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We introduce a continuummodelingmethod to approximate a class of largewireless networks by nonlinear partial differential equa-
tions (PDEs).Thismethod is based on the convergence of a sequence of underlyingMarkov chains of the network indexed by𝑁, the
number of nodes in the network. As𝑁 goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain
nonlinear PDE.We first describe PDEmodels for networks with uniformly located nodes and then generalize to networks with non-
uniformly located, and possiblymobile, nodes. Based on the PDEmodels, we develop amethod to control the transmissions in non-
uniformnetworks so that the continuum limit is invariant under perturbations in node locations.This enables the networks tomain-
tain stable global characteristics in the presence of varying node locations.

1. Introduction

This paper is concerned with modeling and control of large
stochastic networks via nonlinear partial differential equa-
tions (PDEs). Recently, we introduced a continuummodeling
method for large wireless networksmodeled by a certain class
of Markov chains.We start with a family of networks indexed
by 𝑁, the number of nodes, and a related sequence of
Markov chains. Under appropriate conditions, the sequence
ofMarkov chains converges in a certain sense to a continuum
limit, which is the solution of a nonlinear PDE, as𝑁 goes to
infinity. Therefore we can use the limiting PDE to approxi-
mate the large network [1–5]. This result assumed uniform
networks, that is, networks with immobile and uniformly
located nodes. Moreover, the model assumes that the nodes
have a fixed transmission range in the sense that they com-
municate (exchange data and interfere) only with their im-
mediate neighbors.

The work in this paper builds on the above method. We
consider nonuniform networks, that is, networks with non-
uniformly located and possibly mobile nodes. We also con-
sider nodes with more general transmission ranges; that is,

they may communicate with neighbors further away than
immediate ones. For such networks, a natural problemwould
be to find their continuum limits (the limiting PDEs). A less
obvious butmore interesting problem concerns the control of
nonuniform networks. For example, suppose that a uniform
network with certain transmissions achieves a steady state
that is desirable in terms of global traffic distribution (e.g.,
load is well balanced over the network). Further suppose that
we want the network to maintain such global characteristics
if the nodes are no longer at their original uniform locations.
Then the problem is to control the transmissions in the net-
work such that its continuum limit remains invariant.

We address these problems as follows. First, we present a
more general network model than that in the existing results
[1, 2] and derive its limiting PDEs in the setting of uniform
node locations. This generalization is necessary for the dis-
cussion of the control of nonuniform networks later. Second,
through transformation between uniform and nonuniform
node locations, we derive limiting PDEs for nonuniform
networks. Finally, by comparing the limiting PDEs of corre-
sponding uniform and nonuniform networks, we develop a
method to control the transmissions of nonuniformnetworks
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so that the continuum limit is invariant under node locations.
In other words, we can maintain a stable global characteristic
for nonuniform networks.

The remainder of the paper is organized as follows. First,
to describe and contextualize our contribution in this paper,
we provide in Section 2 the existing results on continuum
modeling of uniform networks. Next, we present the main
results of the paper in Section 3; in Section 3.1, we introduce
a more general network model and derive its limiting PDEs;
in Section 3.2, we derive limiting PDEs for nonuniform and
possibly mobile networks; and in Section 3.3, we present
a control method for nonuniform networks so that the
continuum limit is invariant under node locations. Then we
present some numerical examples in Section 4 and conclude
the paper in Section 5.

2. Existing Results on Continuum Modeling of
Stochastic Networks

This section is devoted to reviewing our continuummodeling
method [1, 2] for stochastic networks whose nodes are uni-
formly located and have a fixed transmission range.The study
of nonuniform networks in this paper builds on this result.
We first describe the network model and then present the
result on the convergence of its underlying Markov chain to
its continuum limit, which is the solution of a limiting PDE.
We discuss some related literature on stochastic network
modeling at the end of this section.

We will generalize this modeling method to uniform net-
works with more general transmission ranges in Section 3.1
and to nonuniform networks in Section 3.2.

2.1. Network Model. Consider a compact, convex Euclidean
domain D ⊂ R𝐽 representing a spatial region, with dimen-
sion 𝐽. In practice, 𝐽 is typically either 1 or 2. However, our
analysis in this paper applies to general 𝐽, though our exam-
ples are for 𝐽 = 1, 2. Next, consider 𝑁 points 𝑉𝑁 = {V𝑁(1),
. . . , V𝑁(𝑁)} inD that form a uniform grid. We refer to these
points as grid points and denote the distance between any two
neighboring grid points by 𝑑𝑠𝑁.

Now consider a network of𝑁 wireless sensor nodes over
D, where the nodes are labeled by 𝑛 = 1, . . . , 𝑁. By a uniform
network we mean that node 𝑛 is located at the grid point
V𝑁(𝑛) ∈ 𝑉𝑁, where 𝑛 = 1, . . . , 𝑁. We focus on uniform net-
works in this section.

The sensor nodes generate, according to a probability dis-
tribution, datamessages that need to be communicated to the
destination nodes located on the boundary ofD, which repre-
sent specialized devices that collect the sensor data. The sen-
sor nodes also serve as relays for routing messages to the des-
tination nodes. Each sensor node has the capacity to store
messages in a queue and is capable of either transmitting or
receiving messages to or from its immediate neighbors. In
other words, it has a fixed 1-step transmission range. (We will
generalize to further steps of transmission range later in
Section 3.1.) At each time instant 𝑘 = 0, 1, . . ., each sensor
node probabilistically decides to be a transmitter or receiver,
but not both. This simplified rule of transmission allows for

a relatively simple representation. We illustrate such a uni-
form network over a two-dimensional (2D) domain in
Figure 1(a).

In this network, communication between nodes is inter-
ference limited because all nodes share the same wireless
channel. We assume a simple collision protocol: a transmis-
sion from a transmitter to an immediate neighboring receiver
is successful if and only if none of the other immediate
neighbors of the receiver is a transmitter, as illustrated in
Figure 1(b). This is the case presented in [1]. (Later, in
Section 3.1, when we consider further transmission ranges,
interference will occur between not only immediate neigh-
bors, but also neighbors further apart.) In a successful trans-
mission, one message is transmitted from the transmitter to
the receiver.

We assume that the probability that a node decides to be
a transmitter is a function of its normalized queue length
(normalized by an “averaging” parameter 𝑀). That is, at
time 𝑘, node 𝑛 decides to be a transmitter with probability
𝑊(𝑛,𝑋𝑁,𝑀(𝑘, 𝑛)/𝑀), where 𝑋𝑁,𝑀(𝑘, 𝑛) is the queue length
of node 𝑛 at time 𝑘, and𝑊 is a given function.

The queue lengths 𝑋𝑁,𝑀(𝑘) = [𝑋𝑁,𝑀(𝑘, 1), . . .,𝑋𝑁,𝑀(𝑘,
𝑁)]
⊤
∈ R𝑁 (the superscript ⊤ represents transpose) form a

Markov chain whose evolution is given by

𝑋𝑁,𝑀 (𝑘 + 1) = 𝑋𝑁,𝑀 (𝑘) + 𝐹𝑁 (
𝑋𝑁,𝑀 (𝑘)

𝑀,𝑈𝑁 (𝑘)
) . (1)

Here, the 𝑈𝑁(𝑘) are i.i.d. random vectors that do not
depend on the state𝑋𝑁,𝑀(𝑘), and 𝐹𝑁 is a given function. As a
concrete example, below we present the expression of (1) for
a particular network.

For the sake of explanation, we simplify the problem fur-
ther and consider a 1Ddomain (2Dnetworkswill be treated in
the next section). Here,𝑁 sensor nodes are uniformly located
in an interval D ⊂ R and labeled by 𝑛 = 1, . . . , 𝑁. The des-
tination nodes are located on the boundary of D, labeled by
𝑛 = 0 and 𝑛 = 𝑁 + 1.

We assume that if node 𝑛 is a transmitter at a certain time
instant, it randomly chooses to transmit one message to the
right or the left immediate neighbor with probability 𝑃𝑟(𝑛)
and 𝑃𝑙(𝑛), respectively, where 𝑃𝑟(𝑛) + 𝑃𝑙(𝑛) ≤ 1. In contrast to
strict equality, the inequality here allows for a more general
stochastic model of transmission: after a sensor node ran-
domly decides to transmit over the wireless channel, there
is still a positive probability that the message is not trans-
ferred to its intended receiver (what might be called an
“outage”).

The special destination nodes at the boundaries of the
domain do not have queues; they simply receive any message
transmitted to them and never themselves transmit anything.
We illustrate the time evolution of the queues in the network
in Figure 1(c).

For the particular network introduced above, we have the
following expression for 𝑈𝑁(𝑘) in (1)

𝑈𝑁 (𝑘) = [(𝑘, 1) , . . . , 𝑄 (𝑘,𝑁) , 𝑇 (𝑘, 1) , . . . , 𝑇 (𝑘,𝑁) ,

𝐺 (𝑘, 1) , . . . , 𝐺 (𝑘,𝑁)]
⊤
,

(2)
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Figure 1: (a) An illustration of a uniform wireless sensor network over a 2D domain. Destination nodes are located at the far edge. We show
the possible path of a message originating from a node located in the left-front region. (b) An illustration of the collision protocol: reception
at a node fails when one of its other neighbors transmits (regardless of the intended receiver). (c) An illustration of the time evolution of the
queues in the 1D network model.

which is a random vector comprising independent random
variables: 𝑄(𝑘, 𝑛) are uniform random variables on [0, 1]

used to determine if the node is a transmitter or not; 𝑇(𝑘, 𝑛)
are ternary random variables used to determine the direction
in which a message is passed, which take values 𝑅, 𝐿, and 𝑆
(representing transmitting to the right, the left, and neither,
resp.) with probabilities 𝑃𝑟(𝑛), 𝑃𝑙(𝑛), and 1 − (𝑃𝑟(𝑛) + 𝑃𝑙(𝑛)),
respectively; and 𝐺(𝑘, 𝑛) are the number of messages gener-
ated at node 𝑛 at time 𝑘. We model 𝐺(𝑘, 𝑛) by independent
Poisson random variables with mean 𝑔(𝑛) and call 𝑔(𝑛) the
incoming traffic to the network.

For a generic𝑥 = [𝑥1, . . . , 𝑥𝑁]
⊤
∈ R𝑁, the 𝑛th component

of 𝐹𝑁(𝑥, 𝑈𝑁(𝑘)), where 𝑛 = 1, . . . , 𝑁, is

1 + 𝐺 (𝑘, 𝑛)

if 𝑄 (𝑘, 𝑥𝑛−1) < 𝑊(𝑛 − 1, 𝑥𝑛−1) , 𝑇 (𝑘, 𝑛 − 1) = 𝑅,

𝑄 (𝑘, 𝑥𝑛) > 𝑊(𝑛, 𝑥𝑛) , 𝑄 (𝑘, 𝑥𝑛+1) > 𝑊(𝑛 + 1, 𝑥𝑛+1) ;

or 𝑄 (𝑘, 𝑥𝑛+1) < 𝑊(𝑛 + 1, 𝑥𝑛+1) , 𝑇 (𝑘, 𝑛 + 1) = 𝐿,

𝑄 (𝑘, 𝑥𝑛) > 𝑊(𝑛, 𝑥𝑛) , 𝑄 (𝑘, 𝑥𝑛−1) > 𝑊(𝑛 − 1, 𝑥𝑛−1)

− 1 + 𝐺 (𝑘, 𝑛)

if 𝑄 (𝑘, 𝑥𝑛) < 𝑊(𝑛, 𝑥𝑛) , 𝑇 (𝑘, 𝑛) = 𝐿,

𝑄 (𝑘, 𝑥𝑛−1) > 𝑊(𝑛 − 1, 𝑥𝑛−1) ,

𝑄 (𝑘, 𝑥𝑛−2) > 𝑊(𝑛 − 2, 𝑥𝑛−2) ;

or 𝑄 (𝑘, 𝑥𝑛) < 𝑊(𝑛, 𝑥𝑛) , 𝑇 (𝑘, 𝑛) = 𝑅,

𝑄 (𝑘, 𝑥𝑛+1) > 𝑊(𝑛 + 1, 𝑥𝑛+1) ,

𝑄 (𝑘, 𝑥𝑛+2) > 𝑊(𝑛 + 2, 𝑥𝑛+2)

𝐺 (𝑘, 𝑛) otherwise,
(3)

where 𝑥𝑛 with 𝑛 ≤ 0 or 𝑛 ≥ 𝑁 + 1 are defined to be zero, and
𝑊 is the function that specifies the probability that a node
decides to be a transmitter, as defined earlier. Here, the three
possible values of 𝐹𝑁 correspond to the three events that, at

time 𝑘, node 𝑛 successfully receives onemessage, successfully
transmits one message, and does neither of the above, res-
pectively.The inequalities and equations on the right describe
conditions under which these three events occur: for exam-
ple, 𝑄(𝑘, 𝑥𝑛−1) < 𝑊(𝑛 − 1, 𝑥𝑛−1) corresponds to the choice of
node 𝑛 − 1 to be a transmitter at time 𝑘, 𝑇(𝑘, 𝑛 − 1) = 𝑅 cor-
responds to its choice to transmit to the right, and so on.

We assume that 𝑊(𝑛, 𝑦) = min(1, 𝑦). (We will use this
assumption throughout the paper.) Under this assumption,
the probability that a node is a transmitter increases linearly
with its queue length, up to a maximum value of 1 when the
normalized queue length exceeds 1. In general, we would
naturally adopt a𝑊 function that is increasing in the queue
length, so that nodes with more data are more likely to trans-
mit. Here, we assume this function to be linear purely for the
sake of simplicity. We could have used a more complicated
increasing function. However, doing so complicates the deri-
vation of the resulting PDE and does not serve any insightful
purpose.

2.2. Continuum Limit of the Markov Chain. Next, we present
inTheorem 2 a result on the convergence of theMarkov chain
(1) to its continuum limit, which is the solution of a PDE.
Based on this theorem, we can approximate the network
introduced above by the limiting PDE. We stress that this
theorem is not limited to the particular networkmodel above
but holds for uniform networks in a more general setting,
which we will introduce later in Section 3.1.

The Markov chain model (1) is related to a deterministic
difference equation. We set

𝑓𝑁 (𝑥) = 𝐸𝐹𝑁 (𝑥, 𝑈𝑁 (𝑘)) , 𝑥 ∈ R
𝑁
, (4)

and define𝑥𝑁,𝑀(𝑘) = [𝑥𝑁,𝑀(𝑘, 1), . . . , 𝑥𝑁,𝑀(𝑘,𝑁)]
⊤
∈ R𝑁 by

𝑥𝑁,𝑀 (𝑘 + 1) = 𝑥𝑁,𝑀 (𝑘) +
1

𝑀
𝑓𝑁 (𝑥𝑁,𝑀 (𝑘)) ,

𝑥𝑁,𝑀 (0) =
𝑋𝑁,𝑀 (0)

𝑀
a.s.

(5)

(“a.s.” is short for “almost surely”).
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Example 1. For the 1D 1-step network model in Section 2.1,
it follows from (3) (with the particular choice of 𝑊(𝑛, 𝑦) =

min(1, 𝑦)) that, for 𝑥 = [𝑥1, . . . , 𝑥𝑁]
⊤

∈ [0, 1]
𝑁, the 𝑛th

component of 𝑓𝑁(𝑥) in its corresponding deterministic dif-
ference equation (5), where 𝑛 = 1, . . . , 𝑁, is (after some tedi-
ous algebra, as described in [3])

(1 − 𝑥𝑛) [𝑃𝑟 (𝑛 − 1) 𝑥𝑛−1 (1 − 𝑥𝑛+1)

+𝑃𝑙 (𝑛 + 1) 𝑥𝑛+1 (1 − 𝑥𝑛−1)]

− 𝑥𝑛 [𝑃𝑟 (𝑛) (1 − 𝑥𝑛+1) (1 − 𝑥𝑛+2)

+𝑃𝑙 (𝑛) (1 − 𝑥𝑛−1) (1 − 𝑥𝑛−2)] + 𝑔 (𝑛) ,

(6)

where 𝑥𝑛 with 𝑛 ≤ 0 or 𝑛 ≥ 𝑁 + 1 are defined to be zero.

We now construct the PDE whose solution describes the
limiting behavior of the Markov chain.

For any continuous function 𝑤 : D → R, let 𝑦𝑁 be the
vector in R𝑁 composed of the values of 𝑤 at the grid points
V𝑁(𝑛); that is, 𝑦𝑁 = [𝑤(V𝑁(1)), . . . , 𝑤(V𝑁(𝑁))]

⊤. Given a
point 𝑠 ∈ D, we let {𝑠𝑁} ⊂ D be any sequence of grid points
𝑠𝑁 ∈ 𝑉𝑁 such that as 𝑁 → ∞, 𝑠𝑁 → 𝑠. Let 𝑓𝑁(𝑦𝑁, 𝑠𝑁) be
the component of the vector 𝑓𝑁(𝑦𝑁) corresponding to the
location 𝑠𝑁; that is, if 𝑠𝑁 = V𝑁(𝑛) ∈ 𝑉𝑁, then 𝑓𝑁(𝑦𝑁, 𝑠𝑁) is
the 𝑛th component of 𝑓𝑁(𝑦𝑁).

Assume that there exists a function 𝑓 such that as 𝑁 →

∞, given 𝑠 in the interior ofD, for any sequence of grid points
𝑠𝑁 → 𝑠,

𝑓𝑁 (𝑦𝑁, 𝑠𝑁)

𝑑𝑠
2
𝑁

󳨀→ 𝑓(𝑠𝑁, 𝑤 (𝑠𝑁) , ∇𝑤 (𝑠𝑁) , ∇
2
𝑤 (𝑠𝑁)) .

(7)

Here, ∇𝑖𝑤 represents all the 𝑖th order derivatives of 𝑤, where
𝑖 = 1, 2. These assumptions are technical conditions on the
asymptotic behavior of the sequence of functions {𝑓𝑁} that
insure that 𝑓𝑁(𝑦𝑁, 𝑠𝑁) is asymptotically close to an expres-
sion that looks like the right-hand side of a time-dependent
PDE. Such conditions are familiar in the context of PDE
limits of Brownian motion. Checking these conditions often
amounts to a simple algebraic exercise.

Assume that there exists a unique function 𝑧 : [0, 𝑇] ×

D → R that solves the limiting PDE

�̇� (𝑡, 𝑠) = 𝑓 (𝑠, 𝑧 (𝑡, 𝑠) , ∇𝑧 (𝑡, 𝑠) , ∇
2
𝑧 (𝑡, 𝑠)) , (8)

with boundary condition 𝑧(𝑡, 𝑠) = 0 and initial condition
𝑧(0, 𝑠) = 𝑧0(𝑠).Throughout the paperwe assume that𝑋𝑁,𝑀(0,
𝑛)/𝑀 = 𝑧0(V𝑁(𝑛)) a.s. for each 𝑛. We call 𝑋𝑁,𝑀(0) the initial
state of the network.

Establishing existence and uniqueness for the resulting
nonlinear models is a difficult problem in theoretical analysis
of partial differential equations in general.The techniques are
heavily dependent on the particular formof𝑓.Therefore, as is
common with numerical analysis, we assume that this has
been established. Below, limiting PDE of the network is
a nonlinear diffusion-convection problem. Existence and
uniqueness for such problems for “small” data and short times

can be established under general conditions. Key ingredients
are coercivity, which will hold as long as 𝑧 is bounded away
from 1, and diffusion dominance, which will also hold as long
as 𝑧 is bounded above.

We now present a convergence theorem from [1], which
states that theMarkov chain𝑋𝑁,𝑀(𝑘) converges uniformly to
the solution 𝑧 of its limiting PDE, as𝑁 → ∞ and𝑀 → ∞

in a dependent way. By this we mean that we set 𝑀 to be a
function of𝑁, written𝑀𝑁, such that𝑀𝑁 → ∞ as𝑁 → ∞.
Then we can treat 𝑋𝑁,𝑀 as sequences of the single index 𝑁,
written 𝑋𝑁. We apply such changes of notation throughout
the rest of the paper whenever 𝑀 is treated as a function of
𝑁. Define the time step

𝑑𝑡𝑁 =
𝑑𝑠
2

𝑁

𝑀𝑁

(9)

and the total number of time steps𝐾𝑁 = ⌊𝑇/𝑑𝑡𝑁⌋.

Theorem 2. Almost surely, there exist a sequence {𝛾𝑁}, 𝑐0 <
∞, 𝑁0, and �̂�1 < �̂�2 < �̂�3, . . ., such that as 𝑁 → ∞,
𝛾𝑁 → 0, and for each𝑁 ≥ 𝑁0 and each𝑀𝑁 ≥ �̂�𝑁,

max
𝑘=0,...,𝐾𝑁
𝑛=1,...,𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋𝑁 (𝑘, 𝑛)

𝑀𝑁

− 𝑧 (𝑘𝑑𝑡𝑁, V𝑁 (𝑛))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝑐0𝛾𝑁. (10)

Hence we can approximate the Markov chain by its con-
tinuum limit, the limiting PDE solution, and the accuracy of
the approximation increases with𝑁.

Example 3. As a concrete example, we now construct the lim-
iting PDE for the 1D 1-step network model in Section 2.1. To
satisfy the conditions on 𝑓𝑁 introduced above, we make fur-
ther assumptions to the networkmodel.We assume that there
are functions 𝑝𝑟 and 𝑝𝑙 fromD to R such that

𝑃𝑟 (𝑛) = 𝑝𝑟 (V𝑁 (𝑛)) , 𝑃𝑙 (𝑛) = 𝑝𝑙 (V𝑁 (𝑛)) ; (11)

and further that

𝑝𝑟 (𝑠) =
1

2
+ 𝑐𝑟 (𝑠) 𝑑𝑠𝑁, 𝑝𝑙 (𝑠) =

1

2
+ 𝑐𝑙 (𝑠) 𝑑𝑠𝑁, (12)

where 𝑐𝑟 and 𝑐𝑙 are functions fromD to R. Let 𝑐 = 𝑐𝑙 − 𝑐𝑟. We
call 𝑐 the convection.

In order to guarantee that the number of messages enter-
ing the system from outside over finite time intervals remains
finite throughout the limiting process, we set the incoming
traffic

𝑔 (𝑛) = 𝑀𝑔𝑝 (V𝑁 (𝑛)) 𝑑𝑡𝑁. (13)

We call 𝑔𝑝 the incoming traffic function. Assume that 𝑐𝑙, 𝑐𝑟,
and 𝑔𝑝 are inC1.

By these assumptions, it follows from (6) that the limiting
PDE (8) for the 1D 1-step network is as follows:

�̇� =
1

2

𝜕

𝜕𝑠
((1 − 𝑧) (1 + 3𝑧)

𝜕𝑧

𝜕𝑠
) +

𝜕

𝜕𝑠
(𝑐𝑧(1 − 𝑧)

2
) + 𝑔𝑝,

(14)

with boundary condition 𝑧 = 0. The detailed derivation for
this PDE was presented in [3].
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This is a nonlinear diffusion-convection PDE. Note that
the computations needed to obtain this require tedious but
elementary algebraic manipulations. For this purpose, we
found it helpful to use the symbolic tools in Matlab. A com-
parison of this PDE and the simulation of the corresponding
network is provide in Section 4.1.1.

2.3.The Related Literature. Themodeling and analysis of sto-
chastic networks is a large field of research and much of
the previous contributions share goals with our continuum
modeling method.

The analysis for establishing our continuum modeling
result used Kushner’s ordinary differential equation (ODE)
method [6], which is closely related to the line of research
called stochastic approximation. This line of research was
started by Robbins and Monro [7] and Kiefer and Wolfowitz
[8] in the early 1950s and widely used in many areas (see,
e.g., [9, 10], for surveys). These results do not study the
“large-system” limit in the same sense as our method, and
the limits of the system they study are ODEs instead of
PDEs. Markov chains modeling’s various systems have also
been shown by other endeavors to converge to ODEs [11, 12],
abstract Cauchy problems [13], or other stochastic processes
[6, 14].These results usemethods different fromKushner’s but
share with it the principle idea in weak convergence theory
[6, 14, 15].

There are a variety of other analysis methods for large
systems taking completely different approaches. For example,
the well-cited work of Gupta and Kumar [16], followed by
many others (e.g., [17, 18]), derives scaling laws of network
performance parameters (e.g., throughput); many efforts
based on mean field theory [19–22] or on the theory of large
deviations [23–25] study the limit of the so-called empirical
(or occupancy) measure or distribution. These approaches
differ fromourwork because they do not study the spatiotem-
poral characteristics of the system.

There do exist numerous continuum models in a wide
spectrum of areas that formulate spatiotemporal phenomena
(e.g., [26–29]), many of which use PDEs. All these works dif-
fer from our continuum limit method both by the properties
of the system being studied and the analytic approaches. In
addition, most of them study distributions of limiting pro-
cesses that are random, while our limiting functions them-
selves are deterministic.

There is a vast literature on the convergence of a large
variety of network models different from ours, to fluid and
diffusion limits [30–35]. Unlike our work, this field of re-
search focuses primarily on networks with a fixed number of
nodes.

There are well-established mathematical tools to solve
PDEs, which include analytical methods, such as the method
of characteristics, integral transforms [36], and asymptotic
methods [37], and numerical methods such as the finite
element method [38] and the finite difference method [39].
The continuum model allows us to use these tools to greatly
reduce computation time.The limiting PDEs for the networks
in this paper can be solved by computer software packages
in Matlab or Comsol that use numerical methods.

3. Main Results

3.1. ContinuumModels of Uniform Networks. We introduced
the wireless sensor network model in a simple setting in
Section 2.1. In this subsection, we consider uniform networks
in amore general setting where the network nodes havemore
general transmission ranges and derive their limiting PDEs.
Such generalization is necessary for the control of nonuni-
form networks to be possible (explained in Section 3.3.1). We
consider nonuniform networks in Section 3.2.

3.1.1. A More General Network Model. Recall that in
Section 2.1 we introduced 1-step networks where the sensor
nodes communicate (exchange data and interfere) with their
immediate neighbors. We now consider 𝐿-step networks
where the nodes communicate with their communicating
neighbors, which can be further away than the immediate
ones. To be specific, at each time instant, a transmitter tries
to transmit amessage to one of its communicating neighbors;
a receiver may receive a message from one of its communi-
cating neighbors. Interference also occurs among communi-
cating neighbors: a transmission from a transmitter to a
receiver (one of the communicating neighbors of the trans-
mitter) is successful if and only if none of the other communi-
cating neighbors of the receiver is a transmitter.

For an 𝐿-step network, we call the positive integer 𝐿 its
communication range and assume that it determines the com-
municating neighbors as follows.

In a 1D 𝐿-step network of 𝑁 nodes, communicating
neighbors of the node at 𝑠 ∈ 𝑉𝑁 ⊂ R are the nodes at 𝑠± 𝑙𝑑𝑠𝑁,
where 1 ≤ 𝑙 ≤ 𝐿.

In 2D networks, we consider two types of communicating
neighbors. In a 2-D 𝐿-step network of𝑁 nodes, for a node at
𝑠 = (𝑠1, 𝑠2) ∈ 𝑉𝑁 ⊂ R2, its communicating neighbors are the
nodes at

(𝑠1 ± 𝑙1𝑑𝑠𝑁, 𝑠2 ± 𝑙2𝑑𝑠𝑁) , (15)

where

(i) for Type I networks, 0 ≤ 𝑙1, 𝑙2 ≤ 𝐿, 𝑙1 + 𝑙2 > 0, and
𝑙1𝑙2 = 0;

(ii) for Type II networks, 0 ≤ 𝑙1, 𝑙2 ≤ 𝐿 and 𝑙1 + 𝑙2 > 0.

We illustrate the two types of definition of communicating
neighbors for 2-D 1-step networks in Figure 2.

We assume the use of directional antennas and power
control to accommodate such routing schemes. Here we con-
sider two types of communicating neighbors because they
may correspond to two types of routing schemes, and one
may be a better model than the other for networks with dif-
ferent design choices. For example, a Type-II network may
offer higher rate in propagating information to the destina-
tion nodes at the boundaries but at the same timemay require
more complex directional antennas and power control to
implement.

Next we derive the limiting PDEs for this more general
network model.
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𝑃2𝑃1
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𝑃4

Type-I

(a)

Type-II

𝑃2𝑃1
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𝑃5

𝑃6

𝑃7

𝑃8

(b)

Figure 2: The two types of communicating neighbors of 2D 1-step networks. The nodes pointed by the arrows are the communicating
neighbors of the node in the center. The labels on the arrows are probabilities of transmitting to the pointed communicating neighbors.

3.1.2. Limiting PDEs for Uniform Networks. The network
model above can again be written as (1), for whichTheorem 2
still holds.

We assume that if, at time 𝑘, node 𝑛 is a transmitter, it ran-
domly chooses to transmit a message to its 𝑖th communicat-
ing neighbor with probability 𝑃𝑖(𝑘, 𝑛), where the possible val-
ues of 𝑖 depend on the number of its communicating neigh-
bors. Note that here 𝑃𝑖 depends on 𝑘, that is, is time variant,
which generalizes the case in Section 2.1. Correspondingly,
we now assume that

𝑃𝑖 (𝑘, 𝑛) = 𝑝𝑖 (𝑘𝑑𝑡𝑁, V𝑁 (𝑛)) ; (16)

that

𝑝𝑖 (𝑡, 𝑠) = 𝑏𝑖 (𝑡, 𝑠) + 𝑐𝑖 (𝑡, 𝑠) 𝑑𝑠𝑁, (17)

where 𝑏𝑖 and 𝑐𝑖 are C
1 functions from [0, 𝑇] × D to R. We

call 𝑝𝑖 the direction function. We have assumed above that the
probabilities 𝑃𝑖 of the direction of transmission are the values
of the continuous functions 𝑝𝑖 at the grid points, respectively.
This may correspond to stochastic routing schemes where
nodes in close vicinity behave similarly based on some local
information that they share or to those with an underlying
network-wide directional configuration that are continuous
in space, designed to relay messages to destination nodes at
known locations.

For a 𝐽D 𝐿-step network, let 𝜆(𝐽, 𝐿) be the number of the
communicating neighbors of its nodes that are away from the
boundaries. We have that

𝜆(𝐽,𝐿) := {
2𝐿𝐽, for Type-I networks;
(1 + 2𝐿)

𝐽
− 1, for Type-II networks.

(18)

We assume that the communicating neighbors of each
node are indexed according only to their relative locations
with respect to the node. For example, if we call the left im-
mediate neighbor of any node its 1st neighbor, then the left
immediate neighbor of all nodes must be their 1st neighbor,

respectively. That is, for a node at V𝑁(𝑛), if we denote by
V𝑁(𝑛, 𝑖) the location of its 𝑖th communicating neighbor, then
V𝑁(𝑛) − V𝑁(𝑛, 𝑖) depends on 𝑖, but not on 𝑛.

We present below the limiting PDE in the sense of
Theorem 2 for an arbitrary 𝐽-D 𝐿-step network with both
Type-I and II communicating neighbors. The PDE is derived
in a way similar to that of (14) for the 1-D 1-step network
in Section 2, which involves writing down the expression of
the corresponding Markov chain (1) and then the difference
equation (5), except that we now have to consider transmis-
sion to and interference frommore neighbors instead of only
the two immediate ones, requiring more arduous, but still
elementary, algebraic manipulation. We omit the algebraic
details here.

Let {𝑒1, . . . , 𝑒𝐽} be the standard basis ofR
𝐽; that is, 𝑒𝑗 is the

element of R𝐽 with the 𝑗th entry being 1 and other entries 0.
Define

𝑏
(𝑗)
=

𝜆(𝐽,𝐿)

∑

𝑖

((V𝑁 (𝑛, 𝑖) − V𝑁 (𝑛))
⊤
𝑒𝑗)
2

𝑏𝑖

2
,

𝑐
(𝑗)
=

𝜆(𝐽,𝐿)

∑

𝑖

(V𝑁 (𝑛, 𝑖) − V𝑁 (𝑛))
⊤
𝑒𝑗𝑐𝑖.

(19)

Then the limiting PDE for a 𝐽-D 𝐿-step network is

�̇� =

𝐽

∑

𝑗=1

(𝑏
(𝑗) 𝜕

𝜕𝑠𝑗

((1 + (𝜆(𝐽,𝐿) + 1) 𝑧) (1 − 𝑧)
(𝜆(𝐽,𝐿)−1)

𝜕𝑧

𝜕𝑠𝑗

)

+ 2(1 − 𝑧)
(𝜆(𝐽,𝐿)−1)

𝜕𝑧

𝜕𝑠𝑗

𝜕𝑏
(𝑗)

𝜕𝑠𝑗

+ 𝑧(1 − 𝑧)
𝜆(𝐽,𝐿)

𝜕
2
𝑏
(𝑗)

𝜕𝑠
2
𝑗

+
𝜕

𝜕𝑠𝑗

(𝑐
(𝑗)
𝑧(1 − 𝑧)

𝜆(𝐽,𝐿))) + 𝑔𝑝,

(20)

with boundary condition 𝑧(𝑡, 𝑠) = 0. This general PDE works
for both Type-I and II communicating neighbors, provided
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that 𝜆(𝐽,𝐿) is calculated with (18) accordingly. We will present
some concrete examples of the PDEs and the corresponding
network models in Section 4.1.

3.2. ContinuumModels of NonuniformNetworks. In this sub-
section we extend the continuummodels to nonuniform and
mobile networks. First we introduce the transformation func-
tion, which is the mapping between the node locations of
uniform and nonuniform networks.Then, through the trans-
formation function, we derive the continuum limits of non-
uniform and mobile networks with given trajectories and
transmissions. We consider the domain D ⊂ R𝐽 and a fixed
time interval [0, 𝑇].

3.2.1. Location Transformation Function. For networks with
the design of uniform node placement, there may be small
perturbations to the uniformgrid because of imperfect imple-
mentation or landscape limitation; some sensor networks
may have nodes with moderate mobility. The study of non-
uniformnetworks here ismotivated by the need formodeling
these networks. Againwe assume the use of directional anten-
nas and power control to preserve the neighborhood struc-
ture in the nonuniform or mobile networks.

Consider a nonuniform and possibly mobile network
with𝑁 nodes indexed by 𝑛 = 1, . . . , 𝑁 overD. The nodes no
longer are located at the grid points 𝑉𝑁 and possibly change
their locations at each time step 𝑘.

We denote by Ṽ𝑁(𝑘, 𝑛) the location of node 𝑛 of the
nonuniform network at time 𝑘. Let Ṽ𝑁(𝑘) = [Ṽ𝑁(𝑘, 1), . . . ,

Ṽ𝑁(𝑘,𝑁)] and �̃�𝑁 = [Ṽ𝑁(0), . . . , Ṽ𝑁(𝐾𝑁)]. Assume that there
exists a smooth transformation function 𝜙(𝑡, 𝑠) : [0, 𝑇]×D →

D such that, for each 𝑘 and 𝑛,

Ṽ𝑁 (𝑘, 𝑛) = 𝜙 (𝑘𝑑𝑡𝑁, V𝑁 (𝑛)) , (21)

and, for each 𝑡𝑜, 𝜙(𝑡𝑜, ⋅) is bijective. Hence 𝜙 is the mapping
between the nonuniform node locations and uniform grid
points.

Note that, for mobile networks, by assuming that 𝜙(𝑡𝑜, ⋅)
is bijective for each 𝑡𝑜, we focus on a subset of all possible
nodemovements, which simplifies the problem.This restricts
the mobility of nodes but is still a reasonable model in many
practical scenarios, for example, in sensor networks where
each node collects environmental data from its designated
area andmoves in a small neighborhood of, instead of arbitra-
rily far away from, their original locations.

Since 𝜙(𝑡𝑜, ⋅) is bijective, its inverse with respect to 𝑠 exists
and we denote it by 𝜂 : [0, 𝑇] ×D → D; that is, for each 𝑡
and 𝑠,

𝜂 (𝑡, 𝜙 (𝑡, 𝑠)) = 𝑠. (22)

Throughout the paper we assume fixed nodes on the bound-
ary; that is, 𝜙(𝑡, 𝑠) = 𝑠 for 𝑠 on the boundary ofD.

For given 𝑁 and �̃�𝑁, a transformation function 𝜙 can be
constructed using some interpolation scheme. Note that 𝜙 is
not unique because of the freedom we have in choosing dif-
ferent schemes. Let 𝜙𝑗 and 𝜂𝑗 be the 𝑗th components of 𝜙 and
𝜂, respectively, where 𝑗 = 1, . . . , 𝐽. For the rest of the paper,

we assume that for 𝑖 ̸= 𝑗,
𝜕𝜙𝑗

𝜕𝑠𝑖

= 0. (23)

Then equivalently, for 𝑖 ̸= 𝑗, (𝜕𝜂𝑗/𝜕𝑠𝑖) = 0. This assumption
can be achieved by choosing a proper interpolation scheme,
and it simplifies the analysis below.

On the other hand, a given 𝜙, by (21), specifies a sequence
{�̃�𝑁} of nonuniform node locations indexed by𝑁. We study
the continuum limit of a sequence of nonuniform networks
associated with such {�̃�𝑁}; that is, for each 𝑁, the 𝑁-node
nonuniform network has node locations �̃�𝑁.

3.2.2. Continuum Limits of Mirroring Networks. For an 𝑁-
node network (uniform or nonuniform), we define its trans-
mission-interference rule to be

(i) the probability that node 𝑚 sends a message to node
𝑛 at time 𝑘;

(ii) the fact of whether nodes𝑚 and 𝑛 interfere at time 𝑘,
for 𝑚, 𝑛 = 1, . . . , 𝑁 and 𝑘 = 0, 1, . . . , 𝐾𝑁. The trans-
mission-interference rule specifies how the nodes in a net-
work interact with each other at each time step. At each time
step, each node chooses to be a transmitter with a certain
probability; if it chooses to be a transmitter, it then chooses
one of its communicating neighbors to send amessage to.The
first component of this definition is determined by the proba-
bilities of the above choices of all the nodes at all the time
steps.The second component of this definition is determined
by the neighborhood structure of the network at each time
step; that is, which nodes are the communicating neighbors
of each node (so that they interfere with it) at each time step.

For each 𝑁, write 𝑋𝑁 = [𝑋𝑁(0), . . . , 𝑋𝑁(𝐾𝑁)]. Then we
can describe a network during [0, 𝑇] entirely by its states𝑋𝑁.
Define the network behavior of a network𝑋𝑁 to be the com-
bination of its initial state 𝑋𝑁(0), transmission-interference
rule, and incoming traffic 𝑔(𝑛). Two sequences {𝑋𝑁} and
{𝑋𝑁} of networks indexed by the number 𝑁 of nodes, with
different node locations in general, are said to mirror each
other if, for each 𝑁, 𝑋𝑁 and 𝑋𝑁 have the same network
behavior. We state in the following theorem the relationship
between the continuum limits of mirroring networks.

Theorem 4. Suppose that a sequence {𝑋𝑁} of networks has
node locations specified by a given transformation function 𝜙
with inverse 𝜂. If {𝑋𝑁}mirrors a sequence {𝑋𝑁} of uniformnet-
works, then {𝑋𝑁} converges to a function 𝑞(𝑡, 𝑠) on [0, 𝑇] ×D

in the sense of Theorem 2 if and only if {𝑋𝑁} converges to

𝑢 (𝑡, 𝑠) := 𝑞 (𝑡, 𝜂 (𝑡, 𝑠)) , (24)

in the sense that almost surely there exist a sequence {𝛾𝑁}, 𝑐0 <
∞, 𝑁0, and �̂�1 < �̂�2 < �̂�3, . . ., such that as 𝑁 → ∞,
𝛾𝑁 → 0, and for each𝑁 ≥ 𝑁0 and each𝑀𝑁 ≥ �̂�𝑁,

max
𝑘=0,...,𝐾𝑁
𝑛=1,...,𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋𝑁 (𝑘, 𝑛)

𝑀𝑁

− 𝑢 (𝑘𝑑𝑡𝑁, Ṽ𝑁 (𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝑐0𝛾𝑁, (25)

where Ṽ𝑁(𝑘, 𝑛) is the location of node 𝑛 at time 𝑘 in𝑋𝑁.
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Proof. “⇒”: Since {𝑋𝑁} and {𝑋𝑁} mirror each other, they
would converge to the same continuum limit on a uniform
grid.Therefore, byTheorem 2, almost surely, there exist a seq-
uence {𝛾𝑁}, 𝑐0 < ∞, 𝑁0, and �̂�1 < �̂�2 < �̂�3, . . ., such that
as 𝑁 → ∞, 𝛾𝑁 → 0, and for each 𝑁 ≥ 𝑁0 and each
𝑀𝑁 ≥ �̂�𝑁,

max
𝑘=0,...,𝐾𝑁
𝑛=1,...,𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋𝑁 (𝑘, 𝑛)

𝑀𝑁

− 𝑞 (𝑘𝑑𝑡𝑁, V𝑁 (𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝑐0𝛾𝑁. (26)

We note that

𝑞 (𝑘𝑑𝑡𝑁, V𝑁 (𝑛)) = 𝑢 (𝑘𝑑𝑡𝑁, 𝜙 (𝑘𝑑𝑡𝑁, V𝑁 (𝑛)))

= 𝑢 (𝑘𝑑𝑡𝑁, Ṽ𝑁 (𝑘, 𝑛)) ,
(27)

where the first equality follows from (22) and (24), and the
second from (21). Then (26) is equivalent to (25).

“⇐”: Done analogously in the opposite direction.

3.2.3. Sensitivity of Uniform Continuum Models to Location
Perturbation. In networks with nodes not necessarily at, but
close to, the uniform grid points, we can use uniform contin-
uum models to approximate nonuniform networks, that is,
treat them as uniform while deriving limiting PDEs. Then
a certain approximation error arises from ignoring nonuni-
formity. If we treat such nonuniformities as perturbations to
the uniformmodels, the above theorem enables us to analyze
the error sensitivity of these models with respect to such per-
turbation.

Consider a sequence {𝑋𝑁} of nonuniform networks with
node locations specified by the transformation function 𝜙

with inverse 𝜂. Suppose that we ignore the nonuniformity and
approximate {𝑋𝑁} by the continuum limit 𝑞 of the sequence
{𝑋𝑁} of uniform networks that mirrors {𝑋𝑁}. We now chara-
cterize the maximum approximation error

𝜀𝑁 := max
𝑘=0,...,𝐾𝑁
𝑛=1,...,𝑁

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋𝑁 (𝑘, 𝑛)

𝑀𝑁

− 𝑞 (𝑘𝑑𝑡𝑁, Ṽ𝑁 (𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(28)

by 𝜙 in the following proposition.

Proposition 5. Almost surely, there exist a sequence {𝛾𝑁}, 𝑐0,
𝑐1 < ∞,𝑁0, and �̂�1 < �̂�2 < �̂�3, . . ., such that as𝑁 → ∞,
𝛾𝑁 → 0, and for each𝑁 ≥ 𝑁0 and each𝑀𝑁 ≥ �̂�𝑁,

𝜀𝑁 ≤ 𝑐0𝛾𝑁 + sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝑞𝑠 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝜂 (𝑡, 𝑠) − 𝑠
󵄨󵄨󵄨󵄨

+ 𝑐1sup
(𝑡,𝑠)

(𝜂 (𝑡, 𝑠) − 𝑠)
2
.

(29)

Proof. We have, from the triangle inequality, that

𝜀𝑁 ≤ max
𝑘,𝑛

(

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋𝑁 (𝑘, 𝑛)

𝑀𝑁

− 𝑢 (𝑘𝑑𝑡𝑁, Ṽ𝑁 (𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑘𝑑𝑡𝑁, Ṽ𝑁 (𝑘, 𝑛)) − 𝑞 (𝑘𝑑𝑡𝑁, Ṽ𝑁 (𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

≤ max
𝑘,𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑋𝑁 (𝑘, 𝑛)

𝑀𝑁

− 𝑢 (𝑘𝑑𝑡𝑁, Ṽ𝑁 (𝑘, 𝑛))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ sup
(𝑡,𝑠)∈[0,𝑇]×D

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠) − 𝑞 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 ,

(30)

where 𝑢 is defined by (24).
ByTheorem 4, almost surely, there exist a sequence {𝛾𝑁},

𝑐0 < ∞,𝑁0, and �̂�1 < �̂�2 < �̂�3, . . ., such that as𝑁 → ∞,
𝛾𝑁 → 0, and for each𝑁 ≥ 𝑁0 and each𝑀𝑁 ≥ �̂�𝑁, the first
term above is smaller than 𝑐0𝛾𝑁.

The second term represents the error caused by location
perturbation. By (24) and Taylor’s theorem, there exists 𝑐1 <
∞ such that

𝑢 (𝑡, 𝑠) − 𝑞 (𝑡, 𝑠) = 𝑞 (𝑡, 𝜂 (𝑡, 𝑠)) − 𝑞 (𝑡, 𝑠)

≤ 𝑞𝑠 (𝑡, 𝑠) (𝜂 (𝑡, 𝑠) − 𝑠) + 𝑐1(𝜂 (𝑡, 𝑠) − 𝑠)
2
.

(31)

Therefore we have that

sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠) − 𝑞 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 ≤ sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝑞𝑠 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 sup
(𝑡,𝑠)

󵄨󵄨󵄨󵄨𝜂 (𝑡, 𝑠) − 𝑠
󵄨󵄨󵄨󵄨

+ 𝑐1sup
(𝑡,𝑠)

(𝜂 (𝑡, 𝑠) − 𝑠)
2
.

(32)

By (30) this completes the proof.

This proposition states that, for fixed 𝑞 and for𝑁 and𝑀𝑁
sufficiently large, 𝜀𝑁 is dominated by the supremum location
perturbation sup(𝑡,𝑠)|𝜂(𝑡, 𝑠) − 𝑠|, when it is close to 0. We note
that by definition sup(𝑡,𝑠)|𝜂(𝑡, 𝑠) − 𝑠| = sup(𝑡,𝑠)|𝜙(𝑡, 𝑠) − 𝑠|. In
the case where 𝑋𝑁 are uniform; that is, 𝜂(𝑡, 𝑠) = 𝜙(𝑡, 𝑠) = 𝑠,
the last two terms on the right-hand side of (29) vanish.

3.2.4. Limiting PDEs for Nonuniform Networks. Consider a
sequence {𝑋𝑁} of networks with given network behavior
and with node locations specified by a given transformation
function 𝜙 with inverse 𝜂. If a sequence {𝑋𝑁} of uniform
networksmirrors {𝑋𝑁}, from this given network behavior, we
can find the continuum limit 𝑞 of {𝑋𝑁} by constructing its
limiting PDE as in Section 3.1.2. Suppose that this PDE has
the form

̇𝑞 (𝑡, 𝑠) = 𝑄(𝑠, 𝑞 (𝑡, 𝑠) ,
𝜕𝑞

𝜕𝑠𝑗

(𝑡, 𝑠) ,
𝜕
2
𝑞

𝜕𝑠
2
𝑗

(𝑡, 𝑠)) , (33)

with initial condition 𝑞(0, 𝑠) = 𝑞0(𝑠), where 𝑗 = 1, . . . , 𝐽, 𝑡 ∈
[0, 𝑇], and 𝑠 = (𝑠1, . . . , 𝑠𝐽) ∈ D. By Theorem 4, we have that
the continuum limit 𝑢(𝑡, 𝑠) of {𝑋𝑁} satisfies (24).

However, in general, we can only solve (33) numerically
instead of analytically. In fact, all the limiting PDEs in this
paper are solved by software using numericalmethods. In this
case we cannot find the closed-form expression of 𝑢 from 𝑞

using (24). Instead, we derive a PDE that 𝑢 satisfies so that we
can solve it numerically.
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Suppose that 𝑢(𝑡, 𝑠) solves the PDE

�̇� (𝑡, 𝑠) = Γ(𝑠, 𝑢 (𝑡, 𝑠) ,
𝜕𝑢

𝜕𝑠𝑗

(𝑡, 𝑠) ,
𝜕
2
𝑢

𝜕𝑠
2
𝑗

(𝑡, 𝑠)) , (34)

with initial condition 𝑢(0, 𝑠) = 𝑢0(𝑠), where 𝑗 = 1, . . . , 𝐽 and
(𝑡, 𝑠) ∈ [0, 𝑇] ×D. We now find Γ from the known PDE (33).

By (23), (24), and the chain rule,

𝜕𝑢

𝜕𝑠𝑗

(𝑡, 𝑠) =

𝜕𝜂𝑗

𝜕𝑠𝑗

(𝑡, 𝑠)
𝜕𝑞

𝜕𝑠𝑗

(𝑡, 𝜂 (𝑡, 𝑠)) . (35)

By (23), the product rule, and the chain rule,

𝜕
2
𝑢

𝜕𝑠
2
𝑗

(𝑡, 𝑠) =

𝜕
2
𝜂𝑗

𝜕𝑠
2
𝑗

(𝑡, 𝑠)
𝜕𝑞

𝜕𝑠𝑗

(𝑡, 𝜂 (𝑡, 𝑠))

+ (

𝜕𝜂𝑗

𝜕𝑠𝑗

(𝑡, 𝑠))

2
𝜕
2
𝑞

𝜕𝑠
2
𝑗

(𝑡, 𝜂 (𝑡, 𝑠)) .

(36)

Note that, without assumption (23), the expression of the
derivatives above would be much more complex. Then by
(24), (33), and (34) we have

Γ(𝑠, 𝑢 (𝑡, 𝑠) ,
𝜕𝑢

𝜕𝑠𝑗

(𝑡, 𝑠) ,
𝜕
2
𝑢

𝜕𝑠
2
𝑗

(𝑡, 𝑠))

= 𝑄(𝜂 (𝑡, 𝑠) , 𝑢 (𝑡, 𝑠) ,

(𝜕𝑢/𝜕𝑠𝑗) (𝑡, 𝑠)

(𝜕𝜂𝑗/𝜕𝑠𝑗) (𝑡, 𝑠)

,

(𝜕
2
𝑢/𝜕𝑠
2

𝑗
) (𝑡, 𝑠)

((𝜕𝜂𝑗/𝜕𝑠𝑗) (𝑡, 𝑠))
2
,

−

(𝜕
2
𝜂𝑗/𝜕𝑠
2

𝑗
) (𝑡, 𝑠) (𝜕𝑢/𝜕𝑠𝑗) (𝑡, 𝑠)

((𝜕𝜂𝑗/𝜕𝑠𝑗) (𝑡, 𝑠))
3

) ,

(37)

where 𝑢0(𝑠) = 𝑞0(𝜂(0, 𝑠)). Hence we find the limiting PDE
(34) of {𝑋𝑁}.

We present a concrete numerical example of the nonuni-
form network and its continuum limit later in Section 4.2.

3.3. Control of Nonuniform Networks. The global character-
istic of the network is determined by the transmission-inter-
ference rule defined in Section 3.2.2 and is described by its
limiting PDE. The transmission-interference rule depends
entirely on the transmission range 𝐿 and the probabilities 𝑃𝑖,
which in turn by (16) depends on the direction function 𝑝𝑖.
On the other hand, 𝐿 and 𝑝𝑖 also determine the limiting PDE
of a sequence of networks.Therefore we can control the trans-
mission-interference rule to obtain the desired limiting PDE,
and hence the desired global characteristic of the network, by
changing 𝐿 and 𝑝𝑖.

For uniform networks, this procedure is straightforward
because 𝐿 and 𝑝𝑖 relate directly to the form and coefficients of
the limiting PDE. For example, for the 1D 1-step network in
Section 2.2 with limiting PDE (14), increasing the convection
𝑐 results in a greater bias of the PDE solution to the left side
of the domain. (A numerical example of this network is pro-
vided in Section 4.1.1.)

We now study this kind of control for nonuniform and
possibly mobile networks. For such networks, we have to take
into account the varying node locations in order to still
achieve certain global characteristics. The goal is to develop
a control method so that the continuum limit is invariant
under node locations and mobility, that is, remains the same
as a reference, which is the continuum limit of the sequence
of corresponding uniform networks with a certain transmis-
sion-interference rule. We then say the sequence has a loca-
tion-invariant continuum limit.

We illustrate this idea in Figure 3. The plus signs in both
figures represent the queues of a certain uniform network at a
certain time.The solid lines in both figures represent the con-
tinuum limit (the limiting PDE solution) of the same uniform
network at the same time.Thus they resemble each other. On
the left, the diamonds represent the queues of a nonuniform
network with the same transmission-interference rule as the
uniform network, but no longer resembling the continuum
limit because of the changes in node locations. On the right,
the circles represent the queues of a second nonuniform
networkwith the same node locations as the first nonuniform
network, but under some control over its transmission-inter-
ference rule, therefore resembling the continuum limit of the
uniform network. In other words, location invariance in the
second nonuniform network has been achieved by network
control. Apparently, for this particular network, such a con-
trol scheme has to be able to direct more (and the right
amount of) data traffic to the right-hand side. Inwhat follows,
we describe how this can be done by properly increasing the
probabilities of the nodes transmitting to the right through
the use of the limiting PDEs.

Throughout the paper we assume no control over node
location or motion.

3.3.1. Transmission-Interference Rule for Location Invariance.
Consider a sequence {𝑋𝑁} of nonuniform networks whose
node locations are specified by a given transformation func-
tion 𝜙 with inverse 𝜂 and a sequence {𝑋𝑁} of uniform net-
works with given transmission-interference rule and con-
tinuum limit 𝑢. We want to control the transmission-inter-
ference rule of {𝑋𝑁} so that it also converges to 𝑢, that is,
obtains the location-invariant continuum limit.

Again we do not assume a known closed-form expression
of 𝑢. Instead, assume that 𝑢(𝑡, 𝑠) solves (34), except that Γ is
now given.

Define

𝑞 (𝑡, 𝑠) = 𝑢 (𝑡, 𝜙 (𝑡, 𝑠)) . (38)

Suppose that a sequence {𝑋𝑁} of uniform networks has
continuum limit 𝑞(𝑡, 𝑠). By Theorem 4, for {𝑋𝑁} to converge
to this desired 𝑢(𝑡, 𝑠), it suffices that {𝑋𝑁} mirrors {𝑋𝑁}.
Therefore all we have to do is to specify the transmission-
interference rule of {𝑋𝑁} to {𝑋𝑁}. Next we find this trans-
mission-interference rule.

Suppose that 𝑞(𝑡, 𝑠) solves (33), except that 𝑄 is now
unknown. Again using the product rule and the chain rule as
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Uncontrolled network

Uniform network
Limit of uniform network

(a)

Controlled network

Uniform network
Limit of uniform network

(b)

Figure 3: An illustration of control of nonuniform networks. On the 𝑥-axis, the × marks are the uniform grid, and the Δ marks are the
nonuniform node locations.

we did in Section 3.2.4, by (33), (34), and (38), we have that

𝑄(𝑠, 𝑞 (𝑡, 𝑠) ,
𝜕𝑞

𝜕𝑠𝑗

(𝑡, 𝑠) ,
𝜕
2
𝑞

𝜕𝑠
2
𝑗

(𝑡, 𝑠))

= Γ(𝜙 (𝑡, 𝑠) , 𝑞 (𝑡, 𝑠) ,

(𝜕𝑞/𝜕𝑠𝑗) (𝑡, 𝑠)

(𝜕𝜙𝑗/𝜕𝑠𝑗) (𝑡, 𝑠)

,

(𝜕
2
𝑞/𝜕𝑠
2

𝑗
) (𝑡, 𝑠)

((𝜕𝜙𝑗/𝜕𝑠𝑗) (𝑡, 𝑠))
2

−

(𝜕
2
𝜙𝑗/𝜕𝑠
2

𝑗
) (𝑡, 𝑠) (𝜕𝑞/𝜕𝑠𝑗) (𝑡, 𝑠)

((𝜕𝜙𝑗/𝜕𝑠𝑗) (𝑡, 𝑠))
3

) ,

(39)

and 𝑞0(𝑠) = 𝑢0(𝜙(0, 𝑠)), where 𝑗 = 1, . . . , 𝐽.
Since 𝑞(𝑡, 𝑠) is the continuum limit of a sequence of

uniform networks, (33) must be a case of (20), the general
limiting PDE. Therefore we can replace the left-hand side of
(39) by the right-hand side of (20) and get

𝐽

∑

𝑗=1

(𝑏
(𝑗)
(𝑡, 𝑠)

𝜕

𝜕𝑠𝑗

( (1 + (𝜆(𝐽,𝐿) + 1) 𝑧 (𝑡, 𝑠))

× (1 − 𝑧 (𝑡, 𝑠))
(𝜆(𝐽,𝐿)−1)

𝜕𝑧

𝜕𝑠𝑗

(𝑡, 𝑠))

+ 2(1 − 𝑧 (𝑡, 𝑠))
(𝜆(𝐽,𝐿)−1)

𝜕𝑧

𝜕𝑠𝑗

(𝑡, 𝑠)
𝜕𝑏
(𝑗)

𝜕𝑠𝑗

(𝑡, 𝑠)

+ 𝑧 (𝑡, 𝑠) (1 − 𝑧 (𝑡, 𝑠))
𝜆(𝐽,𝐿)

𝜕
2
𝑏
(𝑗)

𝜕𝑠
2
𝑗

(𝑡, 𝑠)

+
𝜕

𝜕𝑠𝑗

(𝑐
(𝑗)
(𝑡, 𝑠) 𝑧 (𝑡, 𝑠) (1 − 𝑧 (𝑡, 𝑠))

𝜆(𝐽,𝐿))) + 𝑔𝑝 (𝑡, 𝑠)

= Γ(𝜙 (𝑡, 𝑠) , 𝑞 (𝑡, 𝑠) ,

(𝜕𝑞/𝜕𝑠𝑗) (𝑡, 𝑠)

(𝜕𝜙𝑗/𝜕𝑠𝑗) (𝑡, 𝑠)

,

(𝜕
2
𝑞/𝜕𝑠
2

𝑗
) (𝑡, 𝑠)

((𝜕𝜙𝑗/𝜕𝑠𝑗) (𝑡, 𝑠))
2

−

(𝜕
2
𝜙𝑗/𝜕𝑠
2

𝑗
) (𝑡, 𝑠) (𝜕𝑞/𝜕𝑠𝑗) (𝑡, 𝑠)

((𝜕𝜙𝑗/𝜕𝑠𝑗) (𝑡, 𝑠))
3

) .

(40)

We call this the comparison equation. If we can solve it for 𝐿,
𝑝𝑙, and 𝑔𝑝, our goal is accomplished because they determine
the network behavior, which includes the transmission-inter-
ference rule, for each𝑁-node uniformnetwork in themirror-
ing sequence {𝑋𝑁}. If we assign the same transmission-inter-
ference rule to {𝑋𝑁}, then it has the location-invariant con-
tinuum limit 𝑢(𝑡, 𝑠).

We note a constraint for (40): by (16), for each 𝑖, 𝑝𝑖 has to
be sufficiently small such that, for each 𝑘 and 𝑛,

𝑃𝑖 (𝑘, 𝑛) ∈ [0, 1] , ∑

𝑖

𝑃𝑖 (𝑘, 𝑛) ∈ [0, 1] . (41)

In turn by (17), 𝑏𝑖 and 𝑐𝑖 have to be sufficiently small for (41)
to hold. By further observing (18) and (19), it follows that the
transmission range 𝐿 has to be sufficiently large. For this rea-
son, it is necessary to generalize from 1-step to 𝐿-step trans-
mission range, as we did in Section 3.1. Note that with this
constraint, (40) is still underdetermined. Such freedom gives
us a class of transmission-interference rules to assign to {𝑋𝑁}
instead of just one.

Oneway to solve (40) is this. Suppose that we have chosen
𝐿 sufficiently large. Since (34) is now given, we know the
numerical form of 𝑢 and in turn that of 𝑞 by (38). For fixed 𝑡𝑜,
we put 𝑞(𝑡𝑜, 𝑠) in (40). For each 𝑗, if we fix 𝑏(𝑗)(𝑡𝑜, 𝑠), then we
can solve (40), which is now an ordinary differential equation
(ODE), for 𝑐(𝑗)(𝑡𝑜, 𝑠). Similarly, fixing 𝑐(𝑗)(𝑡𝑜, 𝑠)makes (40) an
ODE that we can solve for 𝑏(𝑗)(𝑡𝑜, 𝑠). Then by (19) we can fur-
ther choose 𝑏𝑖 and 𝑐𝑖 and further determine𝑝𝑖 by (17).Thuswe
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have found 𝑃𝑖 by (16), which together with 𝐿 determines the
transmission-interference rule.

3.3.2. Distributed Control Using Local Information. The con-
trol method presented above is centralized in the sense that it
requires knowledge of the transformation function 𝜙 overD.
This assumes that each node knows the location of all other
nodes. However, this is generally not the case in practice,
especially for networks without a central control unit. In this
subsection we present a distributed version of our control
method, where only the locations of nearby nodes are needed
for each node to determine its transmission-interference rule.
We can do this because all the information needed to solve the
comparison equation (40) can be approximated locally at
each node.

The derivatives of 𝜙 in (40) can be approximated from the
locations of neighboring nodes using a certain finite differ-
encemethod. For example, in the 1-D case, we can use the fol-
lowing approximation:

𝜕𝜙

𝜕𝑠
(𝑡, 𝑠) ≈

𝜙 (𝑘𝑑𝑡𝑁, V𝑁 (𝑛 + 1)) − 𝜙 (𝑘𝑑𝑡𝑁, V𝑁 (𝑛 − 1))

2𝑑𝑠𝑁

=
Ṽ𝑁 (𝑘, 𝑛 + 1) − Ṽ𝑁 (𝑘, 𝑛 − 1)

2𝑑𝑠𝑁

,

(42)

where 𝑡 = 𝑘𝑑𝑡𝑁 and 𝑠 ∈ [V𝑁(𝑛 − 1), V𝑁(𝑛 + 1)). Note that we
can also use the location information of further neighbors to
get a more accurate approximation of 𝜕𝜙/𝜕𝑠. The trade-off
between locality and accuracy can be flexibly adjusted.

The ODE for 𝑏(𝑗) or 𝑐(𝑗) can also be solved based on local
information using numerical procedures such as Euler’s
method [40].

We present two concrete examples of network control in
1D and 2D case, in Sections 4.3.1 and 4.3.2, respectively.

4. Numerical Examples

We now present numerical examples for continuum model
of uniform networks, continuum model of nonuniform net-
works, and control of nonuniform networks in Sections 4.1,
4.2, and 4.3, respectively.

4.1. Examples of Uniform Networks

4.1.1. 1D Example. We discussed the 1D 1-step network as a
running example through Section 2 and derived its limiting
PDE (14). We now runMonte Carlo simulation for such a net
work and compare the simulation result with the limiting
PDE solution. (Simulations and PDEs presented in this paper
are run and solved using Matlab.) We set the spatial domain
D = [−1, 1]. We set the number of nodes 𝑁 = 50 and the
normalizing parameter 𝑀 = 5000. We set the initial condi-
tion of the limiting PDE 𝑧0(𝑠) = 𝑟1𝑒

−𝑠
2

, where 𝑟1 > 0 is a con-
stant, so that initially the nodes in the middle have messages
to transmit, while those near the boundaries have very few.
We set the incoming traffic function 𝑔𝑝(𝑠) = 𝑟2𝑒

−𝑠
2

, where

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

Monte Carlo simulation
PDE solution

Figure 4:TheMonte Carlo simulation and the PDE solution of a 1D
1-step network.

𝑟2 > 0 is a constant determining the total load of the network,
so that the nodes in the middle generate more messages than
those near the boundaries. We set the diffusion function 𝑏 =
1/2 and the convection function 𝑐 = 2, so that each node
transmits to the leftwith a higher probability than to the right;
that is, more data traffic in the network is routed to the left. In
Figure 4, we show the PDE solution and the simulation result
at time 𝑡 = 1 s, where the 𝑥-axis denotes the node location
and 𝑦-axis denotes the normalized queue length. As we can
see, the PDE well resembles the network.

4.1.2. 2D Examples. We consider 2-D 1-step networks with
the two types of communicating neighbors separately (as
illustrated in Figure 2).

Type I Communicating Neighbors. For 2D 1-step networks of
Type I communicating neighbors, we define the probabilities
𝑃𝑖 of transmitting to the 4 communicating neighbors as in
Figure 2. This is the same as the 2D network studied in [1].

The limiting PDE for this network is as follows:

�̇� =

2

∑

𝑗=1

(𝑏
(𝑗) 𝜕

𝜕𝑠𝑗

((1 + 5𝑧) (1 − 𝑧)
3 𝜕𝑧

𝜕𝑠𝑗

)

+ 2(1 − 𝑧)
3 𝜕𝑧

𝜕𝑠𝑗

𝜕𝑏
(𝑗)

𝜕𝑠𝑗

+ 𝑧(1 − 𝑧)
4 𝜕
2
𝑏
(𝑗)

𝜕𝑠
2
𝑗

+
𝜕

𝜕𝑠𝑗

(𝑐
(𝑗)
𝑧(1 − 𝑧)

4
)) + 𝑔𝑝,

(43)

where 𝑏(1) = (𝑏1+𝑏2)/2, 𝑏
(2)

= (𝑏3+𝑏4)/2, 𝑐
(1)

= 𝑐1−𝑐2, 𝑐
(2)

=

𝑐3 − 𝑐4, and (𝑠1, 𝑠2) ∈ D. (As mentioned in Section 3.1.2, we
omit the detailed algebraic derivation.)

We consider such a network over the spatial domain𝐷 =

[−1, 1] × [−1, 1]. We set the number of nodes𝑁 = 80 × 80
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and the normalizing parameter 𝑀 = 80
3. We set the initial

condition

𝑧0 (𝑠) = 𝑟1𝑒
−4((𝑠1+0.65)

2
+(𝑠2+0.75)

2
)

+ 𝑟2𝑒
−3((𝑠1−0.75)

2
+(𝑠2−0.85)

2
)

+ 𝑟3𝑒
−2((𝑠1−0.75)

2
+(𝑠2+0.75)

2
)

+ 𝑟4𝑒
−3((𝑠1+0.85)

2
+(𝑠2−0.75)

2
)
,

(44)

where the constants 𝑟1, . . . , 𝑟4 > 0, so that initially the nodes
near (−0.65, −0.75), (0.75, 0.85), (0.75, −0.75), and (−0.85,

0.75) have more messages to transmit than those far away
from these points. We set the incoming traffic function

𝑧0 (𝑠) = 𝑟5𝑒
−4((𝑠1+0.65)

2
+(𝑠2+0.75)

2
)

+ 𝑟6𝑒
−3((𝑠1−0.75)

2
+(𝑠2−0.85)

2
)

+ 𝑟7𝑒
−2((𝑠1−0.75)

2
+(𝑠2+0.75)

2
)

+ 𝑟8𝑒
−3((𝑠1+0.85)

2
+(𝑠2−0.75)

2
)
,

(45)

where the constants 𝑟5, . . . , 𝑟8 > 0, so that the nodes near
(−0.65, −0.75), (0.75, 0.85), (0.75, −0.75), and (−0.85, 0.75)

generate more messages to transmit than those far away
from these points. This may correspond to four information
sources at these four points that generate different rate of data
traffic. Set the diffusion functions 𝑏𝑖 = 1/4, where 𝑖 = 1, . . . , 4,
and the convection functions 𝑐1 = 0, 𝑐2 = 1, 𝑐3 = 0.1, and
𝑐4 = −0.1. Hence 𝑏(1) = 𝑏

(2)
= 1/4, 𝑐(1) = −1, and 𝑐(2) = 0.2,

so that more data traffic in the network is routed to the south
and the east. In Figure 5, we show the contour of the PDE
solution and the simulation result at 𝑡 = 0.1 s. We can again
see the resemblance.

Type II Communicating Neighbors. For 2-D 1-step networks of
Type II communicating neighbors, we define the probabilities
𝑃𝑖 of transmitting to the 8 communicating neighbors as in
Figure 2. The limiting PDE is as follows:

�̇� =

2

∑

𝑗=1

(𝑏
(𝑗) 𝜕

𝜕𝑠𝑗

((1 + 9𝑧) (1 − 𝑧)
7 𝜕𝑧

𝜕𝑠𝑗

)

+ 2(1 − 𝑧)
7 𝜕𝑧

𝜕𝑠𝑗

𝜕𝑏
(𝑗)

𝜕𝑠𝑗

+ 𝑧(1 − 𝑧)
8 𝜕
2
𝑏
(𝑗)

𝜕𝑠
2
𝑗

+
𝜕

𝜕𝑠𝑗

(𝑐
(𝑗)
𝑧(1 − 𝑧)

8
)) + 𝑔𝑝,

(46)

where 𝑏(1) = ∑𝑙=1,2,5,...,8(𝑏𝑙/2), 𝑏
(2)

= ∑𝑙=3,4,5,...,8(𝑏𝑙/2), 𝑐
(1)

=

𝑐1 − 𝑐2 + 𝑐5 − 𝑐7 + 𝑐6 − 𝑐8, and 𝑐
(2)

= 𝑐3 − 𝑐4 + 𝑐5 − 𝑐6 + 𝑐7 − 𝑐8.
Again the spatial domain 𝐷 = [−1, 1] × [−1, 1]. We set

the number of nodes 𝑁 = 80 × 80 and the normalizing
parameter𝑀 = 80

3. We set the initial condition

𝑧0 (𝑠) = 𝑟1𝑒
−4((𝑠1+0.55)

2
+(𝑠2+0.55)

2
)

+ 𝑟2𝑒
(𝑠1−0.55)

2
+(𝑠2−0.55)

2

,

(47)

where the constants 𝑟1, 𝑟2 > 0, so that initially the nodes
near (−0.55, −0.55) and (0.55, 0.55) have more messages to
transmit than those far away from these two points. We set
the incoming incoming traffic function

𝑔𝑝 (𝑠) = 𝑟3𝑒
−4((𝑠1+0.55)

2
+(𝑠2+0.55)

2
)

+ 𝑟4𝑒
(𝑠1−0.55)

2
+(𝑠2−0.55)

2

,

(48)

where the constants 𝑟3, 𝑟4 > 0, so that the nodes near (−0.55,
−0.55) and (0.55, 0.55) generate more messages to transmit
than those far away from these two points. This may corre-
spond to two information sources at these two points that
generate different rates of data traffic. In Figure 6, we show the
contours of the PDE solution and the simulation results with
the diffusion functions 𝑏𝑖 = 1/8, for 𝑖 = 1, . . . , 8, and convec-
tion functions 𝑐1 = 1, 𝑐2 = 2, 𝑐3 = 3, 𝑐4 = 4, 𝑐5 = −1, 𝑐6 = −2,
𝑐7 = −3, and 𝑐8 = −4. Hence 𝑏(1) = 𝑏

(1)
= 3/8, 𝑐(1) = 3,

and 𝑐(2) = 1, so that more data traffic in the network is routed
to the west and the south.

The reader can verify that the two PDEs (43) and (46)
above are special cases of (20).

4.2. Example of Nonuniform Network. We illustrate a 2-D
nonuniform network𝑋𝑁, its continuum limit 𝑢(𝑡, 𝑠), and the
continuum limit 𝑞(𝑡, 𝑠) of its mirroring uniform network in
Figure 7.The spatial domain𝐷 = [−1, 1]×[−1, 1].We assume
that the mirroring uniform network is a 2D 1-step network
of Type-I communicating neighbors.Therefore 𝑞 satisfies the
limiting PDE (43). For themirroring uniformnetwork, we set
the initial condition 𝑞0(𝑠) = 𝑙1𝑒

−(𝑠
2

1
+𝑠
2

2
), and incoming traffic

𝑔𝑝(𝑠) = 𝑙2𝑒
−(𝑠
2

1
+𝑠
2

2
) where the constants 𝑙1, 𝑙2 > 0; we set the

diffusion functions 𝑏𝑖 = 1/4 and the convection functions
𝑐𝑖 = 0, for 𝑖 = 1, . . . , 4. The inverse transformation function
here is set to be 𝜂𝑗(𝑠) = (𝑠𝑗 + 1)

2
/2 − 1 for 𝑗 = 1, 2. (Notice

that this satisfies (23))Therefore the continuum limit 𝑢 of the
nonuniform network𝑋𝑁 is 𝑢(𝑡, 𝑠) = 𝑞(𝑡, 𝜂(𝑠)).

4.3. Examples of Control of Nonuniform Networks

4.3.1. 1D Example. Let the domainD = [−1, 1]. Let 𝑢(𝑡, 𝑠) be
the continuum limit of a sequence {𝑋𝑁} of 1-D 1-step uniform
networks with transmission range �̂� = 1, the diffusion func-
tion �̂� = 1/2, the convection function 𝑐 = 0, and a given
incoming traffic function 𝑔𝑝 for all (𝑡, 𝑠) ∈ [0, 𝑇]×D. A given
transformation function 𝜙 specifies the node locations of a
sequence {𝑋𝑁} of nonuniform networks. We show how to
find the transmission-interference rule for {𝑋𝑁} to converge
to 𝑢(𝑡, 𝑠). As the continuum limit of this particular 1-D 1-step
network, 𝑢(𝑡, 𝑠) solves the PDE

�̇� =
𝜕

𝜕𝑠
(
1

2
(1 − 𝑢) (1 + 3𝑢)

𝜕𝑢

𝜕𝑠
) + 𝑔𝑝, (49)

with boundary condition 𝑢(𝑡, 𝑠) = 0 and initial condition
𝑢(0, 𝑠) = 𝑢0(𝑠). This is a special case of (14).
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Figure 5: The Monte Carlo simulation and the PDE solution of a 2D 1-step network of Type I communicating neighbors.
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Figure 6: The Monte Carlo simulation and the PDE solution of a 2D 1-step network of Type II communicating neighbors.
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Figure 7: A nonuniform network, its limiting PDE solution, and the limiting PDE solution of its mirroring uniform network.
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In this case 𝜆(𝐽,𝐿) = 2𝐿. Let 𝜃 = 1/(2(𝜕𝜙/𝜕𝑠)
2
). Then the

comparison equation (40) becomes

𝑏
(1) 𝜕

𝜕𝑠
((1 + (2𝐿 + 1) 𝑞) (1 − 𝑞)

(2𝐿−1) 𝜕𝑞

𝜕𝑠
)

+ 2(1 − 𝑞)
(2𝐿−1) 𝜕𝑞

𝜕𝑠

𝜕𝑏
(1)

𝜕𝑠
+ 𝑞(1 − 𝑞)

2𝐿 𝜕
2

𝜕𝑠2
𝑏
(1)

+
𝜕

𝜕𝑠
(𝑐
(1)
𝑞(1 − 𝑞)

2𝐿
) + 𝑔𝑝

= 𝜃 (1 − 𝑞) (1 + 3𝑞)
𝜕
2
𝑞

𝜕𝑠2
+ 2 (1 − 3𝑞) 𝜃(

𝜕𝑞

𝜕𝑠
)

2

+
1

2
(1 − 𝑞) (1 + 3𝑞)

𝜕𝜃

𝜕𝑠

𝜕𝑞

𝜕𝑠
+ 𝑔𝑝 (𝜙) ,

(50)
where 𝑞 is the continuum limit of the mirroring sequence
{𝑋𝑁} of {𝑋𝑁}.

We assume that 𝑔𝑝(𝑠) = 𝑔𝑝(𝜙(𝑡, 𝑠)), which corresponds
to the assumption that the continuum limit of the incoming
traffic is invariant under node locations and mobility. This
assumption is feasible in a large class of networkswhere traffic
load depends directly on actual physical location. For exam-
ple, in a wireless sensor network that detects environmental
events such as a forest fire, the event-triggered data traffic
depends on the distribution of heat rather than the node loca-
tions.

Suppose that we set

𝑏
(1)

= 𝜃. (51)
Since 𝑞 is known to be the solution of (49), (50) has now
become a first-order linear ODE for 𝑐(1).

We can use Euler’s method to solve this ODE based on
local information. For fixed 𝑡𝑜, suppose the ODE is written in
the formΦ(𝑡𝑜, 𝑠, 𝑐

(1)
) = 𝑑𝑐

(1)
/𝑑𝑠. We first choose 𝑐(1)(𝑡𝑜, 𝑠(1))

such that 𝑃𝑖(𝑘𝑜, 1) satisfies (41), where 𝑡𝑜 = 𝑘𝑜𝑑𝑡𝑁. Then
we can approximate 𝑐(𝑗)(𝑡𝑜, 𝑠(𝑛)) by 𝑐(𝑡𝑜, 𝑛), where 𝑐(𝑡𝑜, 1) =
𝑐
(𝑗)
(𝑡𝑜, 𝑠(1)), and 𝑐(𝑡𝑜, 𝑛 + 1) = 𝑐(𝑡𝑜, 𝑛) + Φ(𝑡𝑜, 𝑠(𝑛),

𝑐(𝑡𝑜, 𝑛))𝑑𝑠𝑁, for 𝑛 = 1, . . . , 𝑁.
With this given 𝜙, the transmission range 𝐿 of the mobile

network has to be greater or equal to 2 for (41) to hold. We
choose 𝐿 = 2. Then any 𝑏𝑖, 𝑐𝑖, where 𝑖 = 1, 2, that satisfy (50)
and (51) will give us the desired transmission-interference
rule of networks in {𝑋𝑁} and, hence, that of {𝑋𝑁}.

We simulate a 51-node controlled mobile network 𝑋𝑁 in
the sequence {𝑋𝑁} that mirrors {𝑋𝑁}, whose node locations
are specified by this given 𝜙. In Figure 8, we compare the sim-
ulation result with the continuum limit of {𝑋𝑁}, at 𝑡 = 1 s.We
set the initial condition 𝑧0(𝑠) = 𝑟1𝑒

−𝑠
2

and the incoming traffic
function 𝑔𝑝(𝑠) = 𝑟2𝑒

−𝑠
2

, where the constants 𝑟1, 𝑟2 > 0. As we
can see, the global characteristic of 𝑋𝑁 resembles 𝑢(𝑡, 𝑠), the
continuum limit of {𝑋𝑁}.

4.3.2. 2D Example. Let the domainD = [−1, 1] × [−1, 1]. Let
𝑢(𝑡, 𝑠) be the continuum limit of a sequence {𝑋𝑁} of 2-D 1-
step uniform networks of Type-II communicating neighbors

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

Network �̃�𝑁
Limit of {�̂�𝑁}

Figure 8: The comparison of the 1D controlled network and the
location-invariant continuum limit at 𝑡 = 1 s. On the 𝑥-axis, the ×
marks are the uniform grid, and the Δ marks are the nonuniform
node locations.

with transmission range �̂� = 1, the diffusion functions
�̂�𝑖(𝑡, 𝑠) = 1/8, for 𝑖 = 1, . . . , 8, the convection functions 𝑐(𝑗) =
0, for 𝑗 = 1, 2, and given incoming traffic function 𝑔𝑝 for all
(𝑡, 𝑠) ∈ [0, 𝑇] × D. Again denote the given transformation
function that specifies the node locations of {𝑋𝑁} by 𝜙(𝑡, 𝑠).

As the continuum limit of this particular 1D 1-step net-
work, 𝑢(𝑡, 𝑠) solves the PDE

�̇� =
3

8

2

∑

𝑗=1

𝜕

𝜕𝑠𝑗

((1 + 9𝑢) (1 − 𝑢)
7 𝜕𝑢

𝜕𝑠𝑗

) + 𝑔𝑝, (52)

with boundary condition 𝑢(𝑡, 𝑠) = 0 and initial condition 𝑢(0,
𝑠) = 𝑢0(𝑠). This is a special case of (46).

Let 𝜃𝑗 = 1/(2(𝜕𝜙𝑗/𝜕𝑠𝑗)
2
). Then the comparison equation

(40) becomes

2

∑

𝑗=1

(𝑏
(𝑗) 𝜕

𝜕𝑠
((1 + (𝜆(2,𝐿) + 1) 𝑞) (1 − 𝑞)

(𝜆(2,𝐿)−1)
𝜕𝑞

𝜕𝑠
)

+ 2(1 − 𝑞)
(𝜆(2,𝐿)−1)

𝜕𝑞

𝜕𝑠

𝜕�̂�𝑗

𝜕𝑠𝑗

+𝑞(1 − 𝑞)
𝜆(2,𝐿) 𝜕
2
𝑏
(𝑗)

𝜕𝑠2
+
𝜕

𝜕𝑠
(𝑐
(𝑗)
𝑞(1 − 𝑞)

𝜆(2,𝐿)
)) + 𝑔𝑝

=

2

∑

𝑗=1

(
3

4
(1 − 𝑞)

7
(1 + 9𝑞) 𝜃𝑗

𝜕
2
𝑞

𝜕𝑥
2
𝑗

+
3

8
(1 − 𝑞)

7
(1 + 9𝑞)

𝜕𝜃𝑗

𝜕𝑥𝑗

𝜕𝑞

𝜕𝑥𝑗

+
3

2
(1 − 36𝑞) (1 − 𝑞)

6
𝜃𝑗(

𝜕𝑞

𝜕𝑥𝑗

)

2

) + 𝑔𝑝 (𝜙) ,

(53)
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Figure 9: The comparison of the 2D controlled network and the location-invariant continuum limit at 𝑡 = 1 s.

where 𝑞 is the continuum limit of the mirroring sequence
{𝑋𝑁} of {𝑋𝑁}. Assume that 𝑔𝑝(𝑡, 𝑠) = 𝑔𝑝(𝜙(𝑡, 𝑠)) and

𝑏
(𝑗)
= 𝜃𝑗. (54)

Since 𝑞 is known to be the solution of (52), we have two first-
order linear ODEs of 𝑐(𝑗), where 𝑗 = 1, 2.

For this given 𝜙, 𝐿 = 2 is sufficient for (41) to hold. Then
any 𝑏𝑖, 𝑐𝑖, 𝑙 = 1, 2 that satisfy (53) and (54) will give us the
desired transmission-interference rule for {𝑋𝑁} and, hence,
{𝑋𝑁}.

We simulate a (100 × 100)-node controlled mobile net-
work 𝑋𝑁 in the sequence {𝑋𝑁} that mirrors {𝑋𝑁}, whose
node locations are specified by 𝜙. In Figure 9, we compare
the simulation result with the continuum limit of {𝑋𝑁}, at
𝑡 = 1𝑠. We set the initial condition

𝑧0 (𝑠) = 𝑟1𝑒
−4((𝑠1+0.6)

2
+(𝑠2+0.6)

2
)

+ 𝑟2𝑒
−3((𝑠1−0.6)

2
+(𝑠2−0.6)

2
)

(55)

and the incoming traffic function

𝑔𝑝 (𝑠) = 𝑟3𝑒
−4((𝑠1+0.6)

2
+(𝑠2+0.6)

2
)

+ 𝑟4𝑒
−3((𝑠1−0.6)

2
+(𝑠2−0.6)

2
)
,

(56)

where the constants 𝑟1, . . . , 𝑟4 > 0. Again, the global chara-
cteristic of𝑋𝑁 resembles 𝑢(𝑡, 𝑠), the continuum limit of {𝑋𝑁}.

5. Conclusion

In this paper we study the modeling of nonuniform and pos-
sibly mobile networks via nonlinear PDEs and develop a dis-
tributed method to control their transmission-interference

rules to maintain certain global characteristics. We demon-
strate our method with a family of wireless sensor networks.
Our method can be extended to other network models. The
freedom in the control method mentioned in Section 3.3
can also be further exploited to improve the network perfor-
mance.
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