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The nonfragile robust finite-time 𝐿
2
-𝐿
∞

control problem for a class of nonlinear uncertain systems with uncertainties and time-
delays is considered. The nonlinear parameters are considered to satisfy the Lipschitz conditions and the exogenous disturbances
are unknown but energy bounded. By using the Lyapunov function approach, the sufficient condition for the existence of nonfragile
robust finite-time 𝐿

2
-𝐿
∞
controller is given in terms of linearmatrix inequalities (LMIs).The finite-time controller is designed such

that the resulting closed-loop system is finite-time bounded for all admissible uncertainties and satisfies the given 𝐿
2
-𝐿
∞
control

index. Simulation results illustrate the validity of the proposed approach.

1. Introduction

Time-delay is frequently a source of instability and always
encounters in various engineering systems such as chemical
processes, neural networks, and long transmission lines in
pneumatic systems. Recently, many attentions have been
paid to the solutions of deal with time-delay which existed
in concerned systems, such as the input-output technique
[1], delay partitioning method [2], and piecewise analysis
method [3]. As an important class of nonlinear systems, the
Lipschitzian nonlinear system also has drawn considerable
attention in the past few decades. Among these researches,
the studies of Lipschitz nonlinear systems with time-delays
have received much attention [4–6].

However, it is necessary to point out that the results
of the aforementioned papers about time-delayed Lipschitz
systems are mostly based on Lyapunov stable theory. As we
all known, Lyapunov stable theory pays more attention to the
asymptotic pattern of systems over an infinite-time interval.
But in some practical process, the main attention may be
related to the behavior of the dynamical systems over fixed
finite-time interval; for instance, large values of the states
cannot be accepted in the presence of saturations. To deal
with such situations, Dorato [7] first presented the concept

of finite-time stability (or short-time stability) in 1961. In
[8], Amato et al. first proposed the concept of finite-time
boundedness; thereaftermany attempts on finite-time control
problems have beenmade [9–13].However, to date, littlework
has been paid attention in finite-time controller design for
Lipschitzian nonlinear system.The research topic is still open
but challenging. And this is the key motivation of this paper.

On the other hand, in the feedback control schemes,
there are often some perturbations appeared in controller
gain, which may result from either the actuator degradations
or the requirements of readjustment of controller gains
during the controller implementation stage. Therefore, it is
reasonable that any controller should be able to tolerate some
level of controller gain variations, and this motivates many
researchers to study the nonfragile controller problems [14–
19]. Motivated by the benefits of nonfragile state feedback
controller, we consider the nonfragile controller design prob-
lem in this paper.

In addition, energy to peak (𝐿
2
-𝐿
∞
) control is of a

great importance both in control theory and in engineering
practice, because of its insensitivity to the exact knowledge
of the statistics of the external disturbance signals. In [20],
Rotea first introduced the 𝐿

2
-𝐿
∞

performance index. After
that many researchers have paid attention in 𝐿

2
-𝐿
∞

control
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problems. For example, in [21], the authors studied the 𝐿
2
-

𝐿
∞

controller design problem for continuous-time multiple
delayed linear systems; in [22], the problem of 𝐿

2
-𝐿
∞
control

for a class of uncertain singular systems with time-delay and
norm-bounded parameter uncertainties was investigated by
the researchers. For more details of the literatures related to
𝐿
2
-𝐿
∞

control schemes, the readers can refer to [21–24] and
the references therein.

In short, to the best knowledge of authors, the problem
of nonfragile robust finite-time 𝐿

2
-𝐿
∞

control for a class of
uncertain Lipschitz nonlinear systems with time-delays is not
studied at present. This motivates our research.

This paper deals with the problem of nonfragile robust
finite-time 𝐿

2
-𝐿
∞

control for a class of Lipschitz nonlinear
systems with time-delays and uncertainties, and the nonlin-
ear function is assumed to satisfy the Lipschitz conditions.
The uncertain parameters are assumed to be time varying
and energy bounded.The purpose is to construct a nonfragile
state feedback controller such that the resulting closed-loop
system is finite-time bounded and satisfies the given 𝐿

2
-𝐿
∞

index. By using the Lyapunov function approach and linear
matrix inequality techniques, a sufficient condition for the
existence of a nonfragile state feedback controller is given and
an explicit expression of this controller is presented. Mean-
while, this problem is reduced to an optimization problem
under the constraint of LMIs. Finally, a simulation example
illustrates the effectiveness of the developed techniques.

The paper is organized as follows. In Section 2, the
system description along with necessary assumption is given.
Section 3 provides the main results. A simulation example is
provided to illustrate the results of the paper in Section 4.
Conclusion follows in Section 5.
Notation. In the sequel, if not explicitly stated, matrices are
assumed to have compatible dimensions. I and 0 represent the
identity matrix and a zero matrix. The notationM > (≥, <, ≤

) 0 is used to denote a symmetric positive-definite (positive
semidefinite, negative-definite, negative semidefinite)matrix.
𝜆min(⋅), 𝜆max(⋅) denote the minimum and the maximum
eigenvalue of the correspondingmatrix, respectively. 𝐿

2
[0 +

∞) denotes the Euclidean norm for vectors or the spectral
norm of matrices. 𝐿𝑛

2
[0 𝑁] is the space of 𝑛-dimensional

square integrable function vector over [0 𝑁]. In symmetric
black matrices, we use ∗ that represents the elements below
the main diagonal of a symmetric block matrix. The super-
script T represents the transpose.

2. Preliminaries and Problem Statement

Consider a class of Lipschitz nonlinear systems with time-
delay and parameter uncertainties described by the following
equations:

ẋ (𝑡) = [A + ΔA (𝑡)] x (𝑡) + [A
𝑑
+ ΔA
𝑑
(𝑡)] x (𝑡 − 𝑑)

+ Bu (𝑡) + [G + ΔG (𝑡)]w (𝑡)

+ [F + ΔF (𝑡)] f (x (𝑡) , x (𝑡 − 𝑑)) ,

y (𝑡) = [C + ΔC (𝑡)] x (𝑡) +Du (𝑡) ,

x (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝑑 0] ,

(1)

where x(𝑡) ∈ R𝑛 is the state, x(𝑡 − 𝑑) ∈ R𝑛 is the constant
time-delay state, u(𝑡) ∈ R𝑝 is the controlled input, w(𝑡) ∈

R𝑟 is the disturbance input that belongs to 𝐿
2
[0 +∞),

f(x(𝑡), x(𝑡 − 𝑑)) ∈ R𝑛 × R𝑛 = R𝑛𝑔 is the nonlinear function
which represents the known nonlinear disturbance related to
the state and the time-delay state, and 𝜑(𝑡) ∈ 𝐿

2
[−𝑑 0] is a

continuous vector-valued initial function. In addition,A,A
𝑑
,

B,G, F,C, andD are known realmatrices, andΔA(𝑡),ΔA
𝑑
(𝑡),

ΔG(𝑡), ΔF(𝑡), and ΔC(𝑡) are unknown time-variant matrices
representing the norm-bounded parameter uncertainties and
satisfy the following form:

[
ΔA (𝑡) ΔA

𝑑
(𝑡) ΔG (𝑡) ΔF (𝑡)

ΔC (𝑡) ⋅ ⋅ ⋅
]

= [
M
1

M
2

] Γ (𝑡) [S1 S
2
S
3
S
4] ,

(2)

Γ
T
(𝑡) Γ (𝑡) ≤ I, (3)

where M
1
, M
2
, S
1
, S
2
, S
3
, and S

4
are known real constants

matrices and Γ(𝑡) is the time-varying unknown matrix
function with Lebesgue norm measurable elements.

Remark 1. The parameter uncertainty structure as in (2) and
(3) has been widely used in the existing literatures, such
as [22, 24, 25]. In many practical applications, the systems
parameter uncertainties can be either exactly modeled or
overbounded by (3). Note that the unknown matrix function
Γ(𝑡) is time-varying, therefore it can be allowed to be state-
dependent in some case, that is, Γ(𝑡) = Γ(𝑡, x(𝑡)).

The following preliminary assumptions are made for
system (1).

Assumption 1. For any given positive number 𝛿 and constant
time 𝑇, the external disturbances input w(𝑡) is time-varying
and satisfies

∫

𝑇

0

wT
(𝑡)w (𝑡) d𝑡 ≤ 𝛿, 𝛿 ≥ 0. (4)

Assumption 2. f(x(𝑡), x(𝑡 −𝑑)) : R𝑛 ×R𝑛 → R𝑛𝑔 is a known
nonlinear function which satisfies the following Lipschitz
conditions:

(i) f(0, 0) = 0;
(ii) ‖f(x(𝑡), x(𝑡 − 𝑑))‖ ≤ ‖𝜂

1
x(𝑡)‖ + ‖𝜂

2
x(𝑡 − 𝑑)‖,

where the weighting matrices 𝜂
1
and 𝜂

2
are known real

constant matrices.

Remark 2. The above Lipschitz condition can be con-
sidered as an extension of the Lipschitz condition men-
tioned in [19]. When 𝜂

1
= diag{√𝛼 √𝛼 ⋅ ⋅ ⋅ √𝛼} and

𝜂
2

= diag{√𝛽 √𝛽 ⋅ ⋅ ⋅ √𝛽}, the Lipschitz condition in
Assumption 2 will reduce to (4) [19].
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Our aim is to develop a nonfragile state feedback con-
troller:

u (𝑡) = [K + ΔK (𝑡)] x (𝑡) , (5)

where the matrix K is the controller gain to be determined
and ΔK(𝑡) is the controller gain variations. Here, we consider
the additive controller gain variation, that is,

ΔK (𝑡) = H𝜌 (𝑡)N, 𝜌
T
(𝑡)𝜌 (𝑡) ≤ Ι, (6)

whereH andN are knownmatrices, and 𝜌(𝑡) is unknown but
norm bounded.

Remark 3. The controller gain perturbations can result from
the actuator degradations, as well as from the requirements
for readjustment of controller gain during the controller
implementation stage. Theses perturbations in the controller
gains are modeled here as uncertain gains that are dependent
on the uncertain parameters [6]. The models of additive
uncertainties and multiplicative uncertainties are used to
describe the controller gain variations. For more results on
this topic, we refer readers to [6, 17, 18] and the references
therein.

By the nonfragile state feedback controller (5), the closed-
loop system can be obtained as follows:

ẋ (𝑡) = Ãx (𝑡) + Ã
𝑑
x (𝑡 − 𝑑) + G̃w (𝑡)

+ F̃f (x (𝑡) , x (𝑡 − 𝑑)) ,

y (𝑡) = C̃x (𝑡) ,

x (𝑡) = 𝜑 (𝑡) , ∀𝑡 ∈ [−𝑑 0] ,

(7)

where Ã = A + ΔA(𝑡), Ã
𝑑

= A
𝑑
+ ΔA
𝑑
(𝑡), G̃ = G + ΔG(𝑡),

F̃ = F + ΔF(𝑡), C̃ = C + ΔC(𝑡), A = A + BK, C = C + DK,
ΔA(𝑡) = ΔA(𝑡) + BΔK(𝑡), ΔC(𝑡) = ΔC(𝑡) +DΔK(𝑡).

To formulate the problem addressed in this paper, we give
the following definitions first.

Definition 4 (FTB). For given constants 𝑐
1

> 0, 𝛿 >

0, and 𝑇 > 0 and a symmetric matrix R > 0, the closed-
loop system (7) is said to be robust finite-time bounded (FTB)
with respect to (𝑐

1
𝑐
2

𝛿 𝑇 R), if there exists a constant 𝑐
2
>

𝑐
1
, such that the following relation holds for all the external

disturbance w(𝑡):

xT (𝑡
0
)Rx (𝑡

0
) ≤ 𝑐
1
⇒ xT (𝑡)Rx (𝑡) < 𝑐

2
,

∀𝑡
0
∈ [−𝑑 0] , 𝑡 ∈ [0 𝑇] .

(8)

Remark 5. In fact, if the closed-loop system (7) does not
exist the exogenous disturbance input, that is, w(𝑡) = 0, the
concept of FTB reduces to finite-time stable (FTS) [8, 11].That
is to say, a system is FTB, if given a bound initial condition
and characterization of the set of admissible inputs, then the
system states remain below the prescribed limit for all inputs
in the bounded set.

Definition 6. The state-feedback controller (5) is said to
be a nonfragile robust finite-time 𝐿

2
-𝐿
∞

controller with
disturbance attenuation 𝛾 > 0 for system (1) if the closed-
loop system (7) is FTB in the sense of Definition 4, and there
exists a positive real constant 𝛾 > 0 such that

y (𝑡)


2

∞
≤ 𝛾
2
‖w (𝑡)‖

2

2
, (9)

where ‖y(𝑡)‖2
∞

= sup
𝑡∈[ 0 𝑇 ]

[yT(𝑡)y(𝑡)], ‖w(𝑡)‖
2

2
=

∫
𝑇

0
wT

(𝑡)w(𝑡)d𝑡.

Furthermore, we introduce the following lemmas which
will be used in the development of our main results.

Lemma 7 (see [26]). Let X and Y be real matrices of
appropriate dimensions. For any given scalar 𝜀 > 0 and vectors
x, y ∈ R𝑛, then

2xΤXYy ≤ 𝜀
−1xΤXΤXx + 𝜀yΤYΤYy. (10)

Lemma 8 (see [27]). Let M and N be real matrices of
appropriate dimensions. Then for any matrix F(𝑡) satisfying
FΤ(𝑡)F(𝑡) ≤ I and a scalar 𝜇 > 0,

MF (𝑡)N + [MF (𝑡)N]
Τ
≤ 𝜇
−1MMΤ + 𝜇NΤN. (11)

3. Main Results

In this section, we will solve the problem of nonfragile robust
finite-time 𝐿

2
-𝐿
∞

controller design for a class of Lipschitz
uncertain nonlinear time-delay systems formulated in the
previous section based on LMI approach. The following
results actually present the FTB condition for closed-loop
system (7) with time-delays.

Theorem 9. For given 𝑐
1

> 0, 𝛿 > 0, 𝑇 > 0, 𝜀 > 0, 𝛼 > 0

andweightingmatrices 𝜂
1
, 𝜂
2
,R > 0, the closed-loop controlled

system (7) is FTBwith respect to (𝑐
1

𝑐
2

𝛿 𝑇 R), if there exists
constant 𝑐

2
> 0, symmetric positive- definite matrices P and

Q > 2𝜀𝜂
Τ

2
𝜂
2
, such that

Ω
1
= [

[

Π
11

PÃ
𝑑

PG̃
∗ Π

22
0

∗ ∗ −𝛼I
]

]

< 0, (12)

𝑐
1
(𝜆
1
+ 𝑑𝜆
3
) + 𝛿 (1 − 𝑒

−𝛼𝑇
) < 𝜆
2
𝑐
2
𝑒
−𝛼𝑇

, (13)

whereΠ
11

= ÃΤP+PÃ+Q−𝛼P+2𝜀𝜂
Τ

1
𝜂
1
+𝜀
−1PF̃F̃ΤP, Π

22
=

−Q + 2𝜀𝜂
Τ

2
𝜂
2
, P̃ = R−1/2PR−1/2, Q̃ = R−1/2QR−1/2, 𝜆

1
=

𝜆max(P̃), 𝜆2 = 𝜆min(P̃), 𝜆3 = 𝜆max(Q̃).

Proof. Choose a Lyapunov function candidate V(x(𝑡)) as

V (x (𝑡)) = xT (𝑡)Px (𝑡) + ∫

𝑡

𝑡−𝑑

xT (𝜏)Qx (𝜏) d𝜏. (14)



4 Abstract and Applied Analysis

Along the trajectories of system (7), the corresponding time
derivation of V(x(𝑡)) is given by

V̇ (x (𝑡)) = ẋT (𝑡)Px (𝑡) + xT (𝑡)Pẋ (𝑡) + [xT (𝜏)Qx (𝜏)]
𝑡

𝑡−𝑑

= xT (𝑡) (ÃTP + PÃ +Q) x (𝑡)

+ xT (𝑡)PÃ
𝑑
x (𝑡 − 𝑑) + xT (𝑡 − 𝑑) ÃT

𝑑
Px (𝑡)

+ xT (𝑡)PG̃w (𝑡) + wT
(𝑡) G̃TPx (𝑡)

− xT (𝑡 − 𝑑)Qx (𝑡 − 𝑑)

+ 2fT (x (𝑡) , x (𝑡 − 𝑑)) F̃TPx (𝑡) .

(15)

Using Assumption 2, we have

‖f (x (𝑡) , x (𝑡 − 𝑑))‖
2
≤ 2

𝜂1x (𝑡)


2

+ 2
𝜂2x (𝑡 − 𝑑)



2

. (16)

Considering Lemma 7, we can obtain the following relation
for any given scalar 𝜀 > 0

2fT (x (𝑡) , x (𝑡 − 𝑑)) F̃TPx (𝑡)

≤ 𝜀fT (x (𝑡) , x (𝑡 − 𝑑)) f (x (𝑡) , x (𝑡 − 𝑑))

+ 𝜀
−1xT (𝑡)PF̃F̃TPx (𝑡)

≤ xT (𝑡) (2𝜀𝜂
T
1
𝜂
1
+ 𝜀
−1PF̃F̃TP) x (𝑡)

+ xT (𝑡 − 𝑑) (2𝜀𝜂
T
2
𝜂
2
) x (𝑡 − 𝑑) .

(17)

Hence, relation (15) can be rewritten as

V̇ (x (𝑡))

≤ xT (𝑡) (ÃTP + PÃ +Q + 2𝜀𝜂
T
1
𝜂
1
+ 𝜀
−1PF̃F̃TP) x (𝑡)

+ xT (𝑡)PÃ
𝑑
x (𝑡 − 𝑑) + xT (𝑡 − 𝑑) ÃT

𝑑
Px (𝑡)

+ xT (𝑡)PG̃w (𝑡) + wT
(𝑡) G̃TPx (𝑡)

+ xT (𝑡 − 𝑑) (−Q + 2𝜀𝜂
T
2
𝜂
2
) x (𝑡 − 𝑑) .

(18)

Define the following function:

J
1
= V̇ (x (𝑡)) − 𝛼V (𝑥 (𝑡)) − 𝛼wT

(𝑡)w (𝑡) . (19)

Considering (18) and (14), we obtain

J
1
+ 𝛼∫

𝑡

𝑡−𝑑

xT (𝜏)Qx (𝜏) d𝜏 = 𝜁
T
Ω
1
𝜁 < 0, (20)

where 𝜁 = [xT(𝑡) xT(𝑡 − 𝑑) wT
(𝑡)]

T.
According to 𝛼 > 0 and Q > 0, inequality (20) implies

J
1
< 0. Thus, by using (19), we get

V̇ (x (𝑡)) < 𝛼V (x (𝑡)) + 𝛼wT
(𝑡)w (𝑡) . (21)

Pre- and postmultiplying (20) by 𝑒
−𝛼𝑡, it yields

d
d𝑡

(𝑒
−𝛼𝑡V (x (𝑡))) < 𝛼𝑒

−𝛼𝑡wT
(𝑡)w (𝑡) . (22)

Integrating the aforementioned inequality between 0 and 𝑡, it
follows that

𝑒
−𝛼𝑡V (x (𝑡)) − V (x (0)) < 𝛼∫

𝑡

0

𝑒
−𝛼𝑠wT

(𝑠)w (𝑠) d𝑠. (23)

Then, the above inequality is equivalent to

V (x (𝑡)) < 𝑒
𝛼𝑡V (x (0)) + 𝛼𝑒

𝛼𝑡
∫

𝑡

0

𝑒
−𝛼𝑠wT

(𝑠)w (𝑠) d𝑠. (24)

Noting that P̃ = R−1/2PR−1/2, Q̃ = R−1/2QR−1/2, it follows
from (14) that

𝑒
𝛼𝑡V (x (0)) + 𝛼𝑒

𝛼𝑡
∫

𝑡

0

𝑒
−𝛼𝑠wT

(𝑠)w (𝑠) d𝑠

= 𝑒
𝛼𝑡xT (0)Px (0) + 𝑒

𝛼𝑡
∫

0

−𝑑

xT (𝜏)Qx (𝜏) d𝜏

+ 𝛼𝑒
𝛼𝑡

∫

𝑡

0

𝑒
−𝛼𝑠wT

(𝑠)w (𝑠) d𝑠

≤ 𝑒
𝛼𝑇

𝜆max (P̃) 𝑐
1
+ 𝑒
𝛼𝑇

𝑑𝜆max (Q̃) 𝑐
1
+ 𝛿𝑒
𝛼𝑇

(1 − 𝑒
−𝛼𝑇

)

= 𝑒
𝛼𝑇

[𝑐
1
(𝜆
1
+ 𝑑𝜆
3
) + 𝛿 (1 − 𝑒

−𝛼𝑇
)] .

(25)

On the other hand, the following condition holds:

V (x (𝑡)) = xT (𝑡)Px (𝑡) + ∫

𝑡

𝑡−𝑑

xT (𝜏)Qx (𝜏) d𝜏

≥ xT (𝑡)Px (𝑡) ≥ 𝜆min (P̃) xT (𝑡)Rx (𝑡)

= 𝜆
2
xT (𝑡)Rx (𝑡) .

(26)

Combining (24), (25), and (26), we can get

xT (𝑡)Rx (𝑡) ≤

𝑐
1
(𝜆
1
+ 𝑑𝜆
3
) + 𝛿 (1 − 𝑒

−𝛼𝑇
)

𝜆
2
𝑒
−𝛼𝑇

. (27)

Recalling condition (13), it implies that for ∀𝑡 ∈ [0 𝑇],
xT(𝑡)Rx(𝑡) < 𝑐

2
. This completes the proof.

Remark 10. Without the time-delay in the resulted closed-
loop system (7), the system will reduce to the system which
has been investigated in [25, 28]. In this case, one can get the
sufficient conditions of FTB for the aforementioned system
from Theorem 9 via a simple transformation. Furthermore,
if there is also no nonlinear function in the aforementioned
system, then Theorem 9 reduces to a form which has been
given in [8, Lemma 6] or [13, Lemma 1].

Theorem 9 gives the sufficient condition of FTB for the
resulting closed-loop controlled system (7). Then, we will
apply the results in Theorem 11 to solve the problem of
nonfragile robust finite-time 𝐿

2
-𝐿
∞

controller design.
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Theorem 11. For given 𝑐
1

> 0, 𝛿 > 0, 𝑇 > 0, 𝜀 > 0,
𝛼 > 0, and weighting matrices 𝜂

1
, 𝜂
2
, R > 0, the closed-

loop system (7) is FTB with respect to (𝑐
1

𝑐
2

𝛿 𝑇 R) and
satisfies the cost function (9) for all admissible w(t) with the
constraint condition and all admissible uncertainties, if there
exist constants 𝑐

2
> 0, 𝛽 > 0, symmetric positive-definite

matrices P and Q > 2𝜀𝜂
T
2
𝜂
2
, such that conditions (12), (13),

and the following inequality hold:

Ω
2
= [

−P C̃ T

∗ −𝛽I
] < 0. (28)

Proof. Defining the same Lyapunov function as Theorem 9.
Under the zero initial state condition 𝜑(𝑡) = 0, 𝑡 ∈ [−𝑑 0],
we can rewrite (24) as

V (x (𝑡)) < 𝛼𝑒
𝛼𝑡

∫

𝑡

0

𝑒
−𝛼𝑠wT

(𝑠)w (𝑠) d𝑠. (29)

Hence, from (14) and ∀𝑡 ∈ [0 𝑇], we can get

xT (𝑡)Px (𝑡) < V (x (𝑡))

< 𝛼𝑒
𝛼𝑡

∫

𝑡

0

𝑒
−𝛼𝑠wT

(𝑠)w (𝑠) d𝑠

< 𝛼𝑒
𝛼𝑇

∫

𝑇

0

wT
(𝑡)w (𝑡) d𝑡.

(30)

Furthermore, from (28) and using Schur complement, we
have

C̃TC̃ < 𝛽P. (31)

Then, it follows

yT (𝑡) y (𝑡) = xT (𝑡) C̃TC̃x (𝑡)

< 𝛽xT (𝑡)Px (𝑡) < 𝛽𝛼𝑒
𝛼𝑇

∫

𝑇

0

wT
(𝑡)w (𝑡) d𝑡.

(32)

Taking themaximumvalue of ‖y(𝑡)‖2
∞
, we have ‖y(𝑡)‖2

∞
<

𝛽𝛼𝑒
𝛼𝑇

‖w(𝑡)‖
2

2
with 𝑡 ∈ [0 𝑇]. Therefore, condition (9) can be

guaranteed by letting 𝛾 = √𝛽𝛼𝑒
𝛼𝑇. This completes the proof.

In order to solve Theorem 11, we can obtain the relevant
algorithm by imposing further LMI constraints in the design
phase. Substituting the corresponding matrices into matrix
inequalities (12), (13), and (28), we can draw the following
Theorem 12.

Theorem 12. For given 𝑐
1

> 0, 𝛿 > 0, 𝑇 > 0, 𝜀 >

0, 𝛼 > 0, and weighting matrices 𝜂
1
, 𝜂
2
, R > 0, the closed-

loop system (7) is FTB with respect to (𝑐
1

𝑐
2

𝛿 𝑇 R), exists
a nonfragile state-feedback controller gain K = YX−1, and
satisfies the cost function (9) for all admissible w(t) with the
constraint condition and all admissible uncertainties, if there
exist positive constants 𝑐

2
, 𝛽, 𝜇

1
, 𝜇
2
, 𝜇
3
, and 𝜇

4
, symmetric

positive- definite matricesX,Q, and Z, and real matrixY, such
that the following LMIs hold:

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
11

A
𝑑

G X𝜂 T
1

F XS T
1

XN T

∗ −Q 0 𝜂
T
2

0 S T
2

0

∗ ∗ −𝛼I 0 0 S T
3

0

∗ ∗ ∗ −
1

2
𝜀
−1I 0 0 0

∗ ∗ ∗ ∗ −𝜀I S T
4

0
∗ ∗ ∗ ∗ ∗ −𝜇

1
I 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜇
2
I

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (33)

[
[
[

[

−X Σ
12

XS T
1

XN T

∗ Σ
22

0 0
∗ ∗ −𝜇

3
I 0

∗ ∗ ∗ −𝜇
4
I

]
]
]

]

< 0, (34)

𝜎
1
R−1 < X < R−1, (35)

0 < Q < 𝜎
2
R, (36)

[
𝑐
1
𝑑𝜎
2
+ 𝛿 (1 − 𝑒

−𝛼𝑇
) − 𝑐
2
𝑒
−𝛼𝑇

√𝑐
1

√𝑐
1

−𝜎
1

] < 0, (37)

whereΣ
11

= XA T
+AX+Z−𝛼X+𝜇

1
M
1
M T
1

+𝜇
2
BHH T B T

+

BY+Y T B T
, Σ
12

= XC T
+Y T D T

, Σ
22

= −𝛽I+𝜇
3
M
2
M T
2

+

𝜇
4
DHH T D T .

Proof. In order to deal with the uncertainties in inequality
(12), we can rewrite it as the following inequality:

Ω̃
1
=

[
[
[
[
[
[
[
[

[

Π̃
11

PÃ
𝑑

PG̃ 𝜂
T
1

PF̃

∗ −Q 0 𝜂
T
2

0

∗ ∗ −𝛼I 0 0
∗ ∗ ∗ −

1

2
𝜀
−1I 0

∗ ∗ ∗ ∗ −𝜀I

]
]
]
]
]
]
]
]

]

< 0, (38)

where Π̃
11

= ÃTP + PÃ +Q − 𝛼I.
Thus, the aforementioned inequality (38) is equivalent to

Ω̃
1
= Ω
1
+Ω
1Δ

< 0, (39)

where

Ω
1
=

[
[
[
[
[
[
[
[

[

Π
11

PA
𝑑

PG 𝜂
T
1

PF

∗ −Q 0 𝜂
T
2

0

∗ ∗ −𝛼I 0 0
∗ ∗ ∗ −

1

2
𝜀
−1I 0

∗ ∗ ∗ ∗ −𝜀I

]
]
]
]
]
]
]
]

]

,

Π
11

= ATP + PA +Q − 𝛼I,
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Ω
1Δ

=

[
[
[
[
[
[
[

[

ΔΠ
11

PΔA
𝑑
(𝑡) PΔG (𝑡) 0 PΔF (𝑡)

∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

]
]
]
]
]
]
]

]

,

ΔΠ
11

= ΔAT
(𝑡)P + PΔA (𝑡) .

(40)

Moreover, noticing the uncertainties which were
described as the form in (2) and (6), we have

Ω
1Δ

= J
1
Γ (𝑡) L

1
+ [J
1
Γ (𝑡) L

1
]
T
+ J
2
𝜌 (𝑡) L

2
+ [J
2
𝜌 (𝑡) L

2
]
T
,

(41)

where

J
1
=

[
[
[
[
[
[
[

[

PM
1

0
0
0
0

]
]
]
]
]
]
]

]

, L
1
= [S1 S

2
S
3
0 S
4]

J
2
=

[
[
[
[
[
[
[

[

PBH
0
0
0
0

]
]
]
]
]
]
]

]

, L
2
= [N 0 0 0 0] .

(42)

Using Lemma 8, it follows from (41) that

Ω
1Δ

= J
1
Γ (𝑡) L

1
+ (J
1
Γ (𝑡) L

1
)
T
+ J
2
𝜌 (𝑡) L

2
+ (J
2
𝜌 (𝑡) L

2
)
T

≤ 𝜇
1
J
1
JT
1
+ 𝜇
−1

1
LT
1
L
1
+ 𝜇
2
J
2
JT
2
+ 𝜇
−1

2
LT
2
L
2
.

(43)

Thus, inequality (39) can be guaranteed by

Ω
1
+ 𝜇
1
J
1
JT
1
+ 𝜇
−1

1
LT
1
L
1
+ 𝜇
2
J
2
JT
2
+ 𝜇
−1

2
LT
2
L
2
< 0. (44)

Rewriting inequality (44) and applying Schur complement,
we have

Ω̂
1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Π̂
11

PA
𝑑

PG 𝜂
T
1

PF ST
1

NT

∗ −Q 0 𝜂
T
2

0 ST
2

0

∗ ∗ −𝛼I 0 0 ST
3

0

∗ ∗ ∗ −
1

2
𝜀
−1I 0 0 0

∗ ∗ ∗ ∗ −𝜀I ST
4

0
∗ ∗ ∗ ∗ ∗ −𝜇

1
I 0

∗ ∗ ∗ ∗ ∗ ∗ −𝜇
2
I

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(45)

where Π̂
11

= ATP+PA+Q−𝛼I+𝜇
1
PM
1
MT
1
P+𝜇
2
PBHHTBTP.

On the other hand, considering the uncertainties in
inequality (34), we have

Ω
2
= Ω
2
+Ω
2Δ

< 0, (46)

whereΩ
2
= [ −P CT

∗ −𝛽I ],Ω2Δ = [ 0 ΔCT
(𝑡)

∗ 0
].

AndΩ
2Δ

can be expressed as

Ω
2Δ

= J
3
Γ (𝑡) L

3
+ (J
3
Γ (𝑡) L

3
)
T
+ J
4
𝜌 (𝑡) L

4
+ (J
4
𝜌 (𝑡) L

4
)
T
,

(47)

where J
3
= [

0
M2 ], L3 = [S

1
0], J
4
= [

0
DH ], L

4
= [N 0].

Using Lemma 8, we know the following inequality holds
by real positive scalars 𝜇

3
and 𝜇

4
:

Ω
2Δ

= J
3
Γ (𝑡) L

3
+ (J
3
Γ (𝑡) L

3
)
T
+ J
4
𝜌 (𝑡) L

4
+ (J
4
𝜌 (𝑡) L

4
)
T

≤ 𝜇
3
J
3
JT
3
+ 𝜇
−1

3
LT
3
L
3
+ 𝜇
4
J
4
JT
4
+ 𝜇
−1

4
LT
4
L
4
.

(48)

Hence, inequality (46) holds by the following inequality:

Ω
2
+ 𝜇
3
J
3
JT
3
+ 𝜇
−1

3
LT
3
L
3
+ 𝜇
4
J
4
JT
4
+ 𝜇
−1

4
LT
4
L
4
< 0. (49)

Rewriting (49) and using Schur complement, we have

Ω̂
2
=

[
[
[

[

−P Λ
12

ST
1

NT

∗ Σ
22

0 0
∗ ∗ −𝜇

3
I 0

∗ ∗ ∗ −𝜇
4
I

]
]
]

]

, (50)

where Λ
12

= CT
+ KTDT.

Define X = P−1, Y = KX, Z = XQX, pre- and
postmultiplying inequality (45) by block-diagonal matrix
diag{P−1 I I I I I I}, and pre- and postmultiplying
inequality (50) by a block-diagonal matrix diag{P−1 I I I}.
They lead to LMIs (33) and (34).

Finally, denote X̃ = R1/2XR1/2, Q̃ = R−1/2QR−1/2, and set
𝜎
1

≤ 𝜆min(X̃), 𝜆max(X̃) < 1, 𝜆max(Q̃) ≤ 𝜎
2
, and consider

𝜆max(X̃) = 1/𝜆min(P̃).
Then, inequality (13) can be guaranteed by

𝑐
1

𝜎
1

+ 𝑐
1
𝑑𝜎
2
+ 𝛿 (1 − 𝑒

−𝛼𝑇
) < 𝑐
2
𝑒
−𝛼𝑇

. (51)

Using the Schur complement and eigenvalue transformation,
we can get LMIs (35)–(37) from inequality (51). This com-
pletes the proof.

Remark 13. Notice that 𝛾 = √𝛽𝛼𝑒
𝛼𝑇; if 𝛼 and 𝑇 have

been given, the value of system 𝐿
2
-𝐿
∞

performance 𝛾 only
depends on 𝛽. Hence, we can obtain an optimal nonfragile
robust finite-time 𝐿

2
-𝐿
∞

controller, and the scalar 𝛽 can
reduce to the minimum possible value such that LMIs (33)–
(37) are satisfied.The optimization problem can be described
as follows:

min
X,Y,Q,𝑐2,𝛽,𝜇1,𝜇2,𝜇3,𝜇4,𝜎1 ,𝜎2

𝛾

s.t. LMIs (33)–(37) with 𝛾 = √𝛽𝛼𝑒
𝛼𝑇

.

(52)
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Figure 1: The trajectories of uncontrolled system state x(𝑡).

0 5 10 15 20 25
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time

Case 1 
Case 2 

St
at

ex
1

Figure 2: The trajectories of the controlled system state x
1
(𝑡).

Remark 14. When the controller gain variations of the Lip-
schitz nonlinear systems (1) are of the multiplicative form
[6, 18]:

ΔK (𝑡) = H𝜌 (𝑡)NK, 𝜌
T
(𝑡)𝜌 (𝑡) ≤ I (53)

withH andN being known constant matrices, and 𝜌(𝑡) is the
uncertain parameter matrix. In this case, the sufficient con-
ditions for the nonfragile robust finite-time 𝐿

2
-𝐿
∞

control
of the nonlinear systems (1) are identical to LMIs (33)–(37),
except thatXNT,NX are changed toYTNT,NY in inequalities
(33) and (34), respectively. The proof of this conclusion is
similar to Theorem 12.

Remark 15. By using the MATLAB LMIs Toolbox, the feasi-
bility of Theorem 12 and Remark 3 can be easily checked. In
Section 4, a simulation example about the Lipschitz nonlinear
systems with state delays will be given.

4. Simulation Example

Consider system (1) with the following parameters:

A = [
−1.0 2.0

0.5 −1.2
] , A

𝑑
= [

−1.0 0.5

1.2 0.4
] ,

B = [
1.0

0.8
] , G = [

0.4

0.3
] , F = [

0.6 −0.3

1.0 0.4
] ,

C = [1.5 1.7] , D = [1.5] , M
1
= [

1.0

−0.8
] .

M
2
= [0.6] , S

1
= [1.2 0.6] , S

2
= [0.7 1.0]

S
3
= [0.9] , S

4
= [0.4 1.1] .

(54)

In addition, we set 𝑐
1

= 0.5, 𝛿 = 1, 𝑇 = 4, 𝜀 = 1.2, 𝛼 =

0.5, 𝑑 = 0.2, and R = [
1.2 0.4

0.4 0.8
]. The nonlinear function part

in system (1) is chosen as the following form:

f (x (𝑡) , x (𝑡 − 𝑑)) = [
0.3 sin𝑥

1
(𝑡) + 0.5 sin𝑥

1
(𝑡 − 𝑑)

0.4 sin𝑥
2
(𝑡 − 𝑑)

] .

(55)

Then, for any x(𝑡) = [𝑥
1

𝑥
2
]
T and x(𝑡 − 𝑑) = [𝑥

1𝑑
𝑥
2𝑑
]
T

∈

R2, we have

‖f (x (𝑡) , x (𝑡 − 𝑑))‖
2
= 0.09sin2𝑥

1
+ 0.25sin2𝑥

1𝑑

+ 0.3 sin𝑥
1
sin𝑥
1𝑑

+ 0.16sin2𝑥
2𝑑

≤ 2 (0.12𝑥
2

1
+ 0.2𝑥

2

1𝑑
+ 0.08𝑥

2

2𝑑
) .

(56)

According to (16), we select the weighting matrices as follows

𝜂
1
= [

√0.12 0

0 0
] , 𝜂

2
= [

√0.2 0

0 √0.08
] . (57)

Remark 16. It is necessary to point out that the selection
of the above weighting matrices not only needs to satisfy
Assumption 2 but also needs to ensure that the LMI (33) is
feasible. Namely, the LMIs designed in this note actually put
a constraint on the size of the above weighting matrices.

By resorting to MATLAB LMIs Toolbox, solving
Theorem 12 and Remark 13, respectively, we can obtain the
following solutions under the above two cases.

Case 1. Let H = [0.3], N = [0.3 0.2], 𝜌(𝑡) = (0.5/(1 + 𝑡
2
))I,

Γ(𝑡) = 0.8 sin(𝑡)I. SolvingTheorem 12, which considering the
additive controller gain variation, we get

X = [
0.6336 −0.3118

−0.3118 0.9425
] , Y = [−0.2802 −0.7564] ,

K = YX−1 = [−1.0000 −1.1333] ,

(58)

with scalars value 𝛽 = 45.4950, 𝛾 = 12.9647, and 𝑐
2

=

86.0363.
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Figure 3: The trajectories of the controlled system state x
2
(𝑡).
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Figure 4: The trajectories of the controlled system output y(𝑡).

Case 2. Let H = [0.3], N = [0.5], 𝜌(𝑡) = (0.5/(1 + 𝑡
2
))I, and

Γ(𝑡) = 0.8 sin(𝑡)I. Solving Remark 13, which is considering
the multiplicative controller gain variation, we get

X = [
0.6356 −0.3100

−0.3100 0.9439
] , Y = [−0.2644 −0.6864] ,

K = YX−1 = [−0.9176 −1.0285] ,

(59)

with scalars value 𝛽 = 45.5722, 𝛾 = 12.9757, and 𝑐
2

=

86.1562.

In this note, with the initial states x
0
= [0.5 0.2]

𝑇 and the
disturbance input is chosen as

w (𝑡) =
0.6 sin (20𝑡)

1 + 𝑡
2

, 𝑡 ≥ 0, (60)

The trajectories of uncontrolled system state x(𝑡) are
depicted as Figure 1. The states and output simulation curves
of closed-loop controlled system are, respectively, shown in
Figures 2, 3, and 4 with the simulation time 𝑡 ∈ [0 25].
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Figure 5: The response of the controlled system for xT(𝑡)Rx(𝑡) (𝑡 ∈

[ 0 𝑇 ]).

Figure 5 shows the evolution of xT(𝑡)Rx(𝑡) (𝑡 ∈ [0 4]) of the
controlled system (7).

By calculation, we have ‖y(𝑡)‖
∞
/‖w(𝑡)‖

2
= 0.5995 (Case

1) and ‖y(𝑡)‖
∞
/‖w(𝑡)‖

2
= 0.7053 (Case 2). According to

the above computing results and the simulation results, one
can know that the nonfragile state feedback controller which
was designed in this note can effectively guarantee that the
concerned system (1) not only is finite-time bounded in
fixed finite-time interval 𝑡 ∈ [0 4] but also with an 𝐿

2
-𝐿
∞

disturbance performance level.

Remark 17. It should be pointed out that in the simulation
example, according to Definition 4, as long as the choice of
𝑐
1
with the initial states is satisfied to ‖xT0Rx0‖ ≤ 𝑐

1
. Then,

the nonfragile state feedback controlled system is FTB (i.e.,
the closed-loop system trajectories staywithin a given bound)
and satisfies the 𝐿

2
-𝐿
∞

constraint condition (9).

5. Conclusions

In this paper, we have studied the nonfragile robust finite-
time 𝐿

2
-𝐿
∞
control problem for a class of uncertain Lipschitz

nonlinear systems with time-delays. By using the Lyapunov
function approach and linear matrix inequality techniques,
a sufficient condition for the existence of nonfragile robust
finite-time 𝐿

2
-𝐿
∞

controller has been derived. Based on
this condition, an optimization algorithm is provided to find
nonfragile optimal control. Finally, a simulation example is
presented to illustrate the effectiveness and applicability of the
proposed approach.
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