (31), we can show the lemma below.

Lemma 5. Assume that 𝛽
±
are defined by (18) and �̃�

±

𝑗
are

shown as in Lemma 4.

(1) If 0 < 𝜅 < 𝑃, then (27) has two roots with positive real
parts for all 𝜏 ≥ 0.

(2) If 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2, then there exists an integer ℓ
such that 0 < �̃�

+

0
< �̃�
−

0
< ⋅ ⋅ ⋅ < �̃�

+

ℓ−1
< �̃�
−

ℓ−1
< �̃�
+

ℓ
<

�̃�
+

ℓ+1
< �̃�
−

ℓ
. In this case, all roots of (27) have negative

real parts when 𝜏 ∈ [0 �̃�
+

0
) ∪ 𝜏 ∈ ⋃

ℓ

𝑗=1
(�̃�
−

𝑗−1
�̃�
+

𝑗
),

(27) has a pair of roots with positive real parts when
𝜏 ∈ ⋃

ℓ

𝑗=0
(�̃�
+

𝑗
�̃�
−

𝑗
), and (27) has at least a pair of roots

with positive real parts when 𝜏 > �̃�
+

ℓ
. Moreover, all

roots of (27) have negative real parts except the purely
imaginary roots ±𝑖𝛽

+
for 𝜏 = �̃�

+

𝑗
, (𝑗 = 0, 1, 2, . . . , ℓ)

and ±𝑖𝛽
−
for 𝜏 = �̃�

−

𝑗
, (𝑗 = 0, 1, 2, . . . , ℓ − 1).

(3) If 𝜅 > √𝛼2𝑃2 + 𝑃2⋂(𝛽
−
+ Ω) < 0, then all roots of

(27) has at least two part roots with positive real parts
for all 𝜏 ≥ �̃�

+

0
, and (27) has a pair of purely imaginary

roots ±𝑖𝛽
±
when 𝜏 = �̃�

±

𝑗
, respectively.

Now, we are in a position to study (13). It is easy to see
from Lemmas 3 and 5 that (13) has at least one root with
positive real part when 0 < 𝜅 < 𝑃 or 𝜅 > √𝛼2𝑃2 + 𝑃2.
However, when 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2, a more interesting
phenomenon such as stability switches, the stability of the
equilibrium switching from instability to stability and back to

instability or from stability to instability and back to stability
several times may occur. In this case, for the convenience
of statement, by (19) and (28), we can rearrange 𝜏+

𝑗
, �̃�+
𝑗
as

follows:

𝜏
+

𝑗
=
𝜋 + arccos (𝑃/𝜅) + 𝑗𝜋

𝛽
+
+ Ω

, (32)

and by (20) and (29), we can rearrange 𝜏−
𝑗
,�̃�−
𝑗
as follows

𝜏
−

𝑗
=
𝜋 − arccos (𝑃/𝜅) + 𝑗𝜋

𝛽
−
+ Ω

, (33)

where 𝑗 = 0, 1, 2, . . .. By Lemma 2 and (31), we can easily
obtain the following results on the distribution of zeros of the
characteristic (11).

Lemma 6. Assume that 𝛽
±
are defined by (18) and 𝜏

±

𝑗
are

defined by (32)-(33), respectively.

(1) If 0 < 𝜅 < 𝑃, then (11) has four roots with positive real
parts for all 𝜏 ≥ 0.

(2) If 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2 and arccos(𝑃/𝜅) <

((√𝜅2 − 𝑃2)/(𝛼𝑃 + Ω))𝜋, then there exists an integer
ℎ such that 0 < 𝜏

+

0
< 𝜏
−

0
< ⋅ ⋅ ⋅ < 𝜏

+

ℎ−1
< 𝜏
−

ℎ−1
<

𝜏
+

ℎ
< 𝜏
+

ℎ+1
< 𝜏
−

ℎ
. Moreover, all roots of (11) has negative

real parts when 𝜏 ∈ [0 𝜏
+

0
) ∪ 𝜏 ∈ ⋃

ℎ

𝑗=1
(𝜏
−

(𝑗−1)
𝜏
+

𝑗
),

(11) has a pair of roots with positive real parts when
𝜏 ∈ ⋃

ℎ−1

𝑗=0
(𝜏
+

𝑗
𝜏
−

𝑗
), and (11) has at least a pair of roots

with positive real parts when 𝜏 > 𝜏
+

ℎ
. In addition,

when 𝜏 = 𝜏
+

𝑗
, (𝑗 = 0, 1, 2, . . . , ℎ) and 𝜏 = 𝜏

−

𝑗
, (𝑗 =

0, 1, 2, . . . , ℎ − 1), all roots of (11) have negative real
parts except the purely imaginary roots ±𝑖𝛽

+
and ±𝑖𝛽

−
,

respectively.

(3) If 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2 and arccos(𝑃/𝜅) >

(√𝜅2 − 𝑃2/(𝛼𝑃 + Ω))𝜋, then there exists an integer 𝑔
such that 0 < 𝜏

−

0
< 𝜏
+

0
< ⋅ ⋅ ⋅ < 𝜏

−

𝑔−1
< 𝜏
+

𝑔−1
<

𝜏
−

𝑔
< 𝜏
+

𝑔
< 𝜏
+

𝑔+1
< 𝜏
−

𝑔+1
. Moreover, all roots of (11)

has negative real parts for 𝜏 ∈ ⋃
𝑔

𝑗=0
(𝜏
+

(𝑗−1)
𝜏
−

𝑗
), where

𝜏
+

−1
= 0; and (11) has at least a pair of roots with

positive real parts for 𝜏 > 𝜏
+

𝑗
. In addition, when 𝜏 = 𝜏

+

𝑗

and 𝜏 = 𝜏
−

𝑗
, (𝑗 = 0, 1, 2, . . . , 𝑔), all roots of (11) have

negative real parts except the purely imaginary roots
±𝑖𝛽
+
and ±𝑖𝛽

−
, respectively.

(4) If 𝜅 > √𝛼2𝑃2 + 𝑃2⋂(𝛽
−
+ Ω) < 0, then (11)

has at least two roots with positive real parts for all
𝜏 ≥ 0. Moreover, when 𝜏 = 𝜏

±

𝑗
(11) has a pair of

purely imaginary roots ±𝑖𝛽
±
, respectively, and when

𝜏 = �̃�
±

𝑗
(11) has a pair of purely imaginary roots ±𝑖𝛽

±
,

respectively. Here 𝜏±
𝑗
and �̃�±
𝑗
are shown as in Lemmas 1

and 4, respectively.

Lemmas 2 and 6, together with (31), allow us to state the
following results on the stability of the zero equilibrium of
mutually delay-coupled system (3) and Hopf bifurcations.
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Figure 1:When 𝜏 ∈ [0, 𝜏−
0
], the zero equilibrium is unstable.𝑇 = 1/70 and initial conditions: 0.000000001⋅(1, 1, 1, 1, −1, −1, −1, −1), 𝜏 = 0.001.
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Figure 2: When 𝜏 ∈ [𝜏−
0
𝜏
+

0
], the zero equilibrium is asymptotically stable. 𝑇 = 100 and initial conditions: 30 ⋅ (1, 1, 1, 1, 1, 1, 1, 1), 𝜏 = 0.019.

Theorem 7. Assume that 𝛽
±
are defined by (18) and 𝜏

±

𝑗
are

defined by (32)-(33), respectively.

(1) If 0 < 𝜅 < 𝑃, then the zero equilibrium of system (3) is
unstable for all 𝜏 ≥ 0.

(2) If 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2 and arccos(𝑃/𝜅) >

(√𝜅2 − 𝑃2/(𝛼𝑃 + Ω))𝜋, then the zero equilibrium of
system (3) is stable for 𝜏 ∈ ⋃𝑔

𝑗=0
(𝜏
−

𝑗
𝜏
+

𝑗
), and unstable

for 𝜏 ∈ ⋃
𝑔

𝑗=0
(𝜏
+

(𝑗−1)
𝜏
−

𝑗
) ∪ (𝜏

+

𝑔
+ ∞), where 𝜏+

−1
= 0.

In this case, system (3) undergoes a Hopf bifurcation at

the zero equilibrium of system (3) when 𝜏 = 𝜏
±

𝑗
, (𝑗 =

0, 1, 2, . . .).

(3) If 𝑃 < 𝜅 < √𝛼2𝑃2 + 𝑃2 and arccos(𝑃/𝜅) <

(√𝜅2 − 𝑃2/(𝛼𝑃 + Ω))𝜋, then the zero equilibrium
of system (3) is stable for 𝜏 ∈ [0 𝜏

+

0
) ∪ 𝜏 ∈

⋃
ℎ

𝑗=1
(𝜏
−

(𝑗−1)
𝜏
+

𝑗
), and unstable for 𝜏 ∈ ⋃

ℎ−1

𝑗=0
(𝜏
+

𝑗
𝜏
−

𝑗
) ∪

(𝜏
+

ℎ
+ ∞). In this case, system (3) undergoes a Hopf

bifurcation at the zero equilibrium of system (3) when
𝜏 = 𝜏
±

𝑗
, (𝑗 = 0, 1, 2, . . .).
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Figure 3: When 𝜏 ∈ [𝜏+
0
𝜏
−

1
], the zero equilibrium is unstable. 𝑇 = 0.01 and initial conditions: 0.0008 ⋅ (1, 1, 1, 1, 1, 1, 1, 1), 𝜏 = 0.029.

(4) If 𝜅 > √𝛼2𝑃2 + 𝑃2⋂(𝛽
−
+ Ω) < 0, then the zero

equilibriums is unstable for all 𝜏 ≥ 0, and system (3)
undergoes a Hopf bifurcation at the zero equilibrium
when 𝜏 = 𝜏

±

𝑗
and 𝜏 = �̃�

±

𝑗
, (𝑗 = 0, 1, 2, . . .). Here 𝜏±

𝑗
, �̃�
±

𝑗

are shown as Lemmas 1 and 4, respectively.

3. Existence of Multiple Periodic Solutions

In the following, we consider the symmetric properties of
(3). Using the theories of functional differential equation, we
know that the system (3) is 𝑍

2
-equivariant with

(𝜌𝑈)
𝑟
= 𝑈
𝑟+1

(mod2) , (34)

for any𝑈
𝑟
in 𝑅2. It is much interesting to consider the spatio-

temporal patterns of bifurcating periodic solutions.
In the following, we only consider the periodic properties

of 𝑥
1
(𝑡), 𝑦
1
(𝑡), 𝑥
2
(𝑡), 𝑦
2
(𝑡). For this purpose, we give the con-

cepts of some spatiotemporal symmetric periodic solutions.
Assume that the state (𝑢

1
(𝑡), V
1
(𝑡), 𝑢
2
(𝑡), V
2
(𝑡)) can possess

two different types of symmetry: spatial and temporal. The
oscillators (𝑢

1
(𝑡), V
1
(𝑡)) and (𝑢

2
(𝑡), V
2
(𝑡)) are synchronized if

the state taking the form

(𝑢 (𝑡) , V (𝑡) , 𝑢 (𝑡) , V (𝑡)) , (35)

for all times 𝑡. On the other hand, oscillator (𝑢
1
(𝑡), V
1
(𝑡)), is

half a period out of phase with (anti-synchronous) oscillator
(𝑢
2
(𝑡), V
2
(𝑡))means the state taking the form

(𝑢 (𝑡) , V (𝑡) , 𝑢 (𝑡 +
𝜔

2
) , V (𝑡 +

𝜔

2
)) . (36)

Now,we explore the possible (spatial) symmetry of the system
(3). Consider the action of 𝑍

2
× 𝑆
1 on ([−𝜏, 0], 𝑅4) with

(𝑟, 𝜃) 𝑥 (𝑡) = 𝑟𝑥 (𝑡 + 𝜃) , (𝑟, 𝜃) ∈ 𝑍
2
× 𝑆
1
, (37)

where 𝑆1 is the temporal. Let 𝜔 = 2𝜋/𝛽
+
or 𝜔 = 2𝜋/𝛽

−
,

and denote 𝑃
𝜔
the Banach space of all continuous 𝜔-periodic

function 𝑥(𝑡). Denoting 𝑆𝑃
𝜔
the subspace of 𝑃

𝜔
consisting of

all 𝜔-periodic solution of system (3) with 𝜏 = 𝜏
±

𝑗
± or 𝜏 = �̃�

±

𝑗
± ,

then for each subgroup Σ ⊂ 𝑍
2
× 𝑆
1,

Fix (Σ, 𝑆𝑃
𝜔
) = {𝑥 ∈ 𝑆𝑃

𝜔
, (𝑟, 𝜃) 𝑥 = 𝑥, ∀ (𝑟, 𝜃) ∈ Σ} , (38)

is a subspace.

Theorem 8. Assume that 𝛽
±
satisfy (18), then near 𝜏 = 𝜏

±

𝑗

(𝜏 = �̃�
±

𝑗
, resp.) for each 𝑗 ∈ 𝑁

0
, a branch of synchronous (anti-

synchronous, resp.) periodic solutions of period 𝜔 near 𝜔
0
=

𝛽
±
/2𝜋 bifurcates from the zero solution of the system (3).

Proof. Let 𝛽
±
satisfy (18). From the theorem of [11], we know

the corresponding eigenvectors of Δ−(𝜆) at 𝜏 = 𝜏
±

𝑗
can be

chosen as

𝑞
1
(𝜃) = (V

1
(𝜃)
𝑇
, V
1
(𝜃)
𝑇
, 1, 0, 0, 0)

𝑇

, (39)

where V
1
(𝜃) satisfies [( 𝑝 −𝛼𝑝𝛼𝑝 𝑝 ) − (

𝜅 cosΩ𝜏±
𝑗
𝜅 sinΩ𝜏±

𝑗

−𝜅 sinΩ𝜏±
𝑗
𝜅 cosΩ𝜏±

𝑗

)]V
1
(𝜃) =

𝑖𝛽
±
V
1
(𝜃).The isotropic subgroup of𝑍

2
× 𝑆
1 is 𝑧
2
(𝜌), the center

space associated to eigenvalues ±𝑖𝛽
±
is spanned by 𝑞

1
(𝜃) and

𝑞
1
(𝜃), and the bifurcated periodic solutions are synchronous,

taking the form

(𝑢 (𝑡) , V (𝑡) , 𝑢 (𝑡) , V (𝑡)) . (40)

Similarly, if 𝛽
±
satisfy (18), then the corresponding eigen-

vectors of Δ+(𝜆) at 𝜏 = �̃�
±

𝑗
can be chosen as

𝑞
1
(𝜃) = (V

1
(𝜃)
𝑇
, V
1
(𝜃)
𝑇
, 1, 0, 0, 0)

𝑇

, (41)
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Figure 4: when 𝜏 ∈ [𝜏−
1
𝜏
+

1
], the zero equilibrium is asymptotically stable. 𝑇 = 1 and initial conditions: 1.1 ⋅ (1, 1, 1, 1, 1, 1, 1, 1), 𝜏 = 0.0299.

and V
2
(𝜃) satisfies [( 𝑝 −𝛼𝑝𝛼𝑝 𝑝 ) + (

𝜅 cosΩ�̃�±
𝑗
𝜅 sinΩ�̃�±

𝑗

−𝜅 sinΩ�̃�±
𝑗
𝜅 cosΩ�̃�±

𝑗

) ]V
1
(𝜃) =

𝑖𝛽
±
V
2
(𝜃).

𝑍
2
× 𝑆
1 has another isotropic subgroup 𝑧

2
(𝜌, 𝜋), the cen-

ter space associated to eigenvalues ±𝑖𝛽
±
is spanned by 𝑞

2
(𝜃),

𝑞
2
(𝜃), and the bifurcated periodic solutions are anti-phased,

that is, taking the form

(𝑢 (𝑡) , V (𝑡) , 𝑢 (𝑡 +
𝜔

2
) , V (𝑡 +

𝜔

2
)) , (42)

where 𝜔 is a period.

4. Numerical Simulations

Aswe all know that whenΩ
1

̸= Ω
2
, model (1) has been studied

by Erzgraber et al. According to their results, when changing
the detuning between the lasers they observed that the
coupled laser system undergoes mode jumps to other stable
compound laser mode within the locking region.

In this paper, we consider the properties of stability and
bifurcation in amutually delay-coupled semiconductor lasers
system. By analyzing the associate characteristic equation, we
can determine the stability and bifurcation of the coupled
system (3) with a single delay in four cases of Theorem 7.
Specifically, we have shown case (2) in Theorem 7 by using
some numerical simulations; then the Hopf bifurcation
occurs as 𝜏.

Let 𝜅 = 25, 𝑃 = 20,Ω = 275, and 𝛼 = 2, through (32) and
(33) we have

𝜏
−

0
=
𝜋 − arccos (4/5)

𝛽
−
+ Ω

= 0.0188

< 𝜏
+

0
=
𝜋 + arccos (4/5)

𝛽
+
+ Ω

= 0.0210

< 𝜏
−

1
=
2𝜋 − arccos (4/5)

𝛽
−
+ Ω

= 0.0293

< 𝜏
+

1
=

2𝜋 + arccos(4
5
)

𝛽
+
+ Ω

= 0.0305, . . . .

(43)

Theorem 7 shows that the zero equilibrium of system
(3) is unstable for 𝜏 ∈ [0 𝜏

−

0
] ∪ [𝜏

+

0
𝜏
−

1
] ∪ [𝜏

+

1
∞] and

asymptotically stable for 𝜏 ∈ [𝜏
−

0
, 𝜏
+

0
] ∪ [𝜏

−

1
, 𝜏
+

1
]. This means

that as the average delay 𝜏 varies, the zero equilibrium of
system (3) switches two times from instability to stability,
then to instability as shown in Figures 1, 2, 3, and 4, and finally
becomes unstable.

5. Conclusion

In our study, we give a semiconductor lasers model with cou-
pled delay to describe the exchanges between the two optical
fields 𝐸

1
, 𝐸
2
of the lasers. By means of the general symmetric

local Hopf bifurcation theorem, we not only investigated the
effect of delay of signal transmission on the pattern formation
of model (3) but also obtained some important results
about the spontaneous bifurcation of multiple branches of
periodic solutions and their spatiotemporal patterns. From
a practical viewpoint, these means that the time delay could
cause a stable equilibrium to become unstable and cause
the properties in a coupled semiconductor lasers system to
fluctuate: if 𝜏 < 𝜏

0
, the output power of the lasers reach

equilibrium. If 𝜏 increases and crosses the value 𝜏
0
, then this

equilibrium becomes unstable and the output power has a
change of periodic and small amplitude.
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