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We study the incompressible limit of weak solutions for the compressible flows of liquid crystals under strong stratification on
bounded domains.

1. Introduction

Liquid crystals flows can be found in the natural world and
in technological applications with a variety of examples such
as many proteins, cell membranes, and solutions of soap and
various related detergents, as well as the tobaccomosaic virus.
We here consider the compressible flows of liquid crystals:

𝜕
𝑡
󰜚 + div

𝑥
(󰜚u) = 0, (1)

𝜕
𝑡
(󰜚u) + div

𝑥
(󰜚u ⊗ u) + ∇

𝑥
𝑝 (󰜚) = 𝜇Δu,

− 𝜈div
𝑥
(∇d ⊗ ∇d − (1

2
|∇d|2 + 𝐹 (d)) I

3
) + 󰜚∇𝐺,

(2)

𝜕
𝑡
d + u ⋅ ∇d = 𝜃 (Δd − 𝑓 (d)) , d (0, 𝑥) = d

0
(𝑥) , (3)

where u is the vector field, 󰜚 is the density, d is the direction
field for the averaged macroscopic molecular orientations, 𝐺
is a given potential, and 𝜇, 𝜈, 𝜃 are viscosities. The smooth
vector 𝑓(d) and the smooth scalar function 𝐹(d) are related
by

𝑓 (d) = ∇d𝐹 (d) , (4)

where 𝑓(d) represents the penalty function and 𝐹(d) is the
bulk part of the elastic energy verifying: there exists 𝐶 > 0

such that if |d| ≥ 𝐶,

𝑓 (d) ⋅ d ≥ 0. (5)

Note that the condition (5) is required for the global weak
solution. We can see an example as follows:

𝐹 (d) = 1

4𝜎2
0

(|d|2 − 1)
2

, 𝑓 (d) = 1

2𝜎2
0

(|d|2 − 1) d, (6)

where 𝜎
0
is a constant. Finally, the pressure 𝑝 is defined as

follows

𝑝 (0) = 0, 𝑝 ∈ 𝐶
2
[0,∞) , 𝑝

󸀠
(𝑟) > 0 ∀𝑟 ≥ 0,

lim
𝑟→∞

𝑝
󸀠
(𝑟)

𝑟𝛾−1
= 𝑞 > 0,

(7)

and the function 󰜚 is the unique positive solution of the
following problem:

𝑝
0
∇󰜚 = 󰜚∇𝐺, 𝑝

0
= 𝑝
󸀠
(0) . (8)

We use the following scaling used in Feireisl et al. [1] and
Wang and Yu [2]:

𝑡 ≈ 𝜖𝑡, 𝑥 ≈ 𝑥, 󰜚 ≈ 󰜚
𝜖
, u ≈ 𝜖u

𝜖
, d ≈ d

𝜖
,

(9)

and for the viscosity coefficients,

𝜇 ≈ 𝜖𝜇
𝜖
, 𝜈 ≈ 𝜖

2
𝜈
𝜖
, 𝜃 ≈ 𝜖𝜃

𝜖
, (10)

with the convergence of the viscosity coefficients

𝜇
𝜖
󳨀→ 𝜇, 𝜈

𝜖
󳨀→ 𝜈, 𝜃

𝜖
󳨀→ 𝜃. (11)
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Finally for the pressure, we use

𝑝
𝜖
(󰜚) =

1

𝜖𝛼
𝑝 (𝜖
𝛼
󰜚) , 𝛼 ∈ (2, 3) . (12)

Following the above scalings, the system (1)–(7) reads

𝜕
𝑡
󰜚
𝜖
+ div
𝑥
(󰜚
𝜖
u
𝜖
) = 0, (13)

𝜕
𝑡
(󰜚
𝜖
u
𝜖
) + div

𝑥
(󰜚
𝜖
u
𝜖
⊗ u
𝜖
) +

1

𝜖2
∇
𝑥
𝑝
𝜖
(󰜚
𝜖
)

= 𝜇
𝜖
Δu
𝜖
− 𝜈
𝜖
div
𝑥
(∇d
𝜖
⊗ ∇d
𝜖
− (

1

2

󵄨󵄨󵄨󵄨∇d𝜖
󵄨󵄨󵄨󵄨
2

+ 𝐹 (d
𝜖
)) I
3
)

+
1

𝜖2
󰜚
𝜖
∇𝐺,

(14)

𝜕
𝑡
d
𝜖
+ u ⋅ ∇d

𝜖
= 𝜃
𝜖
(Δd
𝜖
− 𝑓 (d

𝜖
)) . (15)

We now notice that the global-in-time existence solutions
for system ((1)–(3)) have been studied by Wang and Yu [3]
and Liu and Qing [4]. For the case of d = 0, incompressible
limit problems have been investigated by many authors,
starting with the work by Klainerman and Majda [5] for
the Euler equations and Lions and Masmoudi [6] for the
isentropic Navier Stokes equations. Similar results in the
spirit of the analysis presented by Lions andMasmoudi [6] are
the recent progress by Feireisl and Novotný [7, 8] and Kwon
and Trivisa [9] for the full Navier-Stokes Fourier system.
For the liquid crystals, there is one recent progress by Wang
and Yu [2] based on the spectral analysis and Duhamel’s
principle to control difficulties arising in the boundary of
bounded domains. There are some results of incompressible
limit problems of Navier Stoke Fourier system under strong
stratification by Feireisl andNovotný [7] on bounded domain
and by Feireisl et al. on unbounded domains, which is
extended to full magnetohydrodynamic flows on bounded
domain by Novotný et al. [10] and by Lee et al. [11].

For this kind of application, the polymer precursor leads
to a stratified structure of a solidified film of polymer
and so we have a natural question: is such fluid almost
incompressible such that it is strongly stratified when 𝜖 → 0

as the different models of compressible fluid? In this paper,
we derive the rigorous result of the incompressible limit of
the flow of liquid crystals with the similar idea used in the
previous results [7, 10–12]. Formally, we will investigate the
limit

󰜚
𝜖
󳨀→ 󰜚, u

𝜖
󳨀→ U, d

𝜖
󳨀→ d, (16)

as 𝜖 tends to 0 in the suitable sense such that the given limit
{󰜚,U, d} represents a solution of the following system:

div
𝑥
(󰜚U) = 0,

𝜕
𝑡
(󰜚U) + div

𝑥
(󰜚U ⊗ U) + ∇

𝑥
𝑃

= 𝜇ΔU − (
1

2
|∇d|2 + 𝐹 (d) I

3
) ,

𝜕
𝑡
d + U ⋅ ∇d = 𝜃 (Δd − 𝑓 (d)) .

(17)

Finally, in this paper, we will use the many parts of the
presentation of Feireisl andNovotný [7] and Feireisl et al. [12]
without modification.

The outline of this paper is as follows: In Section 2 we
present two initial-boundary-value problems and introduce
the notion of weak solutions for the compressible fluid of
liquid crystals. In Section 3 we present the main results of
the article on the low Mach number problems under strong
stratification on bounded domains. In Section 4, we present
the proof of the low Mach number problem for bounded
domains.

2. Weak Solutions

2.1. An Initial-Boundary-Value Problem. Let Ω ⊂ R3 be a
bounded domain with the boundary of class 𝐶∞

u ⋅ n|
𝜕Ω

= 0, (18)

where n stands for the outer normal vector. We also propose
the boundary condition on the direction vector d

d|
𝜕Ω

= d
0
. (19)

Notice that Wang and Yu showed the global weak solution
of the system (1)–(3) with the Dirichlet boundary condition
on bounded domains but there will be no problem with the
boundary conditions (18) and (19) for existence result.

2.2. Weak Solutions

Definition 1. We say that a quantity {󰜚, u, d} is a weak
solution of the compressible flows of liquid crystals (13)–(15)
supplemented with the initial data {󰜚

0
, u
0
, d
0
} provided that

the following hold.

(i) The density 󰜚 is a nonnegative function, 󰜚 ∈

𝐿
∞
(0, 𝑇; 𝐿

𝛾
(Ω)), the velocity field u ∈ 𝐿

2
(0, 𝑇;𝐻

1
(Ω;

R3)), 󰜚|u|2 ∈ 𝐿
∞
(0, 𝑇; 𝐿

1
(Ω)), and u represents a

renormalized solution of (1) on a time-space cylinder
(0, 𝑇) × Ω, that is, the integral identity

∫

𝑇

0

∫
Ω

(󰜚𝐵 (󰜚) 𝜕
𝑡
𝜑 + 󰜚𝐵 (󰜚) u ⋅ ∇

𝑥
𝜑

−𝑏 (󰜚) div
𝑥
u𝜑) d𝑥 d𝑡

= −∫
Ω

󰜚
0
𝐵 (󰜚
0
) 𝜑 (0, ⋅) d𝑥

(20)

holds for any test function 𝜑 ∈ D([0, 𝑇) ×Ω) and any
𝑏 such that

𝑏 ∈ 𝐿
∞
∩ 𝐶 [0,∞) ,

𝐵 (󰜚) = 𝐵 (1) + ∫

󰜚

1

𝑏 (𝑧)

𝑧2
d𝑧.

(21)
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(ii) The balance of momentum holds in distributional
sense, namely,

∫

𝑇

0

∫
Ω

(󰜚u ⋅ 𝜕
𝑡
�⃗� + 󰜚u ⊗ u

: ∇
𝑥
�⃗� +

1

𝜖2
𝑝
𝜖
(󰜚) div

𝑥
�⃗� − 𝜈
𝜖
Π

: ∇�⃗� + 𝜇
𝜖
∇u

: ∇�⃗� +
1

𝜖2
∇𝐺 ⋅ �⃗�) d𝑥 d𝑡

= −∫
Ω

󰜚
0
u
0
⋅ �⃗� (0, ⋅) d𝑥

(22)

for any test function �⃗� ∈ D([0, 𝑇);D(Ω;R3)) satisfy-
ing �⃗� ⋅ n|

𝜕Ω
= 0, where Π is defined by

Π = ∇d ⊗ ∇d − (1
2
|∇d|2 + 𝐹 (d)) I

3
. (23)

(iii) The total energy of the system holds:

𝐸 (𝑡) + ∫

𝑡

0

∫
Ω

(𝜇
𝜖
|∇u|2

+𝜈
𝜖
𝜃
𝜖

󵄨󵄨󵄨󵄨Δd − 𝑓 (d)
󵄨󵄨󵄨󵄨
2

) d𝑥 d𝑡

≤ 𝐸 (0)

(24)

holds for a.e. 𝑡 ∈ (0, 𝑇), where

𝐸 (𝑡) = ∫
Ω

(
1

2
󰜚|u|2 + 1

𝜖2
𝐻
𝜖
(󰜚) +

𝜈
𝜖

2
|d|2

+𝜈
𝜖
𝐹 (d) − 󰜚𝐺) d𝑥

(25)

with

𝐻
𝜖
(󰜚) = 󰜚∫

󰜚

1

𝑝
𝜖
(󰜚)

𝑧2
d𝑧. (26)

(iv) The equation of direction field verifies

∫

𝑇

0

∫
Ω

d ⋅ 𝜕
𝑡
�⃗� d𝑥 d𝑡

+ ∫

𝑇

0

∫
Ω

(u ⋅ d) div
𝑥
�⃗� + (∇u ⋅ d) ⋅ �⃗�.

−𝜃 (∇d + 𝑓 (d)) ⋅ �⃗� d𝑥 d𝑡 = 0,

(27)

for all �⃗� ∈ [D([0, 𝑇) × Ω)]
3.

Let us now discuss the static states which are solutions of
system (13)–(15) with vanishing velocity field. In the present
setting, the positive density 󰜚

𝜖
must satisfy

∇𝑝
𝜖
(󰜚
𝜖
) = 󰜚
𝜖
∇𝐺, 𝑝

0
= 𝑝
󸀠
(0) . (28)

From the statistic equation (28), we can easily derive

𝑝
0
log (󰜚 (𝑥)) + 𝑄 (𝜖

𝛼
󰜚 (𝑥)) − 𝑄 (𝜖

𝛼
󰜚
∞
)

= 𝐺 (𝑥) + 𝑝
0
log (󰜚
∞
)

(29)

with

𝑄
󸀠
(𝑟) =

{{

{{

{

𝑃
󸀠
(𝑟) − 𝑝

0

𝑟
, if 𝑟 > 0,

𝑃
󸀠󸀠
(0) , if 𝑟 = 0.

(30)

Wenow introduce theweak solutions of the target system.

Definition 2. A couple {󰜚,U, d} is said to be a weak solution of
the target system of the compressible flows of liquid crystals
with the potential 𝐺 ∈ 𝑊

1,∞
(Ω), ∇𝐺 ∈ 𝐿

1
(Ω), supplemented

with the boundary conditions

U ⋅ n = 0, d = d
0
, (31)

on 𝜕Ω which belongs to 𝐶∞, and the initial conditions

U (0, ⋅) = U
0
, d (0, ⋅) = d

0
, (32)

with U ∈ 𝐿
2
(Ω), d

0
∈ 𝐻
1
(Ω), d

0
|
𝜕Ω

∈ 𝐻
3/2
(Ω) if the

following conditions hold:

(i) U ∈ 𝐿
∞
(0, 𝑇; 𝐿

2
(Ω;R3)) ∩ 𝐿2(0, 𝑇;𝐻1(Ω;R3)),

div
𝑥
(󰜚U) = 0 a.e. on (0, 𝑇) × Ω, U ⋅ n|

𝜕Ω
= 0 in the

sense of traces, and the integral identity

∫

𝑇

0

∫
Ω

(󰜚U ⋅ 𝜕
𝑡
𝜑 + (󰜚U ⊗ U)

: ∇
𝑥
𝜑 − 𝜇∇

𝑥
U : ∇
𝑥
𝜑) d𝑥 d𝑡

= −∫

𝑇

0

∫
Ω

(∇d ⊗ ∇d) : ∇𝜑 d𝑥 d𝑡

− ∫
Ω

U ⋅ 𝜑 (0, ⋅) d𝑥

(33)

holds for any test function

𝜑 ∈ D ((0, 𝑇) × Ω;R
3
) ,

div
𝑥
𝜑 = 0 in Ω, 𝜑 ⋅ n|

𝜕Ω
= 0,

(34)

(ii) d ∈ 𝐿
2
(0, 𝑇;𝐻

2
(Ω;R3)) ∩ 𝐿

∞
(0, 𝑇;𝐻

1
(Ω;R3)), and

the integral identity

∫

𝑇

0

∫
Ω

d ⋅ 𝜕
𝑡
�⃗� d𝑥 d𝑡

+ ∫

𝑇

0

∫
Ω

((U ⋅ d) div
𝑥
�⃗� + (∇U ⋅ d) ⋅ �⃗�

−𝜃 (∇d + 𝑓 (d)) ⋅ �⃗�) d𝑥 d𝑡 = 0

(35)

holds for all �⃗� ∈ [D([0, 𝑇) × Ω)]
3.
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3. Main Results

In this section we mention the main result as follows.

Theorem 3. Let Ω ⊂ R3 be a bounded domain with a
boundary of class𝐶∞ and {󰜚

𝜖
, u
𝜖
, d
𝜖
} a family of weak solutions

to the compressible of liquid crystals system verifying (5) in the
sense of Definition 1 with 𝐺 ∈ 𝑊

1,∞
(Ω), ∇𝐺 ∈ 𝐿

1
(Ω). Assume

that the initial condition is as follows:

{󰜚
(1)

0,𝜖
}
𝜖>0

bounded in (𝐿
2
∩ 𝐿
∞
) (Ω) ,

with 󰜚(1)
0,𝜖

:=
󰜚
0,𝜖
− 󰜚

𝜖
,

(36)

{u
0,𝜖
}
𝜖>0

bounded in (𝐿
2
∩ 𝐿
∞
) (Ω;R

3
) ,

{d
0,𝜖
}
𝜖>0

bounded in (𝐿
2
∩ 𝐿
∞
) (Ω;R

3
) .

(37)

Then, up to subsequence,

󰜚
𝜖
󳨀→ 󰜚 a.e. in (0, 𝑇) × Ω,

u
𝜖
󳨀→ U a.e. in (0, 𝑇) × Ω,

d
𝜖
󳨀→ d a.e. in (0, 𝑇) × Ω,

(38)

where {󰜚,U, d} solves a weak solution of the incompressible
flows of liquid crystals in the sense of Definition 2 with the
boundary condition U ⋅ n|

𝜕Ω
= 0 and the initial data

U (0) = P
󰜚
[U
0
] , d (0, ⋅) = d

0
, (39)

where the Helmholtz projection P
󰜚
= I −Q

󰜚
and Q

󰜚
is defined

in (81).

4. Proof of Theorem 3

4.1. Uniform Bounds. In this section we are going to derive
some estimates on the sequence {󰜚

𝜖
, u
𝜖
, d
𝜖
}
𝜖>0

. Multiplying
(13) by𝐻󸀠(󰜚

𝜖
)−𝐻
󸀠
(󰜚
𝜖
) and adding the energy inequality (24),

it follows that

∫
Ω

(
1

2
󰜚
𝜖

󵄨󵄨󵄨󵄨u𝜖
󵄨󵄨󵄨󵄨
2

+
1

𝜖2
(𝐻
𝜖
(󰜚
𝜖
)−𝐻
𝜖
(󰜚
𝜖
)−𝐻
󸀠

𝜖
(󰜚
𝜖
) (󰜚
𝜖
−󰜚
𝜖
))

+
𝜈
𝜖

2

󵄨󵄨󵄨󵄨d𝜖
󵄨󵄨󵄨󵄨
2

+ 𝜈
𝜖
𝐹 (d
𝜖
)) d𝑥

+ ∫

𝑡

0

∫
Ω

(𝜇
𝜖

󵄨󵄨󵄨󵄨∇u𝜖
󵄨󵄨󵄨󵄨
2

+ 𝜈
𝜖
𝜃
𝜖

󵄨󵄨󵄨󵄨Δd𝜖 − 𝑓 (d𝜖)
󵄨󵄨󵄨󵄨
2

) d𝑥 d𝑡 ≤ 𝐸
0,𝜖
,

(40)

where

𝐸
0,𝜖
= ∫
Ω

(
1

2
󰜚
0,𝜖

󵄨󵄨󵄨󵄨u0,𝜖
󵄨󵄨󵄨󵄨
2

+
1

𝜖2
(𝐻
𝜖
(󰜚
0,𝜖
) − 𝐻
𝜖
(󰜚
𝜖
) − 𝐻

󸀠
(󰜚
𝜖
) (󰜚
0,𝜖
− 󰜚
𝜖
))

+
𝜈
𝜖

2

󵄨󵄨󵄨󵄨d0,𝜖
󵄨󵄨󵄨󵄨
2

+ 𝜈
𝜖
𝐹 (d
0,𝜖
)) d𝑥.

(41)

For convenient presentation, we introduce the set of the
essential and residual values

𝑔 = [𝑔]ess + [𝑔]res, (42)

where [𝑔]ess = 𝜒(󰜚
𝜖
)𝑔, [𝑔]res = (1 − 𝜒(󰜚

𝜖
))𝑔 and 𝜒 is defined

as follows:

𝜒 (𝑟) = 1 ∀𝑟 ∈ [

󰜚

2, 2󰜚
] , 𝜒 (𝑟) = 0 otherwise, (43)

where 󰜚
𝜖
is the solution of (28) and

󰜚 = inf
𝜖>0

inf
𝑥∈Ω

󰜚
𝜖
(𝑥) , 󰜚 = sup

𝜖>0

sup
𝑥∈Ω

󰜚
𝜖
(𝑥) . (44)

Notice that two assumptions of pressure in (7) and (12) imply
that 𝐻

𝜖
is a strict convex. Thus, thanks to (36), we get that

𝐸
0,𝜖

is uniformly bounded for 𝜖 → 0. Consequently, from
the energy balance (40), we obtain

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩√󰜚𝜖u𝜖 (𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω;R3) ≤ 𝐶, (45)

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩d𝜖(𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω;R3) ≤ 𝐶, (46)

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩(Δd𝜖 − 𝑓(d𝜖))(𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω;R3) ≤ 𝐶, (47)

󵄩󵄩󵄩󵄩∇𝑥u𝜖
󵄩󵄩󵄩󵄩𝐿2((0,𝑇)×Ω) ≤ 𝐶, (48)

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩󵄩
[𝐻
𝜖
(󰜚
𝜖
) − 𝐻
𝜖
(󰜚
𝜖
) − 𝐻

󸀠
(󰜚
𝜖
) (󰜚
𝜖
− 󰜚
𝜖
)]

ess
󵄩󵄩󵄩󵄩󵄩𝐿1(Ω)

≤ 𝜖
2
𝐶,

(49)

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩󵄩
[𝐻
𝜖
(󰜚
𝜖
) − 𝐻
𝜖
(󰜚
𝜖
) − 𝐻
󸀠
(󰜚
𝜖
)(󰜚
𝜖
− 󰜚
𝜖
)]res

󵄩󵄩󵄩󵄩󵄩𝐿1(Ω)

≤ 𝜖
2
𝐶.

(50)

Using the estimate of (49) implies

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[
󰜚
𝜖
− 󰜚
𝜖

𝜖
]

ess

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶. (51)

Note that the static equation (29) holds
󵄩󵄩󵄩󵄩󰜚𝜖 − 󰜚

󵄩󵄩󵄩󵄩𝐶(Ω) ≤ 𝜖
𝛼
𝐶, 󰜚

𝜖
= 󰜚 = 󰜚

∞
inΩ − supp [𝐹] . (52)

Due to the estimate of (51) and the convergence of (52), it
follows that

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[
󰜚
𝜖
− 󰜚

𝜖
]

ess

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶. (53)

In order that we now derive the estimate of the velocity,
we first verify that

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[
󰜚
𝜖
− 󰜚

𝜖
]

res

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶. (54)
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To do this, we use the following inequality due to two
assumptions of pressure (7) and (12),

𝜕
2
𝐻
𝜖
(󰜚)

𝜕󰜚2
=
𝑝
󸀠
(𝜖
𝛼
󰜚)

󰜚
≥ 𝐶(

1

󰜚
+
𝜖
2𝛼/3

󰜚1/3
) , (55)

which deduce, thanks to (49),

ess sup
𝑡∈(0,𝑇)

[1]res ≤ 𝜖
2
𝐶, (56)

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩[󰜚𝜖 log(󰜚𝜖)]res
󵄩󵄩󵄩󵄩𝐿1(Ω) ≤ 𝐶𝜖

2
, (57)

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩[󰜚𝜖]res
󵄩󵄩󵄩󵄩𝐿5/3(Ω) ≤ 𝐶𝜖

(6−2𝛼)/5
. (58)

Finally, we get

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[󰜚
𝜖
]res
𝜖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿6/5(Ω)
≤ 𝐶𝜖
1/6
, (59)

where we have used the above two estimates (57) and (58) and
so the estimate (56) together with (59) shows (54).

We now derive the estimate of the velocity. Indeed, it is
easy to show with a simple computation that

ess sup
𝑡∈(0,𝑇)

󵄩󵄩󵄩󵄩[u𝜖]ess
󵄩󵄩󵄩󵄩𝐿2(Ω) ≤ 𝐶 sup

𝑡>0

∫
Ω

󰜚
𝜖

󵄨󵄨󵄨󵄨u𝜖
󵄨󵄨󵄨󵄨
2d𝑥 ≤ 𝐶,

󵄩󵄩󵄩󵄩[u𝜖]res
󵄩󵄩󵄩󵄩
2

𝐿
2
(Ω)

≤ 𝐶∫
Ω

󵄨󵄨󵄨󵄨󰜚𝜖 − 󰜚
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨u𝜖
󵄨󵄨󵄨󵄨
2d𝑥 ≤ 𝜖𝐶󵄩󵄩󵄩󵄩u𝜖

󵄩󵄩󵄩󵄩
2

𝐿
𝑝
(Ω)

≤ 𝜖𝐶
󵄩󵄩󵄩󵄩∇u𝜖

󵄩󵄩󵄩󵄩
2

𝐿
2
(Ω)
,

(60)

for a certain 𝑝 > 1 where we have used the Sobolev
embedding inequality. Thus we get

󵄩󵄩󵄩󵄩u𝜖
󵄩󵄩󵄩󵄩𝐿2((0,𝑇)×Ω) ≤ 𝐶, (61)

and the estimates in (48) and (61) imply
󵄩󵄩󵄩󵄩u𝜖

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐻1(Ω;R3)) ≤ 𝐶. (62)

4.2. Convergence of Anelastic Constraint. We will use the
uniform estimate (62) to deduce

u
𝜖
󳨀→ U weakly in 𝐿2 (0, 𝑇;𝑊1,2 (Ω;R3)) , (63)

up to a subsequence of {𝜖 > 0}. In accordance with (53) and
(54), we obtain

󰜚
𝜖
󳨀→ 󰜚 in 𝐿∞ (0, 𝑇; 𝐿𝑝 (Ω)) , for a certain𝑝 > 0, (64)

and so we can take the limit of 𝜖 in the continuity equation
(20) to get

∫

𝑇

0

∫
Ω

󰜚U ⋅ ∇
𝑥
𝜑 d𝑥 d𝑡 = 0, (65)

for all 𝜑 ∈ 𝐶∞
𝑐
((0, 𝑇) × Ω).

4.3. Convergence of Moment Equation. To begin with, using
two estimates (63) and (64),

󰜚
𝜖
u
𝜖
󳨀→ 󰜚U weakly − (∗) in 𝐿∞ (0, 𝑇; 𝐿𝑝 (Ω;R3)) ,

for a certain𝑝 > 0.
(66)

Hence

󰜚
𝜖
u
𝜖
⊗ u
𝜖
󳨀→ 󰜚U ⊗ U weakly in 𝐿∞ (0, 𝑇; 𝐿𝑞 (Ω;R3)) ,

(67)

for a certain 𝑞 > 1. Actually, we do not know 󰜚U ⊗ U =

󰜚U ⊗ U due to the oscillations of the gradient component
of the velocity field and we postpone this part to handle the
oscillations of the gradient component in the next section.

We also need to get the uniform estimates for the
directional field {d

𝜖
}
𝜖>0

. Multiplying d
𝜖
on (27) yields

𝜕
𝑡

󵄨󵄨󵄨󵄨d𝜖
󵄨󵄨󵄨󵄨
2

− Δ
󵄨󵄨󵄨󵄨d𝜖
󵄨󵄨󵄨󵄨
2

+ u
𝜖
⋅ ∇
󵄨󵄨󵄨󵄨d𝜖
󵄨󵄨󵄨󵄨
2

≤ 0, (68)

and so applying the maximum principle for weak solutions
provides

{d
𝜖
}
𝜖>0

bounded in 𝐿∞ ([0, 𝑇] × Ω) , (69)

which implies

{∇d
𝜖
}
𝜖>0

bounded in 𝐿2 ([0, 𝑇] ;𝐻2 (Ω)) , (70)

where we have used (47), the basic elliptic theory, and the
following Gagliardo-Nirenberg inequality:

󵄩󵄩󵄩󵄩∇d𝜖
󵄩󵄩󵄩󵄩𝐿4(Ω) ≤ 𝐶

󵄩󵄩󵄩󵄩Δd𝜖
󵄩󵄩󵄩󵄩
1/2

𝐿
2
(Ω)

󵄩󵄩󵄩󵄩d𝜖
󵄩󵄩󵄩󵄩
1/2

𝐿
∞
(Ω)

+ 𝐶
󵄩󵄩󵄩󵄩d𝜖

󵄩󵄩󵄩󵄩𝐿∞(Ω).
(71)

and thus we derive

{𝜕
𝑡
d
𝜖
}
𝜖>0

bounded in 𝐿𝑝 (0, 𝑇;𝑊−1,2 (Ω;R3)) , (72)

for a certain 𝑝 > 1. Applying the Aubin-Lions lemma applied
to (27) together with (47), (70), (72), and (61) implies

d
𝜖
󳨀→ d strongly𝐿2 (0, 𝑇; 𝐿2 (Ω;𝐻1 (Ω))) . (73)

Thus we get the boundary condition d|
𝜕Ω

= d
0
and

∇d
𝜖
⊗ ∇d
𝜖
− (

1

2

󵄨󵄨󵄨󵄨∇d𝜖
󵄨󵄨󵄨󵄨
2

+ 𝐹 (d
𝜖
)) I

󳨀→ ∇d ⊗ ∇d − (1
2
|∇d|2 + 𝐹 (d)) I

(74)

in the sense of distribution.
We are now able to identify the limit problem of the

moment equation (22). To do this, we first rewrite the
moment equation as follows:

𝜕
𝑡
(󰜚
𝜖
u
𝜖
) + div

𝑥
(󰜚
𝜖
u
𝜖
⊗ u
𝜖
) +

1

𝜖2
∇
𝑥
(𝑝
𝜖
(󰜚
𝜖
) − 𝑝
0
󰜚
𝜖
)

+ 𝑝
0
∇(

󰜚
𝜖
− 󰜚

𝜖2
) + (

󰜚 − 󰜚
𝜖

𝜖2
)

= 𝜇
𝜖
Δu
𝜖
− 𝜈
𝜖
div
𝑥
(∇d
𝜖
⊗ ∇d
𝜖

−(
1

2

󵄨󵄨󵄨󵄨∇d𝜖
󵄨󵄨󵄨󵄨
2

+ 𝐹 (d
𝜖
)) I
3
) ,

(75)
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From the previous estimates, we get

∫

𝑇

0

∫
Ω

(󰜚U ⋅ 𝜕
𝑡
𝜑 + 󰜚U ⊗ U : ∇

𝑥
𝜑) d𝑥 d𝑡

= ∫

𝑇

0

∫
Ω

(𝜇∇
𝑥
U : ∇
𝑥
𝜑 − 𝜈 (∇d ⊗ ∇d) : ∇

𝑥
𝜑) d𝑥 d𝑡

− ∫
Ω

(󰜚U)
0
⋅ 𝜑d𝑥

(76)

for any test function

𝜑 ∈ 𝐶
∞

𝑐
([0, 𝑇] × Ω;R

3
) , div

𝑥
𝜑 = 0, (77)

if we show
1

𝜖2
∫

𝑇

0

∫
Ω

(𝑝
𝜖
(󰜚
𝜖
) − 𝑝
0
󰜚
𝜖
) d𝑥 d𝑡 󳨀→ 0 as 𝜖 󳨀→ 0, (78)

wherewe have here used (8), (53), and (54). It remains to show
that

∫

𝑇

0

∫
Ω

󰜚U ⊗ U : ∇
𝑥
𝜑 d𝑥 d𝑡 = ∫

𝑇

0

∫
Ω

[󰜚U ⊗ U] : ∇
𝑥
𝜑 d𝑥 d𝑡

(79)

for any

𝜑 ∈ 𝐶
∞

𝑐
((0, 𝑇) × Ω;R

3
) , div

𝑥
𝜑 = 0. (80)

The proofs of (78) and (79) are provided in the next two
sections.

4.4. Pressure Estimate. The next challenge is to establish
uniform bounds on the pressure as well as on the internal
energy in terms of a reflexive space𝐿𝑞, with 𝑞 > 1.We here use
the Bogovski operator. Let us take a test function and adapt
this test function in the moment equation (2):

𝜑 (𝑡, 𝑥) = 𝜓 (𝑡)B [𝑏 (󰜚
𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] ,

𝜓 ∈ D (0, 𝑇) .

(81)

We will write the moment equation (2) with simple compu-
tations again:

1

𝜖2
∫

𝑇

0

∫
Ω

𝜓𝑝
𝜖
(󰜚
𝜖
) 𝑏 (󰜚
𝜖
) d𝑥 d𝑡

=
1

𝜖2 |Ω|
∫

𝑇

0

∫
Ω

𝜓𝑝
𝜖
(󰜚
𝜖
) d𝑥(∫

Ω

𝑏 (󰜚
𝜖
) d𝑥) d𝑡

−
1

𝜖2
∫

𝑇

0

∫
Ω

𝜓󰜚
𝜖
∇𝐺

⋅B [𝑏 (󰜚
𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] d𝑥 d𝑡

− ∫

𝑇

0

∫
Ω

𝜓Π
𝜖

⋅B [𝑏 (󰜚
𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] d𝑥 d𝑡 + 𝐽

𝜖
,

(82)

where

Π
𝜖
:= −𝜈
𝜖
div
𝑥
(∇d
𝜖
⊗ ∇d
𝜖
− (

1

2

󵄨󵄨󵄨󵄨∇d𝜖
󵄨󵄨󵄨󵄨
2

+ 𝐹 (d
𝜖
)) I
3
) , (83)

and 𝐽
𝜖
is defined by

𝐽
𝜖
= ∫

𝑇

0

∫
Ω

𝜓𝜇
𝜖
∇
𝑥
u
𝜖
: ∇B [𝑏 (󰜚

𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] d𝑥 d𝑡

− ∫

𝑇

0

∫
Ω

𝜓󰜚
𝜖
u
𝜖
⊗ u
𝜖

: ∇B [𝑏 (󰜚
𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] d𝑥 d𝑡

− ∫

𝑇

0

∫
Ω

𝜕
𝑡
𝜓󰜚
𝜖
u
𝜖
⋅B [𝑏 (󰜚

𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] d𝑥 d𝑡

+ ∫

𝑇

0

∫
Ω

𝜓󰜚
𝜖
u
𝜖
⋅B [div

𝑥
(𝑏 (󰜚
𝜖
) u
𝜖
)] d𝑥 d𝑡

+ ∫

𝑇

0

𝜓∫
Ω

󰜚
𝜖
u
𝜖

⋅B [ (󰜚
𝜖
𝑏
󸀠
(󰜚
𝜖
) − 𝑏 (󰜚

𝜖
)) div

𝑥
u
𝜖

−
1

|Ω|
∫
Ω

(𝑏 (󰜚
𝜖
) − 𝑏
󸀠
(󰜚
𝜖
) 󰜚
𝜖
) div
𝑥
u
𝜖
d𝑥] d𝑥 d𝑡.

(84)

We notice that all estimates in (84) are uniformly bounded
due to the uniform estimates in the previous section if we take
a special 𝑏 verifying

󵄨󵄨󵄨󵄨𝑏 (󰜚)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨
󰜚𝑏
󸀠
(󰜚)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶󰜚
𝛾
, (85)

with a certain 𝛾 ∈ (0, 1). In virtue of (57), it is easy to see

ess sup
𝑡∈(0,𝑇)

∫
Ω

𝑏 (󰜚
𝜖
) d𝑥 ≤ 𝐶𝜖2, (86)

and so we get

󵄩󵄩󵄩󵄩𝑏(󰜚𝜖)
󵄩󵄩󵄩󵄩
𝑞

𝐿
𝑞
(Ω)

≤
󵄩󵄩󵄩󵄩󵄩
[󰜚
𝜖
]
𝛾𝑞

res
󵄩󵄩󵄩󵄩󵄩𝐿1(Ω)

≤
󵄩󵄩󵄩󵄩󵄩
[󰜚
𝜖
log 󰜚
𝜖
]
𝛾𝑞

res
󵄩󵄩󵄩󵄩󵄩𝐿1(Ω)

≤ 𝐶𝜖
2
,

(87)

for 𝛾 < 1/𝑞 and the first integral of the right hand side of (82)
is uniformly bounded. We now need to control the first and
second integrals of the right hand side of (82). To do this, let
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us rewrite the first term into the following form with using
the static problem (8)

1

𝜖2
∫
Ω

󰜚
𝜖
∇𝐺 ⋅B [𝑏 (󰜚

𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] d𝑥

=
1

𝜖
∫
Ω

[
󰜚
𝜖
− 󰜚

𝜖
]

ess
∇𝐺

⋅B [𝑏 (󰜚
𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] d𝑥

+
1

𝜖
∫
Ω

[
󰜚
𝜖
− 󰜚

𝜖
]

res
∇𝐺

⋅B [𝑏 (󰜚
𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] d𝑥

−
𝑝
0

𝜖2
∫
Ω

󰜚 [𝑏 (󰜚
𝜖
) −

1

|Ω|
∫
Ω

𝑏 (󰜚
𝜖
) d𝑥] d𝑥,

(88)

where the last integral is uniformly bounded due to (86).
Following estimates (53), (56), and (87) together with the 𝐿𝑝-
estimates forB, one gets the uniformboundedness of the first
and second terms of the right hand side of (88).

On the other hand, the estimates in (86) and (87) together
with the 𝐿𝑝-estimates for B yield that the third term of the
right hand side of (82) is uniformly bounded. Consequently,
we deduce that

∫

𝑇

0

∫
Ω

[𝑝
𝜖
(󰜚
𝜖
)]res󰜚
𝜈

𝜖
d𝑥 d𝑡 ≤ 𝐶𝜖2, (89)

for a certain 𝜈 ∈ (0, 1). We first split the integration of (78)
into two parts to show (78):

1

𝜖2
∫

𝑇

0

∫
Ω

󵄨󵄨󵄨󵄨𝑝0󰜚𝜖 − 𝑝𝜖 (󰜚𝜖)
󵄨󵄨󵄨󵄨 d𝑥 d𝑡

=
1

𝜖2
∫

𝑇

0

∫
󰜚
𝜖
≤𝑀

󵄨󵄨󵄨󵄨𝑝0󰜚𝜖 − 𝑝𝜖 (󰜚𝜖)
󵄨󵄨󵄨󵄨 d𝑥 d𝑡

+
1

𝜖2
∫

𝑇

0

∫
󰜚
𝜖
>𝑀

󵄨󵄨󵄨󵄨𝑝0󰜚𝜖 − 𝑝𝜖 (󰜚𝜖)
󵄨󵄨󵄨󵄨 d𝑥 d𝑡.

(90)

For the first one of the right hand side, we get

1

𝜖2
∫

𝑇

0

∫
󰜚
𝜖
≤𝑀

󵄨󵄨󵄨󵄨𝑝0󰜚𝜖 − 𝑝𝜖 (󰜚𝜖)
󵄨󵄨󵄨󵄨 d𝑥 d𝑡

≤
𝜖
𝛼−2

𝑀
2

2
sup
0≤𝑟≤𝑀

𝑃
󸀠󸀠
(𝑟) |Ω| ,

(91)

where we have used the Taylor expansion of degree 2.We also
use (57) and (89) to prove the second part of the right hand
side.

4.5. Convergence of the Convective Term. In this section, our
aim is to show that (79) holds. Before we prove (79), we
will introduce theHelmholtz decomposition and the following
material may be found in most of the text book of fluid

mechanics. Let us denote 𝐿2
1/󰜚

by the Hilbert space with the
inner product

⟨v,w⟩
1/󰜚

= ∫
Ω

v ⋅ wd𝑥
󰜚

(92)

and 𝐷
1,2 by the completion of 𝐶∞

𝑐
(Ω) with respect to the

norm ‖∇
𝑥
𝜑‖
𝐿
2(Ω).

Theorem 4. For v ∈ 𝐿2
1/󰜚
(Ω : R3), a vector function v : Ω →

R3 is written as

v = P
󰜚
[v] +Q

󰜚
[v] , (93)

where

Q
󰜚
[v] = 󰜚∇

𝑥
Ψ, (94)

and Ψ is uniquely determined as the following Neumann
problem:

div
𝑥
(󰜚∇
𝑥
Ψ) = div

𝑥
v inΩ,

󰜚∇
𝑥
Ψ ⋅ n|
𝜕Ω

= 0, ∫
Ω

Ψd𝑥 = 0,
(95)

where n is the outward unit normal to 𝜕Ω.

We now write

󰜚
𝜖
u
𝜖
⊗ u
𝜖
= P
󰜚
[󰜚
𝜖
u
𝜖
] ⊗ u
𝜖
+Q
󰜚
[󰜚
𝜖
u
𝜖
] ⊗ P
󰜚
[u
𝜖
]

+Q
󰜚
[󰜚
𝜖
u
𝜖
] ⊗Q
󰜚
[u
𝜖
] .

(96)

Let us first show

P
󰜚
[󰜚
𝜖
u
𝜖
] 󳨀→ P

󰜚
[󰜚U] = 󰜚U in 𝐿1 ((0, 𝑇) × Ω;R3) . (97)

To do this, we adapt the following test function to themoment
equation (22):

𝜑 (𝑡, 𝑥) =
𝜑 (𝑡)

󰜚
P
󰜚
[󰜚Ψ] , Ψ ∈ 𝐶

∞

𝑐
(Ω;R

3
) ,

Ψ ⋅ n|
𝜕Ω

= 0, 𝜓 ∈ 𝐶
∞

𝑐
(0, 𝑇) .

(98)

Taking into account the uniform estimates obtained in the
previous sections, it follows that

𝑡 ∈ [0, 𝑇] 󳨃󳨀→ ∫
Ω

P
󰜚
[󰜚
𝜖
u
𝜖
] ⋅ Ψd𝑥 (99)

precompact in 𝐶[0, 𝑇] and so the uniform estimates (45)
and (64) with using the Sobolev embedding 𝐿

5/4
(Ω) 󳨅→

[𝑊
1,2
(Ω)]
∗ imply that

P
󰜚
[󰜚
𝜖
u
𝜖
] 󳨀→ P

󰜚
[󰜚U] = 󰜚U

in𝐶weak ([0, 𝑇] ; 𝐿
5/4

(Ω;R
3
)) .

(100)
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Notice that

∫

𝑇

0

∫
Ω

P
󰜚
[󰜚
𝜖
u
𝜖
] ⋅ P
󰜚
[󰜚u
𝜖
]
d𝑥
󰜚
d𝑡

= ∫

𝑇

0

∫
Ω

P
󰜚
[󰜚
𝜖
u
𝜖
] ⋅ u
𝜖
d𝑥 d𝑡

󳨀→ ∫

𝑇

0

∫
Ω

P
󰜚
[󰜚U] ⋅ Ud𝑥 d𝑡

= ∫

𝑇

0

∫
Ω

󰜚
2
|U|2 d𝑥

󰜚
d𝑡,

(101)

where we have here used (100). In virtue of (64) and (101), one
gets

P
󰜚
[󰜚
𝜖
u
𝜖
] 󳨀→ 󰜚U in 𝐿2 ((0, 𝑇) × Ω;R3) . (102)

Since the Helmholtz projections

v 󳨀→ P
󰜚
[v] , v 󳨀→ Q

󰜚
[v] (103)

map continuously the spaces 𝐿𝑝(Ω;R3) and𝑊1,𝑝(Ω;R3) into
itself for any 1 < 𝑝, it is easily seen that

Q
󰜚
[󰜚
𝜖
u
𝜖
]󳨀→0 weakly − (∗) in 𝐿∞ (0, 𝑇; 𝐿5/4 (Ω;R3)) .

(104)

In order to show (79), we should prove

lim
𝜖→0

∫

𝑇

0

∫
Ω

Q
󰜚
[󰜚
𝜖
u
𝜖
] ⊗Q
󰜚
[󰜚
𝜖
u
𝜖
] : ∇
𝑥
(
𝜑

󰜚
)
d𝑥
󰜚
d𝑡 = 0,

(105)

for any

𝜑 ∈ 𝐶
∞

𝑐
((0, 𝑇) × Ω;R

3
) , div

𝑥
𝜑 = 0, 𝜑 ⋅ n|

𝜕Ω
= 0.

(106)

We next study the acoustic equations. The acoustic
equations are used to describe the time evolution of fast
acoustic waves in the compressible models in order to handle
the oscillation of Q[󰜚

𝜖
u
𝜖
]. To begin with, we rewrite (1) and

(2):

𝜖𝜕
𝑡
𝑋
𝜖
+
1

󰜚
div
𝑥
V
𝜖
= 0,

𝜖𝜕
𝑡
V
𝜖
+ 𝑝
0
󰜚∇
𝑥
𝑋
𝜖
= 𝜖 (div

𝑥
G1
𝜖
+ ∇G2
𝜖
) ,

(107)

where the previous estimates provide

G1
𝜖
is bounded in 𝐿

𝑝
((0, 𝑇) × Ω)

3×3

G2
𝜖
is bounded in 𝐿

𝑝
((0, 𝑇) × Ω)

3
,

(108)

for a certain 𝑝 > 1 and

𝑋
𝜖
=
󰜚
𝜖
− 󰜚

𝜖󰜚
, V

𝜖
= 󰜚
𝜖
u
𝜖 (109)

G1
𝜖
= 𝜇
𝜖
∇u
𝜖
− (󰜚
𝜖
u
𝜖
⊗ u
𝜖
) − 𝜈
𝜖
(∇d
𝜖
⊗ ∇d
𝜖
) (110)

G2
𝜖
=
1

2

󵄨󵄨󵄨󵄨∇d𝜖
󵄨󵄨󵄨󵄨
2

+ 𝐹 (d
𝜖
)

− (𝐻
𝜖
(󰜚
𝜖
) − 𝐻
𝜖
(󰜚
𝜖
) − 𝐻

󸀠
(󰜚
𝜖
) (󰜚
𝜖
− 󰜚
𝜖
)) .

(111)

We now use the method of spectral analysis of the wave
operator. Let us consider the eigenvalue problem:

󰜚∇
𝑥
(
A
󰜚
) = 𝜆W, 𝑝

0
div
𝑥
W = 𝜆A, inΩ, (112)

with the boundary condition

W ⋅ n|
𝜕Ω

= 0. (113)

Thus, the eigenvalue problem (112) and (113) can be written
into the following form:

−div
𝑥
[󰜚∇
𝑥
(
A
󰜚
)] = Λ󰜚(

A
󰜚
) , inΩ, (114)

with

∇
𝑥
(
A
󰜚
) ⋅ n|
𝜕Ω

= 0, 𝜆
2
= −Λ𝑝

0
. (115)

Following the eigenvalue problem (114) and (115), it is well
known that there is an orthonormal basis {A

𝑗,𝑚
}
∞,𝑚
𝑗

𝑗=0,𝑚=1
of

real eigenfunctions of the weighed Lebesgue space 𝐿2
1/󰜚
(Ω)

corresponding to eigenvalues Λ
𝑗,𝑚

such that

𝑚
0
= 1, Λ

0,1
, A
0,1

= 󰜚,

0 < Λ
1,1

= ⋅ ⋅ ⋅ = Λ
0,𝑚
1

(= Λ
1
) < Λ

2,1

= ⋅ ⋅ ⋅ = Λ
2,𝑚
2

(= Λ
2
) < ⋅ ⋅ ⋅ ,

(116)

where 𝑚
𝑗
stands for the multiplicity of Λ

𝑗
. We also see that

{W
𝑗,𝑚
}
∞,𝑚
𝑗

𝑗=0,𝑚=1
is an orthonormal basis inQ[𝐿2

1/󰜚
(Ω)
3
] defined

by

W
±𝑗,𝑚

=
∓𝑖

√𝑝0Λ 𝑗

󰜚∇
𝑥

A
𝑗,𝑚

󰜚
,

𝑗 = 1, 2, ..., 𝑚,𝑚 = 1, ..., 𝑚
𝑗
.

(117)

We now take 𝜑 = 𝜓
1
(𝑡)A
𝑗,𝑚

and 𝜙 = 𝜓
2
(𝑡)W
±𝑗,𝑚

as test
functions to the system (107), and then we obtain

𝜖𝜕
𝑡
[𝑋
𝜖
]
𝑗,𝑚

− 𝑝
0√Λ 𝑗div𝑥[V𝜖]𝑗,𝑚 = 0,

𝜖𝜕
𝑡
[V
𝜖
]
𝑗,𝑚

+ √Λ 𝑗[𝑋𝜖]𝑗,𝑚 = 𝜖[𝐵𝜖]𝑗,𝑚,

(118)
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for 𝑗 = 1, 2, ..., and 𝑚 = 1, ..., 𝑚
𝑗
, where [𝑋

𝜖
]
𝑗,𝑚

, [V
𝜖
]
𝑗,𝑚

are
defined by

[𝑋
𝜖
]
𝑗,𝑚

= ∫
Ω

𝑋
𝜖
A
𝑗,𝑚

d𝑥,

[V
𝜖
]
𝑗,𝑚

=
𝑖

√𝑝0

∫
Ω

V
𝜖
⋅W
𝑗,𝑚

d𝑥,
(119)

and the estimates in (108) show that

{[𝐵
𝜖
]
𝑗,𝑚
}
𝜖>0

is bounded in 𝐿1 (0, 𝑇) for any fix 𝑗,𝑚. (120)

Moreover, in virtue of section 5 in [7] for a finite number of
modes, we set

Q
󰜚,𝑁

[󰜚Z] = −𝑖

√𝑝0

∑

𝑗,0<Λ
𝑗
≤𝑁

𝑚
𝑗

∑

𝑚=1

[󰜚Z]
𝑗,𝑚

W
𝑗,𝑚
. (121)

We first note

󵄩󵄩󵄩󵄩󵄩
Q
󰜚
[󰜚u
𝜖
] −Q
󰜚,𝑁
[󰜚u
𝜖
]
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

1/󰜚
(Ω;R3)

≤
1

𝑁

󵄩󵄩󵄩󵄩div𝑥 (󰜚u𝜖)
󵄩󵄩󵄩󵄩
2

𝐿
2

1/󰜚

(Ω) 󳨀→ 0,

(122)

as𝑁 → ∞ in 𝐿2(0, 𝑇; 𝐿2
1/󰜚
(Ω;R3)) where we here have used

the Parseval identity and (121) (see section 6.6 of [7]). Thus
it is sufficient to show (105) for Q

󰜚,𝑁
instead of Q

󰜚
. Observe

that, thanks to (114) and (121), it is easy to see

Ψ
𝜖
=

1

𝑝
0

𝑁

∑

𝑗=1

𝑚
𝑗

∑

𝑚=1

[V
𝜖
]
𝑗,𝑚

√Λ 𝑗

(
A
𝑗,𝑚

󰜚
) ,

−div
𝑥
(󰜚∇
𝑥
Ψ
𝜖
) =

1

𝑝
0

𝑁

∑

𝑗=1

𝑚
𝑗

∑

𝑚=1

√Λ 𝑗[V𝜖]𝑗,𝑚A𝑗,𝑚.

(123)

We are now ready to show (105) and so we now use (118)
and (123) to rewrite the oscillation partQ

󰜚
[󰜚
𝜖
u
𝜖
] as

lim
𝜖→0

∫

𝑇

0

∫
Ω

(Q
󰜚
[󰜚
𝜖
u
𝜖
] ⊗Q
󰜚
[󰜚
𝜖
u
𝜖
]) : ∇
𝑥
(
𝜑

󰜚
) d𝑥 d𝑡

= lim
𝜖→0

∫

𝑇

0

∫
Ω

(󰜚∇
𝑥
Ψ
𝜖
⊗ ∇
𝑥
Ψ
𝜖
) : ∇
𝑥
(
𝜑

󰜚
) d𝑥 d𝑡

= − lim
𝜖→0

∫

𝑇

0

∫
Ω

div
𝑥
(󰜚∇
𝑥
Ψ
𝜖
) ∇
𝑥
Ψ
𝜖
: ∇
𝑥
(
𝜑

󰜚
) d𝑥 d𝑡

= −
𝜖

𝑝2
0

lim
𝜖→0

∫

𝑇

0

∫
Ω

𝑁

∑

𝑗=1

𝑚
𝑗

∑

𝑚=1

√Λ 𝑗[𝑋𝜖]𝑗,𝑚

×
[A
𝑗,𝑚
]

󰜚
∇
𝑥
Ψ
𝜖
⋅ 𝜕
𝑡
𝜑 d𝑥 d𝑡

+
𝜖

𝑝2
0

lim
𝜖→0

∫

𝑇

0

∫
Ω

𝑁

∑

𝑗=1

𝑚
𝑗

∑

𝑚=1

√Λ 𝑗[𝑋𝜖]𝑗,𝑚

×
[A
𝑗,𝑚
]

󰜚
𝜕
𝑡
∇
𝑥
Ψ
𝜖
⋅ 𝜑 d𝑥 d𝑡

(124)

which converges to 0 as 𝜖 tends to 0 where we can see this
proof in section 6.6 of Feireisl and Novotný [7].
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