
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 275915, 12 pages
http://dx.doi.org/10.1155/2013/275915

Research Article
On the Stability of Trigonometric Functional Equations in
Distributions and Hyperfunctions

Jaeyoung Chung1 and Jeongwook Chang2

1 Department of Mathematics, Kunsan National University, Kunsan 573-701, Republic of Korea
2Department of Mathematics Education, Dankook University, Yongin 448-701, Republic of Korea

Correspondence should be addressed to Jeongwook Chang; jchang@dankook.ac.kr

Received 6 February 2013; Accepted 10 April 2013

Academic Editor: Adem Kılıçman
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We consider the Hyers-Ulam stability for a class of trigonometric functional equations in the spaces of generalized functions such
as Schwartz distributions and Gelfand hyperfunctions.

1. Introduction

Hyers-Ulam stability problems of functional equations go
back to 1940 when Ulam proposed the following question [1].

Let 𝑓 be a mapping from a group𝐺
1
to a metric group𝐺

2

with metric 𝑑(⋅, ⋅) such that

𝑑 (𝑓 (𝑥𝑦) , 𝑓 (𝑥) 𝑓 (𝑦)) ≤ 𝜖. (1)

Then does there exist a group homomorphism ℎ and 𝛿
𝜖
>

0 such that

𝑑 (𝑓 (𝑥) , ℎ (𝑥)) ≤ 𝛿
𝜖 (2)

for all 𝑥 ∈ 𝐺
1
?

This problem was solved affirmatively by Hyers [2] under
the assumption that 𝐺

2
is a Banach space. After the result of

Hyers, Aoki [3] and Bourgin [4, 5] treated with this problem;
however, there were no other results on this problem until
1978 when Rassias [6] treated again with the inequality
of Aoki [3]. Generalizing Hyers’ result, he proved that if
a mapping 𝑓 : 𝑋 → 𝑌 between two Banach spaces
satisfies
𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

 ≤ Φ (𝑥, 𝑦) , for 𝑥, 𝑦 ∈ 𝑋
(3)

with Φ(𝑥, 𝑦) = 𝜖(‖𝑥‖𝑝 + ‖𝑦‖𝑝) (𝜖 ≥ 0, 0 ≤ 𝑝 < 1), then
there exists a unique additive function 𝐴 : 𝑋 → 𝑌 such

that ‖𝑓(𝑥) − 𝐴(𝑥)‖ ≤ 2𝜖|𝑥|𝑝/(2 − 2𝑝) for all 𝑥 ∈ 𝑋. In 1951
Bourgin [4, 5] stated that if Φ is symmetric in ‖𝑥‖ and ‖𝑦‖
with ∑∞

𝑗=1
Φ(2𝑗𝑥, 2𝑗𝑥)/2𝑗 < ∞ for each 𝑥 ∈ 𝑋, then there

exists a unique additive function 𝐴 : 𝑋 → 𝑌 such that
‖𝑓(𝑥) − 𝐴(𝑥)‖ ≤ ∑

∞

𝑗=1
Φ(2𝑗𝑥, 2𝑗𝑥)/2𝑗 for all 𝑥 ∈ 𝑋. Unfor-

tunately, there was no use of these results until 1978 when
Rassias [7] treated with the inequality of Aoki [3]. Following
Rassias’ result, a great number of papers on the subject have
been published concerning numerous functional equations
in various directions [6–10, 10–25]. In 1990 Székelyhidi
[24] has developed his idea of using invariant subspaces of
functions defined on a group or semigroup in connection
with stability questions for the sine and cosine functional
equations. We refer the reader to [9, 10, 18, 19, 25] for
Hyers-Ulam stability of functional equations of trigonomet-
ric type. In this paper, following the method of Székelyhidi
[24] we consider a distributional analogue of the Hyers-
Ulam stability problem of the trigonometric functional
inequalities

𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) 𝑔 (𝑦) + 𝑔 (𝑥) 𝑓 (𝑦)
 ≤ 𝜓 (𝑦) ,

𝑔 (𝑥 − 𝑦) − 𝑔 (𝑥) 𝑔 (𝑦) − 𝑓 (𝑥) 𝑓 (𝑦)
 ≤ 𝜓 (𝑦) ,

(4)

where 𝑓, 𝑔 : R𝑛 → C and 𝜓 : R𝑛 → [0,∞) is a continuous
function. As a distributional version of the inequalities (4), we
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consider the inequalities for the generalized functions 𝑢, V ∈
G(R𝑛) (resp., S(R𝑛)),

𝑢 ∘ (𝑥 − 𝑦) − 𝑢𝑥 ⊗ V
𝑦
+ V
𝑥
⊗ 𝑢
𝑦

 ≤ 𝜓 (𝑦) ,

V ∘ (𝑥 − 𝑦) − V
𝑥
⊗ V
𝑦
− 𝑢
𝑥
⊗ 𝑢
𝑦

 ≤ 𝜓 (𝑦) ,
(5)

where ∘ and ⊗ denote the pullback and the tensor product of
generalized functions, respectively, and 𝜓 : R𝑛 → [0,∞)
denotes a continuous infraexponential function of order 2
(resp., a function of polynomial growth). For the proof we
employ the tensor product 𝐸

𝑡
(𝑥)𝐸
𝑠
(𝑦) of 𝑛-dimensional heat

kernel

𝐸
𝑡
(𝑥) = (4𝜋𝑡)

−𝑛/2 exp(−|𝑥|
2

4𝑡
) , 𝑥 ∈ R

𝑛, 𝑡 > 0. (6)

For the first step, convolving 𝐸
𝑡
(𝑥)𝐸
𝑠
(𝑦) in both sides of

(5) we convert (5) to the Hyers-Ulam stability problems of
trigonometric-hyperbolic type functional inequalities, respec-
tively,
𝑈 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑈 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) + 𝑉 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠)



≤ Ψ (𝑦, 𝑠) ,

𝑉 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑉 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) − 𝑈 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠)


≤ Ψ (𝑦, 𝑠) ,

(7)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0, where𝑈,𝑉 are the Gauss transforms
of 𝑢, V, respectively, given by

𝑈 (𝑥, 𝑡) = 𝑢 ∗ 𝐸
𝑡
(𝑥) = ⟨𝑢

𝑦
, 𝐸
𝑡
(𝑥 − 𝑦)⟩ , (8)

𝑉 (𝑥, 𝑡) = V ∗ 𝐸
𝑡
(𝑥) , (9)

which are solutions of the heat equation, and

Ψ (𝑦, 𝑠) = ∫𝜓 (𝜂) 𝐸
𝑠
(𝜂 − 𝑦) 𝑑𝜂 = (𝜓 ∗ 𝐸

𝑠
) (𝑦) . (10)

For the second step, using similar idea of Székelyhidi [24]
we prove the Hyers-Ulam stabilities of inequalities (7). For
the final step, taking initial values as 𝑡 → 0+ for the results
we arrive at our results.

2. Generalized Functions

We first introduce the spaces S of Schwartz tempered
distributions and G of Gelfand hyperfunctions (see [26–
29] for more details of these spaces). We use the notations:
|𝛼| = 𝛼

1
+ ⋅ ⋅ ⋅ + 𝛼

𝑛
, 𝛼! = 𝛼

1
! ⋅ ⋅ ⋅ 𝛼
𝑛
!, |𝑥| = √𝑥2

1
+ ⋅ ⋅ ⋅ + 𝑥2

𝑛
,

𝑥𝛼 = 𝑥
𝛼
1

1
⋅ ⋅ ⋅ 𝑥𝛼𝑛
𝑛
, and 𝜕𝛼 = 𝜕

𝛼
1

1
⋅ ⋅ ⋅ 𝜕𝛼𝑛
𝑛
, for 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) ∈

R𝑛, 𝛼 = (𝛼
1
, . . . , 𝛼

𝑛
) ∈ N𝑛
0
, where N

0
is the set of nonnegative

integers and 𝜕
𝑗
= 𝜕/𝜕𝑥

𝑗
.

Definition 1 (see [29]). One denotes by S or S(R𝑛) the
Schwartz space of all infinitely differentiable functions 𝜑 in
R𝑛 such that

𝜑
𝛼,𝛽 = sup

𝑥

𝑥
𝛼𝜕𝛽𝜑 (𝑥)

 < ∞ (11)

for all 𝛼, 𝛽 ∈ N𝑛
0
, equipped with the topology defined by

the seminorms ‖ ⋅ ‖
𝛼,𝛽

. The elements of S are called rapidly
decreasing functions, and the elements of the dual space S
are called tempered distributions.

Definition 2 (see [26]). One denotes by G or G(R𝑛) the
Gelfand space of all infinitely differentiable functions 𝜑 inR𝑛
such that

𝜑
ℎ,𝑘 = sup

𝑥∈R𝑛,𝛼,𝛽∈N𝑛
0

𝑥
𝛼𝜕𝛽𝜑 (𝑥)



ℎ|𝛼|𝑘|𝛽|𝛼!1/2𝛽!1/2
< ∞ (12)

for some ℎ, 𝑘 > 0. One says that 𝜑
𝑗
→ 0 as 𝑗 → ∞ if

‖𝜑
𝑗
‖
ℎ,𝑘

→ 0 as 𝑗 → ∞ for some ℎ, 𝑘, and one denotes
by G the dual space of G and calls its elements Gelfand
hyperfunctions.

It is well known that the following topological inclusions
hold:

G → S, S
 → G

. (13)

It is known that the space G(R𝑛) consists of all infinitely
differentiable functions 𝜑(𝑥) onR𝑛 which can be extended to
an entire function on C𝑛 satisfying

𝜑 (𝑥 + 𝑖𝑦)
 ≤ 𝐶 exp (−𝑎|𝑥|2 + 𝑏𝑦


2

) , 𝑥, 𝑦 ∈ R
𝑛 (14)

for some 𝑎, 𝑏, and 𝐶 > 0 (see [26]).
By virtue of Theorem 6.12 of [27, p. 134] we have the

following.

Definition 3. Let 𝑢
𝑗
∈ G(R𝑛𝑗) for 𝑗 = 1, 2, with 𝑛

1
≥ 𝑛
2
,

and let 𝜆 : R𝑛1 → R𝑛2 be a smooth function such that,
for each 𝑥 ∈ R𝑛1 , the Jacobian matrix ∇𝜆(𝑥) of 𝜆 at 𝑥 has
rank 𝑛

2
. Then there exists a unique continuous linear map

𝜆∗ : G(R𝑛2) → G(R𝑛1) such that 𝜆∗𝑢 = 𝑢 ∘ 𝜆 when 𝑢
is a continuous function. One calls 𝜆∗𝑢 the pullback of 𝑢 by
𝜆 which is often denoted by 𝑢 ∘ 𝜆.

In particular, let 𝜆 : R2𝑛 → R𝑛 be defined by 𝜆(𝑥, 𝑦) =
𝑥 − 𝑦, 𝑥, 𝑦 ∈ R𝑛. Then in view of the proof of Theorem 6.12
of [27, p. 134] we have

⟨𝑢 ∘ 𝜆, 𝜑 (𝑥, 𝑦)⟩ = ⟨𝑢, ∫𝜑 (𝑥 − 𝑦, 𝑦) 𝑑𝑦⟩ . (15)

Definition 4. Let 𝑢
𝑥
∈ G(R𝑛1), 𝑢

𝑦
∈ G(R𝑛2). Then the

tensor product 𝑢
𝑥
⊗ 𝑢
𝑦
of 𝑢
𝑥
and 𝑢

𝑦
, defined by

⟨𝑢
𝑥
⊗ 𝑢
𝑦
, 𝜑 (𝑥, 𝑦)⟩ = ⟨𝑢

𝑥
, ⟨𝑢
𝑦
, 𝜑 (𝑥, 𝑦)⟩⟩ (16)

for 𝜑(𝑥, 𝑦) ∈ G(R𝑛1 ×R𝑛2), belongs toG(R𝑛1 ×R𝑛2).

For more details of pullback and tensor product of
distributions we refer the reader to Chapter V-VI of [27].

3. Main Theorems

Let 𝑓 be a Lebesgue measurable function on R𝑛. Then 𝑓
is said to be an infraexponential function of order 2 (resp.,
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a function of polynomial growth) if for every 𝜖 > 0 there exists
𝐶
𝜖
> 0 (resp., there exist positive constants 𝐶,𝑁, and 𝑑) such

that
𝑓 (𝑥)

 ≤ 𝐶𝜖𝑒
𝜖|𝑥|
2

[resp. ≤ 𝐶|𝑥|𝑁 + 𝑑] (17)

for all 𝑥 ∈ R𝑛. It is easy to see that every infraexponential
function 𝑓 of order 2 (resp., every function of polynomial
growth) defines an element ofG(R𝑛) (resp.,S(R𝑛)) via the
correspondence

⟨𝑓, 𝜑⟩ = ∫𝑓 (𝑥) 𝜑 (𝑥) 𝑑𝑥 (18)

for 𝜑 ∈ G(R𝑛) (resp.S(R𝑛)).
Let 𝑢, V ∈ G(R𝑛) (resp.,S(R𝑛)). We prove the stability

of the following functional inequalities:
𝑢 ∘ (𝑥 − 𝑦) − 𝑢𝑥 ⊗ V

𝑦
+ V
𝑥
⊗ 𝑢
𝑦

 ≤ 𝜓 (𝑦) , (19)
V ∘ (𝑥 − 𝑦) − V

𝑥
⊗ V
𝑦
− 𝑢
𝑥
⊗ 𝑢
𝑦

 ≤ 𝜓 (𝑦) , (20)

where ∘ and ⊗ denote the pullback and the tensor product
of generalized functions, respectively, 𝜓 : R𝑛 → [0,∞)
denotes a continuous infraexponential functional of order
2 (resp. a continuous function of polynomial growth) with
𝜓(0) = 0, and ‖ ⋅ ‖ ≤ 𝜓 means that |⟨⋅, 𝜑⟩| ≤ ‖𝜓𝜑‖

𝐿
1 for all

𝜑 ∈ G(R𝑛) (resp.,S(R𝑛)).
In view of (14) it is easy to see that the 𝑛-dimensional heat

kernel

𝐸
𝑡
(𝑥) = (4𝜋𝑡)

−𝑛/2 exp(−|𝑥|
2

4𝑡
) , 𝑡 > 0, (21)

belongs to the Gelfand space G(R𝑛) for each 𝑡 > 0. Thus the
convolution (𝑢 ∗ 𝐸

𝑡
)(𝑥) : = ⟨𝑢

𝑦
, 𝐸
𝑡
(𝑥 − 𝑦)⟩ is well defined for

all 𝑢 ∈ G(R𝑛). It is well known that 𝑈(𝑥, 𝑡) = (𝑢 ∗ 𝐸
𝑡
)(𝑥)

is a smooth solution of the heat equation (𝜕/𝜕
𝑡
− Δ)𝑈 = 0 in

{(𝑥, 𝑡) : 𝑥 ∈ R𝑛, 𝑡 > 0} and (𝑢 ∗ 𝐸
𝑡
)(𝑥) → 𝑢 as 𝑡 → 0+ in the

sense of generalized functions that is, for every 𝜑 ∈ G(R𝑛),

⟨𝑢, 𝜑⟩ = lim
𝑡→0
+

∫ (𝑢 ∗ 𝐸
𝑡
) (𝑥) 𝜑 (𝑥) 𝑑𝑥. (22)

We call (𝑢 ∗ 𝐸
𝑡
)(𝑥) the Gauss transform of 𝑢.

A function 𝐴 from a semigroup ⟨𝑆, +⟩ to the field C of
complex numbers is said to be an additive function provided
that 𝐴(𝑥 + 𝑦) = 𝐴(𝑥) + 𝐴(𝑦), and𝑚 : 𝑆 → C is said to be an
exponential function provided that𝑚(𝑥 + 𝑦) = 𝑚(𝑥)𝑚(𝑦).

For the proof of stabilities of (19) and (20) we need the
following.

Lemma 5 (see [15]). Let 𝑆 be a semigroup and C the field of
complex numbers. Assume that 𝑓, 𝑔 : 𝑆 → C satisfy the
inequality; for each 𝑦 ∈ 𝑆 there exists a positive constant 𝑀

𝑦

such that
𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) 𝑔 (𝑦)

 ≤ 𝑀𝑦 (23)

for all 𝑥 ∈ 𝑆. Then either 𝑓 is a bounded function or 𝑔 is an
exponential function.

Proof. Suppose that𝑔 is not exponential.Then there are𝑦, 𝑧 ∈
𝑆 such that 𝑔(𝑦 + 𝑧) ̸= 𝑔(𝑦)𝑔(𝑧). Now we have

𝑓 (𝑥 + 𝑦 + 𝑧) − 𝑓 (𝑥 + 𝑦) 𝑔 (𝑧)

= (𝑓 (𝑥 + 𝑦 + 𝑧) − 𝑓 (𝑥) 𝑔 (𝑦 + 𝑧))

− 𝑔 (𝑧) (𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) 𝑔 (𝑦))

+ 𝑓 (𝑥) (𝑔 (𝑦 + 𝑧) − 𝑔 (𝑦) 𝑔 (𝑧)) ,

(24)

and hence

𝑓 (𝑥) = (𝑔 (𝑦 + 𝑧) − 𝑔 (𝑦) 𝑔 (𝑧))
−1

× ((𝑓 (𝑥 + 𝑦 + 𝑧) − 𝑓 (𝑥 + 𝑦) 𝑔 (𝑧))

− (𝑓 (𝑥 + 𝑦 + 𝑧) − 𝑓 (𝑥) 𝑔 (𝑦 + 𝑧))

+ 𝑔 (𝑧) (𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) 𝑔 (𝑦))) .

(25)

In view of (23) the right hand side of (25) is bounded as
a function of 𝑥. Consequently, 𝑓 is bounded.

Lemma6 (see [30, p. 122]). Let𝑓(𝑥, 𝑡) be a solution of the heat
equation. Then 𝑓(𝑥, 𝑡) satisfies

𝑓 (𝑥, 𝑡)
 ≤ 𝑀, 𝑥 ∈ R

𝑛, 𝑡 ∈ (0, 1) (26)

for some𝑀 > 0, if and only if

𝑓 (𝑥, 𝑡) = (𝑓
0
∗ 𝐸
𝑡
) (𝑥) = ∫𝑓

0
(𝑦) 𝐸
𝑡
(𝑥 − 𝑦) 𝑑𝑦 (27)

for some bounded measurable function 𝑓
0
defined in R𝑛. In

particular, 𝑓(𝑥, 𝑡) → 𝑓
0
(𝑥) inG(R𝑛) as 𝑡 → 0+.

We discuss the solutions of the corresponding trigono-
metric functional equations

𝑢 ∘ (𝑥 − 𝑦) − 𝑢
𝑥
⊗ V
𝑦
+ V
𝑥
⊗ 𝑢
𝑦
= 0, (28)

V ∘ (𝑥 − 𝑦) − V
𝑥
⊗ V
𝑦
− 𝑢
𝑥
⊗ 𝑢
𝑦
= 0, (29)

in the spaceG of Gelfand hyperfunctions. As a consequence
of the results [8, 31, 32] we have the following.

Lemma 7. The solutions 𝑢, V ∈ G(R𝑛) of (28) and (29) are
equal, respectively, to the continuous solutions 𝑓, 𝑔 : R𝑛 → C

of corresponding classical functional equations

𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) 𝑔 (𝑦) + 𝑔 (𝑥) 𝑓 (𝑦) = 0, (30)

𝑔 (𝑥 − 𝑦) − 𝑔 (𝑥) 𝑔 (𝑦) − 𝑓 (𝑥) 𝑓 (𝑦) = 0. (31)

The continuous solutions (𝑓, 𝑔) of the functional equation (30)
are given by one of the following:

(i) 𝑓 = 0 and 𝑔 is arbitrary,
(ii) 𝑓(𝑥) = 𝑐

1
⋅ 𝑥, 𝑔(𝑥) = 1 + 𝑐

2
⋅ 𝑥 for some 𝑐

1
, 𝑐
2
∈ C𝑛,

(iii) 𝑓(𝑥) = 𝜆
1
sin(𝑐 ⋅𝑥) and 𝑔(𝑥) = cos(𝑐 ⋅𝑥)+𝜆

2
sin(𝑐 ⋅𝑥)

for some 𝜆
1
, 𝜆
2
∈ C, 𝑐 ∈ C𝑛.
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Also, the continuous solutions (𝑓, 𝑔) of the functional equation
(31) are given by one of the following:

(i) 𝑔(𝑥) = 𝜆 and 𝑓(𝑥) = ±√𝜆 − 𝜆2 for some 𝜆 ∈ C,

(ii) 𝑔(𝑥) = cos(𝑐 ⋅𝑥) and 𝑓(𝑥) = sin(𝑐 ⋅𝑥) for some 𝑐 ∈ C𝑛.

For the proof of the stability of (19) we need the follow-
ings.

Lemma 8. Let 𝐺 be an Abelian group and let 𝑈,𝑉 : 𝐺 ×
(0,∞) → C satisfy the inequality; there exists a nonnegative
function Ψ : 𝐺 × (0,∞) → R such that

𝑈 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑈 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) + 𝑉 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠)


≤ Ψ (𝑦, 𝑠)
(32)

for all 𝑥, 𝑦 ∈ 𝐺, 𝑡, 𝑠 > 0. Then either there exist 𝜆
1
, 𝜆
2
∈ C, not

both are zero, and𝑀 > 0 such that

𝜆1𝑈 (𝑥, 𝑡) − 𝜆2𝑉 (𝑥, 𝑡)
 ≤ 𝑀, (33)

or else

𝑈 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑈 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) + 𝑉 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠) = 0
(34)

for all 𝑥, 𝑦 ∈ 𝐺, 𝑡, 𝑠 > 0.

Proof. Suppose that inequality (33) holds only when 𝜆
1
=

𝜆
2
= 0. Let

𝐾(𝑥, 𝑦, 𝑡, 𝑠) = 𝑈 (𝑥 + 𝑦, 𝑡 + 𝑠) − 𝑈 (𝑥, 𝑡) 𝑉 (−𝑦, 𝑠)

+ 𝑉 (𝑥, 𝑡) 𝑈 (−𝑦, 𝑠) ,
(35)

and choose 𝑦
1
and 𝑠
1
satisfying 𝑈(−𝑦

1
, 𝑠
1
) ̸= 0. Now it can be

easily calculated that

𝑉 (𝑥, 𝑡) = 𝜆
0
𝑈 (𝑥, 𝑡) + 𝜆

1
𝑈 (𝑥 + 𝑦

1
, 𝑡 + 𝑠
1
)

− 𝜆
1
𝐾(𝑥, 𝑦

1
, 𝑡, 𝑠
1
) ,

(36)

where 𝜆
0
= 𝑉(−𝑦

1
, 𝑠
1
)/𝑈(−𝑦

1
, 𝑠
1
) and 𝜆

1
= −1/𝑈(−𝑦

1
, 𝑠
1
).

By (35) we have

𝑈 (𝑥 + (𝑦 + 𝑧) , 𝑡 + (𝑠 + 𝑟)) = 𝑈 (𝑥, 𝑡) 𝑉 (−𝑦 − 𝑧, 𝑠 + 𝑟)

− 𝑉 (𝑥, 𝑡) 𝑈 (−𝑦 − 𝑧, 𝑠 + 𝑟)

+ 𝐾 (𝑥, 𝑦 + 𝑧, 𝑡, 𝑠 + 𝑟) .

(37)

Also by (35) and (36) we have

𝑈 ((𝑥 + 𝑦) + 𝑧, (𝑡 + 𝑠) + 𝑟)

= 𝑈 (𝑥 + 𝑦, 𝑡 + 𝑠)𝑉 (−𝑧, 𝑟) − 𝑉 (𝑥 + 𝑦, 𝑡 + 𝑠)𝑈 (−𝑧, 𝑟)

+ 𝐾 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟)

= (𝑈 (𝑥, 𝑡) 𝑉 (−𝑦, 𝑠) − 𝑉 (𝑥, 𝑡) 𝑈 (−𝑦, 𝑠)

+𝐾 (𝑥, 𝑦, 𝑡, 𝑠)) 𝑉 (−𝑧, 𝑟)

− (𝜆
0
𝑈(𝑥 + 𝑦, 𝑡 + 𝑠) + 𝜆

1
𝑈 (𝑥 + 𝑦 + 𝑦

1
, 𝑡 + 𝑠 + 𝑠

1
)

−𝜆
1
𝐾(𝑥 + 𝑦, 𝑦

1
, 𝑡 + 𝑠, 𝑠

1
)) 𝑈 (−𝑧, 𝑟)

+ 𝐾 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟)

= (𝑈 (𝑥, 𝑡) 𝑉 (−𝑦, 𝑠) − 𝑉 (𝑥, 𝑡) 𝑈 (−𝑦, 𝑠)

+𝐾 (𝑥, 𝑦, 𝑡, 𝑠)) 𝑉 (−𝑧, 𝑟)

− 𝜆
0
(𝑈 (𝑥, 𝑡) 𝑉 (−𝑦, 𝑠) − 𝑉 (𝑥, 𝑡) 𝑈 (−𝑦, 𝑠)

+𝐾 (𝑥, 𝑦, 𝑡, 𝑠)) 𝑈 (−𝑧, 𝑟)

− 𝜆
1
(𝑈 (𝑥, 𝑡) 𝑉 (−𝑦 − 𝑦

1
, 𝑠 + 𝑠
1
)

− 𝑉 (𝑥, 𝑡) 𝑈 (−𝑦 − 𝑦
1
, 𝑠 + 𝑠
1
)

+𝐾 (𝑥, 𝑦 + 𝑦
1
, 𝑡, 𝑠 + 𝑠

1
)) 𝑈 (−𝑧, 𝑟)

+ 𝜆
1
𝐾(𝑥 + 𝑦, 𝑦

1
, 𝑡 + 𝑠, 𝑠

1
) 𝑈 (−𝑧, 𝑟)

+ 𝐾 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟) .

(38)

From (37) and (38) we have

(𝑉 (−𝑦, 𝑠) 𝑉 (−𝑧, 𝑟) − 𝜆
0
𝑉 (−𝑦, 𝑠)𝑈 (−𝑧, 𝑟)

− 𝜆
1
𝑉 (−𝑦 − 𝑦

1
, 𝑠 + 𝑠
1
) 𝑈 (−𝑧, 𝑟)

− 𝑉 (−𝑦 − 𝑧, 𝑠 + 𝑟))𝑈 (𝑥, 𝑡)

+ (−𝑈 (−𝑦, 𝑠) 𝑉 (−𝑧, 𝑟) + 𝜆
0
𝑈(−𝑦, 𝑠)𝑈 (−𝑧, 𝑟)

+ 𝜆
1
𝑈(−𝑦 − 𝑦

1
, 𝑠 + 𝑠
1
) 𝑈 (−𝑧, 𝑟)

+𝑈 (−𝑦 − 𝑧, 𝑠 + 𝑟)) 𝑉 (𝑥, 𝑡)

= −𝐾 (𝑥, 𝑦, 𝑡, 𝑠) 𝑉 (−𝑧, 𝑟) + 𝜆
0
𝐾(𝑥, 𝑦, 𝑡, 𝑠) 𝑈 (−𝑧, 𝑟)

+ 𝜆
1
𝐾(𝑥, 𝑦 + 𝑦

1
, 𝑡, 𝑠 + 𝑠

1
) 𝑈 (−𝑧, 𝑟)

− 𝜆
1
𝐾(𝑥 + 𝑦, 𝑦

1
, 𝑡 + 𝑠, 𝑠

1
) 𝑈 (−𝑧, 𝑟)

− 𝐾 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟) + 𝐾 (𝑥, 𝑦 + 𝑧, 𝑡, 𝑠 + 𝑟) .

(39)
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Since𝐾(𝑥, 𝑦, 𝑡, 𝑠) is bounded by Ψ(−𝑦, 𝑠), if we fix 𝑦, 𝑧, 𝑟,
and 𝑠, the right hand side of (39) is bounded by a constant𝑀,
where

𝑀 = Ψ(−𝑦, 𝑠) |𝑉 (−𝑧, 𝑟)| + Ψ (−𝑦, 𝑠)
𝜆0𝑈 (−𝑧, 𝑟)



+ Ψ (−𝑦 − 𝑦
1
, 𝑠 + 𝑠
1
)
𝜆1𝑈 (−𝑧, 𝑟)



+ Ψ (−𝑦
1
, 𝑠
1
)
𝜆1𝑈 (−𝑧, 𝑟)

 + Ψ (−𝑧, 𝑟)

+ Ψ (−𝑦 − 𝑧, 𝑟 + 𝑠) .

(40)

So by our assumption, the left hand side of (39) vanishes,
so is the right hand side. Thus we have

(−𝜆
0
𝐾(𝑥, 𝑦, 𝑡, 𝑠) − 𝜆

1
𝐾(𝑥, 𝑦 + 𝑦

1
, 𝑡, 𝑠 + 𝑠

1
)

+𝜆
1
𝐾(𝑥 + 𝑦, 𝑦

1
, 𝑡 + 𝑠, 𝑠

1
)) 𝑈 (−𝑧, 𝑟)

+ 𝐾 (𝑥, 𝑦, 𝑡, 𝑠) 𝑉 (−𝑧, 𝑟) = 𝐾 (𝑥, 𝑦 + 𝑧, 𝑡, 𝑠 + 𝑟)

− 𝐾 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟) .

(41)

Now by the definition of𝐾 we have

𝐾(𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟) − 𝐾 (𝑥, 𝑦 + 𝑧, 𝑡, 𝑠 + 𝑟)

= 𝑈 (𝑥 + 𝑦 + 𝑧, 𝑡 + 𝑠 + 𝑟) − 𝑈 (𝑥 + 𝑦, 𝑡 + 𝑠)𝑉 (−𝑧, 𝑟)

+ 𝑉 (𝑥 + 𝑦, 𝑡 + 𝑠)𝑈 (−𝑧, 𝑟) − 𝑈 (𝑥 + 𝑦 + 𝑧, 𝑡 + 𝑠 + 𝑟)

+ 𝑈 (𝑥, 𝑡) 𝑉 (−𝑦 − 𝑧, 𝑠 + 𝑟) − 𝑉 (𝑥, 𝑡) 𝑈 (−𝑦 − 𝑧, 𝑠 + 𝑟)

= 𝑈 (−𝑦 − 𝑧 − 𝑥, 𝑠 + 𝑟 + 𝑡) − 𝑈 (−𝑦 − 𝑧, 𝑠 + 𝑟)𝑉 (𝑥, 𝑡)

+ 𝑉 (−𝑦 − 𝑧, 𝑠 + 𝑟)𝑈 (𝑥, 𝑡) − 𝑈 (−𝑧 − 𝑥 − 𝑦, 𝑟 + 𝑡 + 𝑠)

+ 𝑈 (−𝑧, 𝑟) 𝑉 (𝑥 + 𝑦, 𝑡 + 𝑠) − 𝑉 (−𝑧, 𝑟) 𝑈 (𝑥 + 𝑦, 𝑡 + 𝑠)

= 𝐾 (−𝑦 − 𝑧, −𝑥, 𝑠 + 𝑟, 𝑡) − 𝐾 (−𝑧, −𝑥 − 𝑦, 𝑟, 𝑡 + 𝑠) .

(42)

Hence the left hand side of (41) is bounded byΨ(𝑥, 𝑡)+Ψ(𝑥+
𝑦, 𝑡 + 𝑠). So if we fix 𝑥, 𝑦, 𝑡, and 𝑠 in (41), the left hand side of
(41) is a bounded function of 𝑧 and 𝑟. Thus 𝐾(𝑥, 𝑦, 𝑡, 𝑠) ≡ 0
by our assumption. This completes the proof.

In the following lemmawe assume thatΨ : R𝑛×(0,∞) →
[0,∞) is a continuous function such that

𝜓 (𝑥) := lim
𝑡→0
+

Ψ (𝑥, 𝑡) (43)

exists and satisfies the conditions 𝜓(0) = 0 and

Φ
1
(𝑥) :=

∞

∑
𝑘=0

2−𝑘𝜓 (−2𝑘𝑥) < ∞ (44)

or

Φ
2
(𝑥) :=

∞

∑
𝑘=1

2𝑘𝜓 (−2−𝑘𝑥) < ∞. (45)

Lemma 9. Let 𝑈,𝑉 : R𝑛 × (0,∞) → C be continuous func-
tions satisfying
𝑈 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑈 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) + 𝑉 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠)



≤ Ψ (𝑦, 𝑠)
(46)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0, and there exist 𝜆
1
, 𝜆
2
∈ C, not both

are zero, and𝑀 > 0 such that
𝜆1𝑈 (𝑥, 𝑡) − 𝜆2𝑉 (𝑥, 𝑡)

 ≤ 𝑀. (47)

Then (𝑈, 𝑉) satisfies one of the followings:

(i) 𝑈 = 0, 𝑉 is arbitrary,
(ii) 𝑈 and 𝑉 are bounded functions,
(iii) 𝑉(𝑥, 𝑡) = 𝜆𝑈(𝑥, 𝑡) + 𝑒𝑖𝑐⋅𝑥−𝑏𝑡 for some 𝜆 ∈ C𝑛, 𝑐( ̸= 0) ∈

R𝑛, and 𝑏 ∈ C, and 𝑓(𝑥) := lim
𝑡→0
+𝑈(𝑥, 𝑡) is a con-

tinuous function; in particular, there exists 𝛿 : (0,∞)
→ [0,∞) with 𝛿(𝑡) → 0 as 𝑡 → 0+ such that

𝑈 (𝑥, 𝑡) − 𝑓 (𝑥) 𝑒
−𝑏𝑡 ≤ 𝛿 (𝑡) (48)

for all 𝑥 ∈ R𝑛, 𝑡 > 0, and satisfies the condition; there
exists 𝑑 ≥ 0 satisfying

𝑓 (𝑥)
 ≤ 𝜓 (−𝑥) + 𝑑 (49)

for all 𝑥 ∈ R𝑛,
(iv) 𝑉(𝑥, 𝑡) = 𝜆𝑈(𝑥, 𝑡) + 𝑒−𝑏𝑡 for some 𝜆 ∈ C𝑛, 𝑏 ∈ C,

and 𝑓(𝑥) := lim
𝑡→0
+𝑈(𝑥, 𝑡) is a continuous function;

in particular, there exists 𝛿 : (0,∞) → [0,∞) with
𝛿(𝑡) → 0 as 𝑡 → 0+ such that

𝑈 (𝑥, 𝑡) − 𝑓 (𝑥) 𝑒
−𝑏𝑡 ≤ 𝛿 (𝑡) (50)

for all 𝑥 ∈ R𝑛, 𝑡 > 0, and satisfies one of the following
conditions; there exists 𝑎

1
∈ C𝑛 such that

𝑓 (𝑥) − 𝑎1 ⋅ 𝑥
 ≤ Φ1 (𝑥) (51)

for all 𝑥 ∈ R𝑛, or there exists 𝑎
2
∈ C𝑛 such that

𝑓 (𝑥) − 𝑎2 ⋅ 𝑥
 ≤ Φ2 (𝑥) (52)

for all 𝑥 ∈ R𝑛.

Proof. If 𝑈 = 0, 𝑉 is arbitrary which is case (i). If 𝑈 is
a nontrivial bounded function, in view of (46) 𝑉 is also
bounded which gives case (ii). If 𝑈 is unbounded, it follows
from (47) that 𝜆

2
̸= 0 and

𝑉 (𝑥, 𝑡) = 𝜆𝑈 (𝑥, 𝑡) + 𝑅 (𝑥, 𝑡) (53)

for some 𝜆 ∈ C and a bounded function 𝑅. Putting (53) in
(46) we have
𝑈 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑈 (𝑥, 𝑡) 𝑅 (𝑦, 𝑠) + 𝑅 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠)



≤ Ψ (𝑦, 𝑠)
(54)
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for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0. Replacing 𝑦 by −𝑦 and using the
triangle inequality, we have, for some 𝐶 > 0,

𝑈 (𝑥 + 𝑦, 𝑡 + 𝑠) − 𝑈 (𝑥, 𝑡) 𝑅 (−𝑦, 𝑠)


≤ 𝐶
𝑈 (−𝑦, 𝑠)

 + Ψ (−𝑦, 𝑠)
(55)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0. By Lemma 5, 𝑅(−𝑦, 𝑠) is an expo-
nential function. If 𝑅 = 0, putting 𝑦 = 0, 𝑠 → 0+ in (54) we
have

|𝑈 (𝑥, 𝑡)| ≤ 𝜓 (0) = 0. (56)

Thus we have 𝑅 ̸= 0 since 𝑈 is unbounded. Given the conti-
nuity of 𝑈 and 𝑉 we have

𝑅 (𝑥, 𝑡) = 𝑒
𝑖𝑐⋅𝑥−𝑏𝑡 (57)

for some 𝑐 ∈ R𝑛, 𝑏 ∈ C withR𝑏 ≥ 0. Putting 𝑦 = 0 and 𝑠 = 1
in (54), dividing 𝑅(0, 1), and using the triangle inequality we
have

|𝑈 (𝑥, 𝑡)| ≤ |𝑅 (0, 1)|
−1
(|𝑈 (𝑥, 𝑡 + 1)| + 𝐶 |𝑈 (0, 1)| + Ψ (0, 1))

(58)

for all 𝑥 ∈ R𝑛, 𝑡 > 0.
From (58) and the continuity of 𝑈 it is easy to see that

lim sup
𝑡→0
+

𝑈 (𝑥, 𝑡) := 𝑓 (𝑥) (59)

exists. Putting 𝑥 = 𝑦 = 0 and replacing 𝑠 and 𝑡 by 𝑡/2 in (54)
we have

|𝑈 (0, 𝑡)| ≤ Ψ(0,
𝑡

2
) (60)

for all 𝑡 > 0.
Fixing 𝑥, putting 𝑦 = 0 letting 𝑡 → 0+ so that 𝑈(𝑥, 𝑡) →

𝑓(𝑥) in (54), and using the triangle inequality and (60) we
have

𝑈 (𝑥, 𝑠) − 𝑓 (𝑥) 𝑒
−𝑏𝑠 ≤ Ψ(0,

𝑠

2
) + Ψ (0, 𝑠) := 𝛿 (𝑠) (61)

for all 𝑥 ∈ R𝑛, 𝑠 > 0. Letting 𝑠 → 0+ in (61) we have

lim
𝑠→0
+

𝑈 (𝑥, 𝑠) = 𝑓 (𝑥) (62)

for all𝑥 ∈ R𝑛. From (61) the continuity of𝑓 can be checked by
a usual calculus. Letting 𝑡 → 0+ in (60) we see that 𝑓(0) = 0.
Letting 𝑡, 𝑠 → 0+ in (54) we have

𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) 𝑒
𝑖𝑐⋅𝑦 + 𝑒𝑖𝑐⋅𝑥𝑓 (𝑦)

 ≤ 𝜓 (𝑦) (63)

for all 𝑥, 𝑦 ∈ R𝑛. Putting 𝑥 = 0 in (63) and replacing 𝑦 by −𝑦
we have

𝑓 (−𝑦) + 𝑓 (𝑦)
 ≤ 𝜓 (−𝑦) (64)

for all 𝑦 ∈ R𝑛.

Replacing 𝑦 by −𝑦 and using (64) and the triangle
inequality we have

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) 𝑒
−𝑖𝑐⋅𝑦 − 𝑒𝑖𝑐⋅𝑥𝑓 (𝑦)

 ≤ 2𝜓 (−𝑦) (65)

for all 𝑥, 𝑦 ∈ R𝑛. Nowwe divide (65) into two cases: 𝑐 = 0 and
𝑐 ̸= 0. First we consider the case 𝑐 ̸= 0. Replacing 𝑥 by 𝑦 and 𝑦
by 𝑥 in (65) we have

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑦) 𝑒
−𝑖𝑐⋅𝑥 − 𝑒𝑖𝑐⋅𝑦𝑓 (𝑥)

 ≤ 2𝜓 (−𝑥) (66)

for all 𝑥, 𝑦 ∈ R𝑛. From (65) and (66), using the triangle
inequality and dividing |𝑒𝑖𝑐⋅𝑦 − 𝑒−𝑖𝑐⋅𝑦| we have

𝑓 (𝑥)
 ≤

2 (𝜓 (−𝑥) + 𝜓 (−𝑦) +
𝑓 (𝑦)

)
𝑒
𝑖𝑐⋅𝑦 − 𝑒−𝑖𝑐⋅𝑦


(67)

for all 𝑥, 𝑦 ∈ R𝑛 such that 𝑐 ⋅ 𝑦 ̸= 0. Choosing 𝑦
0
∈ R𝑛 so that

𝑐 ⋅ 𝑦
0
= 𝜋/2 and putting 𝑦 = 𝑦

0
in (67) we have

𝑓 (𝑥)
 ≤ 𝜓 (−𝑥) + 𝑑, (68)

where 𝑑 = 𝜓(𝜋/2) + |𝑓(𝜋/2)|, which gives (iii). Now we
consider the case 𝑐 = 0. It follows from (65) that

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 2𝜓 (−𝑦) (69)

for all 𝑥, 𝑦 ∈ R𝑛. By the well-known results in [3], there exists
a unique additive function 𝐴

1
(𝑥) given by

𝐴
1
(𝑥) = lim

𝑛→∞
2−𝑛𝑓 (2𝑛𝑥) (70)

such that
𝑓 (𝑥) − 𝐴1 (𝑥)

 ≤ Φ1 (𝑥) (71)

if Φ
1
(𝑥) := ∑

∞

𝑘=0
2−𝑘𝜓(−2𝑘𝑥) < ∞, and there exists a unique

additive function 𝐴
2
(𝑥) given by

𝐴
2
(𝑥) = lim

𝑛→∞
2𝑛𝑓 (2−𝑛𝑥) (72)

such that
𝑓 (𝑥) − 𝐴2 (𝑥)

 ≤ Φ2 (𝑥) (73)

if Φ
2
(𝑥) := ∑

∞

𝑘=0
2𝑘𝜓(−2−𝑘𝑥) < ∞. Now by the continuity of

𝑈 and inequality (61), it is easy to see that 𝑓 is continuous.
In view of (70) and (72), 𝐴

𝑗
(𝑥), 𝑗 = 1, 2, are Lebesgue

measurable functions. Thus there exist 𝑎
1
, 𝑎
2
∈ C𝑛 such that

𝐴
1
(𝑥) = 𝑎

1
⋅ 𝑥 and 𝐴

2
(𝑥) = 𝑎

2
⋅ 𝑥 for all 𝑥 ∈ R𝑛, which gives

(iv). This completes the proof.

In the following we assume that 𝜓 satisfies (44) or (45).

Theorem 10. Let 𝑢, V ∈ G satisfy (19).Then (𝑢, V) satisfies one
of the followings:

(i) 𝑢 = 0, and V is arbitrary,
(ii) 𝑢 and V are bounded measurable functions,
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(iii) V(𝑥) = 𝜆𝑢(𝑥)+𝑒𝑖𝑐⋅𝑥 for some𝜆 ∈ C, 𝑐( ̸= 0) ∈ R𝑛, where
𝑢 is a continuous function satisfying the condition;
there exists 𝑑 ≥ 0

|𝑢 (𝑥)| ≤ 𝜓 (−𝑥) + 𝑑 (74)

for all 𝑥 ∈ R𝑛,
(iv) V(𝑥) = 𝜆𝑢(𝑥) + 1 for some 𝜆 ∈ C, where 𝑢 is a

continuous function satisfying one of the following
conditions; there exists 𝑎

1
∈ C𝑛 such that

𝑢 (𝑥) − 𝑎1 ⋅ 𝑥
 ≤ Φ1 (𝑥) (75)

for all 𝑥 ∈ R𝑛, or there exists 𝑎
2
∈ C𝑛 such that

𝑢 (𝑥) − 𝑎2 ⋅ 𝑥
 ≤ Φ2 (𝑥) (76)

for all 𝑥 ∈ R𝑛,
(v) 𝑢 = 𝜆 sin(𝑐 ⋅ 𝑥), V = cos(𝑐 ⋅ 𝑥) + 𝜆 sin(𝑐 ⋅ 𝑥), for some

𝑐 ∈ C𝑛, 𝜆 ∈ C.

Proof. Convolving in (19) the tensor product𝐸
𝑡
(𝑥)𝐸
𝑠
(𝑦) of 𝑛-

dimensional heat kernels in both sides of inequality (19) we
have

[𝑢 ∘ (𝜉 − 𝜂) ∗ (𝐸
𝑡
(𝜉) 𝐸
𝑠
(𝜂))] (𝑥, 𝑦)

= ⟨𝑢
𝜉
, ∫ 𝐸
𝑡
(𝑥 − 𝜉 − 𝜂) 𝐸

𝑠
(𝑦 − 𝜂) 𝑑𝜂⟩

= ⟨𝑢
𝜉
, (𝐸
𝑡
∗ 𝐸
𝑠
) (𝑥 − 𝑦 − 𝜉)⟩

= ⟨𝑢
𝜉
, 𝐸
𝑡+𝑠
(𝑥 − 𝑦 − 𝜉)⟩

= 𝑈 (𝑥 − 𝑦, 𝑡 + 𝑠) .

(77)

Similarly we have

[(𝑢 ⊗ V) ∗ (𝐸
𝑡
(𝜉) 𝐸
𝑠
(𝜂))] (𝑥, 𝑦) = 𝑈 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) ,

[(V ⊗ 𝑢) ∗ (𝐸
𝑡
(𝜉) 𝐸
𝑠
(𝜂))] (𝑥, 𝑦) = 𝑉 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠) ,

(78)

where𝑈,𝑉 are theGauss transforms of 𝑢, V, respectively.Thus
we have the following inequality:
𝑈 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑈 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) + 𝑉 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠)



≤ Ψ (𝑦, 𝑠)
(79)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0, where

Ψ (𝑦, 𝑠) = ∫𝜓 (𝜂) 𝐸
𝑡
(𝑥 − 𝜉) 𝐸

𝑠
(𝑦 − 𝜂) 𝑑𝜉 𝑑𝜂

= ∫𝜓 (𝜂) 𝐸
𝑠
(𝜂 − 𝑦) 𝑑𝜂 = (𝜓 ∗ 𝐸

𝑠
) (𝑦) .

(80)

By Lemma 8 there exist 𝜆
1
, 𝜆
2
∈ C, not both are zero, and

𝑀 > 0 such that
𝜆1𝑈 (𝑥, 𝑡) − 𝜆2𝑉 (𝑥, 𝑡)

 ≤ 𝑀, (81)

or else 𝑈,𝑉 satisfy

𝑈 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑈 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) + 𝑉 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠) = 0
(82)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0. Assume that (81) holds. Applying
Lemma 9, case (i) follows from (i) of Lemma 9. Using (ii) of
Lemma 9, it follows from Lemma 7 the initial values 𝑢, V of
𝑈(𝑥, 𝑡), 𝑉(𝑥, 𝑡) as 𝑡 → 0+ are boundedmeasurable functions,
respectively, which gives (ii). For case (iii), it follows from (50)
that, for all 𝜑 ∈ G(R𝑛),

⟨𝑢, 𝜑⟩ − ⟨𝑓, 𝜑⟩


=

lim
𝑡→0
+

∫𝑈 (𝑥, 𝑡) 𝜑 (𝑥) 𝑑𝑥 − ∫𝑓 (𝑥) 𝜑 (𝑥) 𝑑𝑥


=

lim
𝑡→0
+

∫ (𝑈 (𝑥, 𝑡) − 𝑓 (𝑥) 𝑒
−𝑏𝑡) 𝜑 (𝑥) 𝑑𝑥



≤ lim
𝑡→0
+

∫
𝑈 (𝑥, 𝑡) − 𝑓 (𝑥) 𝑒

−𝑏𝑡
𝜑 (𝑥)

 𝑑𝑥

≤ lim
𝑡→0
+

𝛿 (𝑡) ∫
𝜑 (𝑥)

 𝑑𝑥 = 0.

(83)

Thus we have 𝑢 = 𝑓 in G(R𝑛). Letting 𝑡 → 0+ in (iii) of
Lemma 9 we get case (iii). Finally we assume that (82) holds.
Letting 𝑡, 𝑠 → 0+ in (82) we have

𝑢 ∘ (𝑥 − 𝑦) − 𝑢
𝑥
⊗ V
𝑦
+ V
𝑥
⊗ 𝑢
𝑦
= 0. (84)

By Lemma 6 the solutions of (84) satisfy (i), (iv), or (v). This
completes the proof.

Let 𝜓(𝑥) = 𝜖|𝑥|𝑝, 𝑝 > 0. Then 𝜓 satisfies the conditions
assumed inTheorem 10. In view of (44) and (45) we have

Φ
1
(𝑥) =

2𝜖|𝑥|𝑝

2 − 2𝑝
(85)

if 0 < 𝑝 < 1, and

Φ
2
(𝑥) =

2𝜖|𝑥|𝑝

2𝑝 − 2
(86)

if 𝑝 > 1. Thus as a direct consequence ofTheorem 10 we have
the following.

Corollary 11. Let 0 < 𝑝 < 1 or 𝑝 > 1. Suppose that 𝑢, V ∈ G

satisfy

𝑢 ∘ (𝑥 − 𝑦) − 𝑢𝑥 ⊗ V
𝑦
+ V
𝑥
⊗ 𝑢
𝑦

 ≤ 𝜖
𝑦

𝑝

. (87)

Then (𝑢, V) satisfies one of the followings:

(i) 𝑢 = 0, and V is arbitrary,

(ii) 𝑢 and V are bounded measurable functions,
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(iii) V(𝑥) = 𝜆𝑢(𝑥)+𝑒𝑖𝑐⋅𝑥 for some𝜆 ∈ C, 𝑐( ̸= 0) ∈ R𝑛, where
𝑢 is a continuous function satisfying the condition;
there exists 𝑑 ≥ 0

|𝑢 (𝑥)| ≤ 𝜖|𝑥|
𝑝 + 𝑑 (88)

for all 𝑥 ∈ R𝑛,

(iv) V(𝑥) = 𝜆𝑢(𝑥) + 1 for some 𝜆 ∈ C, where 𝑢 is a con-
tinuous function satisfying the conditions; there exists
𝑎 ∈ C𝑛 such that

|𝑢 (𝑥) − 𝑎 ⋅ 𝑥| ≤
2𝜖|𝑥|𝑝

|2𝑝 − 2|
(89)

for all 𝑥 ∈ R𝑛,

(v) 𝑢 = 𝜆 sin(𝑐 ⋅ 𝑥), V = cos(𝑐 ⋅ 𝑥) + 𝜆 sin(𝑐 ⋅ 𝑥), for some
𝑐 ∈ C𝑛, 𝜆 ∈ C.

Now we prove the stability of (20). For the proof we need
the following.

Lemma 12. Let 𝑈,𝑉 : 𝐺 × (0,∞) → C satisfy the inequality;
there exists a Ψ : 𝐺 × (0,∞) → [0,∞) such that

𝑉 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑉 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) − 𝑈 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠)


≤ Ψ (𝑦, 𝑠)
(90)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0. Then either there exist 𝜆
1
, 𝜆
2
∈ C,

not both are zero, and𝑀 > 0 such that

𝜆1𝑈 (𝑥, 𝑡) − 𝜆2𝑉 (𝑥, 𝑡)
 ≤ 𝑀, (91)

or else

𝑉 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑉 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) − 𝑈 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠) = 0
(92)

for all 𝑥, 𝑦 ∈ 𝐺, 𝑡, 𝑠 > 0.

Proof. As in Lemma 9, suppose that 𝜆
1
𝑈(𝑥, 𝑡) − 𝜆

2
𝑉(𝑥, 𝑡) is

bounded only when 𝜆
1
= 𝜆
2
= 0, and let

𝐿 (𝑥, 𝑦, 𝑡, 𝑠) = 𝑉 (𝑥 + 𝑦, 𝑡 + 𝑠) − 𝑉 (𝑥, 𝑡) 𝑉 (−𝑦, 𝑠)

− 𝑈 (𝑥, 𝑡) 𝑈 (−𝑦, 𝑠) .
(93)

Since wemay assume that𝑈 is nonconstant, we can choose 𝑦
1

and 𝑠
1
satisfying 𝑈(−𝑦

1
, 𝑠
1
) ̸= 0. Now it can be easily got that

𝑈 (𝑥, 𝑡) = 𝜆
0
𝑉 (𝑥, 𝑡) + 𝜆

1
𝑉 (𝑥 + 𝑦

1
, 𝑡 + 𝑠
1
)

− 𝜆
1
𝐿 (𝑥, 𝑦

1
, 𝑡, 𝑠
1
) ,

(94)

where 𝜆
0
= −𝑉(−𝑦

1
, 𝑠
1
)/𝑈(−𝑦

1
, 𝑠
1
) and 𝜆

1
= 1/𝑈(−𝑦

1
, 𝑠
1
).

From the definition of 𝐿 and the use of (94), we have the
following two equations:

𝑉 ((𝑥 + 𝑦) + 𝑧, (𝑡 + 𝑠) + 𝑟)

= 𝑉 (𝑥 + 𝑦, 𝑡 + 𝑠)𝑉 (−𝑧, 𝑟) + 𝑈 (𝑥 + 𝑦, 𝑡 + 𝑠)𝑈 (−𝑧, 𝑟)

+ 𝐿 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟)

= (𝑉 (𝑥, 𝑡) 𝑉 (−𝑦, 𝑠) + 𝑈 (𝑥, 𝑡) 𝑈 (−𝑦, 𝑠)

+𝐿 (𝑥, 𝑦, 𝑡, 𝑠)) 𝑉 (−𝑧, 𝑟)

+ (𝜆
0
𝑉 (𝑥 + 𝑦, 𝑡 + 𝑠) + 𝜆

1
𝑉 (𝑥 + 𝑦 + 𝑦

1
, 𝑡 + 𝑠 + 𝑠

1
)

−𝜆
1
𝐿 (𝑥 + 𝑦, 𝑦

1
, 𝑡 + 𝑠, 𝑠

1
)) 𝑈 (−𝑧, 𝑟)

+ 𝐿 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟)

= (𝑉 (𝑥, 𝑡) 𝑉 (−𝑦, 𝑠) + 𝑈 (𝑥, 𝑡) 𝑈 (−𝑦, 𝑠)

+𝐿 (𝑥, 𝑦, 𝑡, 𝑠)) 𝑉 (−𝑧, 𝑟)

+ 𝜆
0
(𝑉 (𝑥, 𝑡) 𝑉 (−𝑦, 𝑠) + 𝑈 (𝑥, 𝑡) 𝑈 (−𝑦, 𝑠)

+𝐿 (𝑥, 𝑦, 𝑡, 𝑠)) 𝑈 (−𝑧, 𝑟)

+ 𝜆
1
(𝑉 (𝑥, 𝑡) 𝑉 (−𝑦 − 𝑦

1
, 𝑠 + 𝑠
1
)

+ 𝑈 (𝑥, 𝑡) 𝑈 (−𝑦 − 𝑦
1
, 𝑠 + 𝑠
1
)

+𝐿 (𝑥, 𝑦 + 𝑦
1
, 𝑡, 𝑠 + 𝑠

1
)) 𝑈 (−𝑧, 𝑟)

− 𝜆
1
𝐿 (𝑥 + 𝑦, 𝑦

1
, 𝑡 + 𝑠, 𝑠

1
) 𝑈 (−𝑧, 𝑟)

+ 𝐿 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟) ,

(95)

𝑉 (𝑥 + (𝑦 + 𝑧) , 𝑡 + (𝑠 + 𝑟))

= 𝑉 (𝑥, 𝑡) 𝑉 (−𝑦 − 𝑧, 𝑠 + 𝑟) + 𝑈 (𝑥, 𝑡) 𝑈 (−𝑦 − 𝑧, 𝑠 + 𝑟)

+ 𝐿 (𝑥, 𝑦 + 𝑧, 𝑡, 𝑠 + 𝑟) .

(96)

By equating (95) and (96), we have

𝑉 (𝑥, 𝑡) (𝑉 (−𝑦, 𝑠) 𝑉 (−𝑧, 𝑟) + 𝜆
0
𝑉 (−𝑦, 𝑠)𝑈 (−𝑧, 𝑟)

+ 𝜆
1
𝑉 (−𝑦 − 𝑦

1
, 𝑠 + 𝑠
1
) 𝑈 (−𝑧, 𝑟)

−𝑉 (−𝑦 − 𝑧, 𝑠 + 𝑟))

+ 𝑈 (𝑥, 𝑡) (𝑈 (−𝑦, 𝑠) 𝑉 (−𝑧, 𝑟) + 𝜆
0
𝑈 (−𝑦, 𝑠)𝑈 (−𝑧, 𝑟)

+ 𝜆
1
𝑈 (−𝑦 − 𝑦

1
, 𝑠 + 𝑠
1
) 𝑈 (−𝑧, 𝑟)

−𝑈 (−𝑦 − 𝑧, 𝑠 + 𝑟))



Abstract and Applied Analysis 9

= −𝐿 (𝑥, 𝑦, 𝑡, 𝑠) 𝑉 (−𝑧, 𝑟) − 𝜆
0
𝐿 (𝑥, 𝑦, 𝑡, 𝑠) 𝑈 (−𝑧, 𝑟)

− 𝜆
1
𝐿 (𝑥, 𝑦 + 𝑦

1
, 𝑡, 𝑠 + 𝑠

1
) 𝑈 (−𝑧, 𝑟)

+ 𝜆
1
𝐿 (𝑥 + 𝑦, 𝑦

1
, 𝑡 + 𝑠, 𝑠

1
) 𝑈 (−𝑧, 𝑟)

− 𝐿 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟) + 𝐿 (𝑥, 𝑦 + 𝑧, 𝑡, 𝑠 + 𝑟) .

(97)

In (97), when 𝑦, 𝑠, 𝑧, and 𝑟 are fixed, the right hand side
is bounded; so by our assumption we have

𝐿 (𝑥, 𝑦, 𝑡, 𝑠) 𝑉 (−𝑧, 𝑟)

+ (𝜆
0
𝐿 (𝑥, 𝑦, 𝑡, 𝑠) + 𝜆

1
𝐿 (𝑥, 𝑦 + 𝑦

1
, 𝑡, 𝑠 + 𝑠

1
)

−𝜆
1
𝐿 (𝑥 + 𝑦, 𝑦

1
, 𝑡 + 𝑠, 𝑠

1
)) 𝑈 (−𝑧, 𝑟)

= 𝐿 (𝑥, 𝑦 + 𝑧, 𝑡, 𝑠 + 𝑟) − 𝐿 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟) .

(98)

Here, we have

𝐿 (𝑥, 𝑦 + 𝑧, 𝑡, 𝑠 + 𝑟) − 𝐿 (𝑥 + 𝑦, 𝑧, 𝑡 + 𝑠, 𝑟)

= 𝑉 (𝑥 + 𝑦 + 𝑧, 𝑡 + 𝑠 + 𝑟) − 𝑉 (𝑥, 𝑡) 𝑉 (−𝑦 − 𝑧, 𝑠 + 𝑟)

− 𝑈 (𝑥, 𝑡) 𝑈 (−𝑦 − 𝑧, 𝑠 + 𝑟) − 𝑉 (𝑥 + 𝑦 + 𝑧, 𝑡 + 𝑠 + 𝑟)

+ 𝑉 (𝑥 + 𝑦, 𝑡 + 𝑠) 𝑉 (−𝑧, 𝑟) + 𝑈 (𝑥 + 𝑦, 𝑡 + 𝑠)𝑈 (−𝑧, 𝑟)

= 𝐿 (−𝑦 − 𝑧, −𝑥, 𝑠 + 𝑟, 𝑡) − 𝐿 (−𝑧, −𝑥 − 𝑦, 𝑟, 𝑡 + 𝑠)

≤ Ψ (𝑥, 𝑡) + Ψ (𝑥 + 𝑦, 𝑡 + 𝑠) .

(99)

Considering (98) as a function of 𝑧 and 𝑟 for all fixed 𝑥, 𝑦,
𝑡, and 𝑠 again, we have 𝐿(𝑥, 𝑦, 𝑡, 𝑠) ≡ 0. This completes the
proof.

In the following lemmawe assume thatΨ : R𝑛×(0,∞) →
[0,∞) is a continuous function such that

𝜓 (𝑥) := lim
𝑡→0
+

Ψ (𝑥, 𝑡) (100)

exists and satisfies the condition 𝜓(0) = 0.

Lemma 13. Let 𝑈,𝑉 : R𝑛 × (0,∞) → C be continuous
functions satisfying

𝑉 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑉 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) − 𝑈 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠)


≤ Ψ (𝑦, 𝑠)
(101)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0, and there exist 𝜆
1
, 𝜆
2
∈ C, not both

zero, and𝑀 > 0 such that

𝜆1𝑈 (𝑥, 𝑡) − 𝜆2𝑉 (𝑥, 𝑡)
 ≤ 𝑀. (102)

Then (𝑈, 𝑉) satisfies one of the followings:

(i) 𝑈 and 𝑉 are bounded functions in R𝑛 × (0, 1),

(ii) ±𝑖𝑈(𝑥, 𝑡) = 𝑉(𝑥, 𝑡) − 𝑒𝑖𝑎⋅𝑥−𝑏𝑡 for some 𝑎 ∈ R𝑛, 𝑏 ∈ C,
and 𝑔(𝑥) := lim

𝑡→0
+𝑉(𝑥, 𝑡) is a continuous function;

in particular, there exists 𝛿 : (0,∞) → [0,∞) with
𝛿(𝑡) → 0 as 𝑡 → 0+ such that

𝑉 (𝑥, 𝑡) − 𝑔 (𝑥) 𝑒
−𝑏𝑡 ≤ 𝛿 (𝑡) (103)

for all 𝑥 ∈ R𝑛, 𝑡 > 0, and 𝑔 satisfies

𝑔 (𝑥) − cos (𝑎 ⋅ 𝑥) ≤
1

2
𝜓 (𝑥) (104)

for all 𝑥 ∈ R𝑛.

Proof. If 𝑈 is bounded, then in view of inequality (100), for
each 𝑦, 𝑠, 𝑉(𝑥 + 𝑦, 𝑡 + 𝑠) − 𝑉(𝑥, 𝑡)𝑉(−𝑦, 𝑠) is also bounded. It
follows from Lemma 5 that 𝑉 is (101). If 𝑉 is bounded, case
(i) follows. If𝑉 is a nonzero exponential function, then by the
continuity of 𝑉 we have

𝑉 (𝑥, 𝑡) = 𝑒
𝑐⋅𝑥+𝑏𝑡 (105)

for some 𝑐 ∈ C𝑛, 𝑏 ∈ C. Putting (105) in (101) and using the
triangle inequality we have for some 𝑑 ≥ 0

𝑒
𝑐⋅𝑥𝑒𝑏(𝑡+𝑠) (𝑒−𝑐⋅𝑦 − 𝑒𝑐⋅𝑦)

 ≤ Ψ (𝑦, 𝑠) + 𝑑 (106)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0. In view of (106) it is easy to see that
𝑐 = 𝑖𝑎, 𝑎 ∈ R𝑛. Thus 𝑉(𝑥, 𝑡) is bounded on R𝑛 × (0, 1). If 𝑈 is
unbounded; then in view of (101)𝑉 is also unbounded, hence
𝜆
1
𝜆
2
̸= 0 and

𝑈 (𝑥, 𝑡) = 𝜆𝑉 (𝑥, 𝑡) + 𝑅 (𝑥, 𝑡) (107)

for some 𝜆 ̸= 0 and a bounded function 𝑅. Putting (107) in
(101), replacing 𝑦 by −𝑦, and using the triangle inequality we
have
𝑉 (𝑥 + 𝑦, 𝑡 + 𝑠) − 𝑉 (𝑥, 𝑡) ((𝜆

2 + 1)𝑉 (−𝑦, 𝑠) + 𝜆𝑅 (−𝑦, 𝑠))


≤
(𝜆𝑉 (−𝑦, 𝑠) + 𝑅 (−𝑦, 𝑠)) 𝑅 (𝑥, 𝑡)

 + Ψ (−𝑦, 𝑠) .

(108)

From Lemma 5 we have

(𝜆2 + 1)𝑉 (𝑦, 𝑠) + 𝜆𝑅 (𝑦, 𝑠) = 𝑚 (𝑦, 𝑠) (109)

for some exponential function𝑚. From (107) and (109),𝑚 is
continuous, and we have

𝑚(𝑥, 𝑡) = 𝑒
𝑐⋅𝑥+𝑏𝑡 (110)

for some 𝑐 ∈ C𝑛, 𝑏 ∈ C. If 𝜆2 ̸= − 1, we have

𝑈 =
𝜆𝑚 + 𝑅

𝜆2 + 1
, 𝑉 =

𝑚 − 𝜆𝑅

𝜆2 + 1
. (111)

Putting (111) in (101), multiplying |𝜆2 + 1| in the result, and
using the triangle inequality we have, for some 𝑑 ≥ 0,
𝑚 (𝑥, 𝑡) (𝑚 (−𝑦, 𝑠) − 𝑚 (𝑦, 𝑠))

 ≤
𝜆
2 + 1

 Ψ (𝑦, 𝑠) + 𝑑

(112)
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for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0. Since𝑚 is unbounded, we have

𝑚(𝑦, 𝑠) = 𝑚 (−𝑦, 𝑠) (113)

for all 𝑦 ∈ R and 𝑠 > 0. Thus it follows that𝑚(𝑥, 𝑡) = 𝑒𝑏𝑡 and
that 𝑈,𝑉 are bounded in R𝑛 × (0, 1). If 𝜆2 = −1, we have

𝑈 = ±𝑖 (𝑉 − 𝑚) , (114)

where 𝑚 is a bounded exponential function. Putting (114) in
(101) we have
𝑉 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑉 (𝑥, 𝑡)𝑚 (𝑦, 𝑠) − 𝑉 (𝑦, 𝑠)𝑚 (𝑥, 𝑡)

+𝑚 (𝑥, 𝑡)𝑚 (𝑦, 𝑠)
 ≤ Ψ (𝑦, 𝑠)

(115)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0. Since 𝑚 is a bounded continuous
function, we have

𝑚(𝑥, 𝑡) = 𝑒
𝑖𝑎⋅𝑥−𝑏𝑡 (116)

for some 𝑎 ∈ R𝑛, 𝑏 ∈ C withR𝑏 ≥ 0.
Similarly as in the proof of Lemma 9, by (101) and the

continuity of 𝑉, it is easy to see that

lim sup
𝑡→0
+

𝑉 (𝑥, 𝑡) := 𝑔 (𝑥) (117)

exists. Putting 𝑥 = 𝑦 = 0 in (115), multiplying |𝑒𝑏𝑡| in both
sides of the result, and using the triangle inequality we have
𝑉 (0, 𝑠) − 𝑒

−𝑏𝑠 ≤
𝑒
𝑏𝑡 (

𝑉 (0, 𝑡 + 𝑠) − 𝑉 (0, 𝑡) 𝑒
−𝑏𝑠 + Ψ (0, 𝑠))

(118)

for all 𝑡, 𝑠 > 0. Letting 𝑠 → 0+ in (118) we have

lim
𝑡→0
+

𝑉 (0, 𝑡) = 1. (119)

Putting 𝑦 = 0, fixing 𝑥, letting 𝑡 → 0+ in (115) so that
𝑉(𝑥, 𝑡) → 𝑔(𝑥), and using the triangle inequality we have

𝑉 (𝑥, 𝑠) − 𝑔 (𝑥) 𝑒
−𝑏𝑠 ≤

𝑉 (0, 𝑠) − 𝑒
−𝑏𝑠 + Ψ (0, 𝑠) (120)

for all 𝑥 ∈ R𝑛, 𝑠 > 0. Letting 𝑠 → 0+ in (120) we have

lim
𝑠→0
+

𝑉 (𝑥, 𝑠) = 𝑔 (𝑥) (121)

for all 𝑥 ∈ R𝑛. The continuity of 𝑔 follows from (120). Letting
𝑡, 𝑠 → 0+ in (115) we have

𝑔 (𝑥 − 𝑦) − 𝑔 (𝑥) 𝑒
𝑖𝑎⋅𝑦 − 𝑔 (𝑦) 𝑒𝑖𝑎⋅𝑥 + 𝑒𝑖𝑎⋅(𝑥+𝑦)

 ≤ 𝜓 (𝑦)

(122)

for all 𝑥, 𝑦 ∈ R𝑛. Replacing 𝑦 by 𝑥 in (122) and dividing the
result by 2𝑒𝑖𝑎⋅𝑥 we have

𝑔 (𝑥) − cos (𝑎 ⋅ 𝑥) ≤
1

2
𝜓 (𝑥) . (123)

From (114), (116), (120) and (123) we get (ii). This completes
the proof.

Theorem 14. Let 𝑢, V ∈ G satisfy (20). Then (𝑢, V) satisfies
one of the followings:

(i) 𝑢 and V are bounded measurable functions,
(ii) V(𝑥) = cos(𝑎 ⋅ 𝑥) + 𝑟(𝑥), ±𝑢(𝑥) = sin(𝑎 ⋅ 𝑥) + 𝑖𝑟(𝑥)

for some 𝑎 ∈ R𝑛, where 𝑟(𝑥) is a continuous function
satisfying

|𝑟 (𝑥)| ≤
1

2
𝜓 (𝑥) (124)

for all 𝑥 ∈ R𝑛,
(iii) V(𝑥) = cos(𝑐 ⋅ 𝑥) and 𝑢(𝑥) = sin(𝑐 ⋅ 𝑥) for some 𝑐 ∈ C𝑛.

Proof. Similarly as in the proof of Theorem 10 convolving in
(20) the tensor product 𝐸

𝑡
(𝑥)𝐸
𝑠
(𝑦) we obtain the inequality

𝑉 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑉 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) − 𝑈 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠)


≤ Ψ (𝑦, 𝑠)
(125)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0, where 𝑈,𝑉 are the Gauss
transforms of 𝑢, V, respectively, and

Ψ (𝑦, 𝑠) = ∫𝜓 (𝜂) 𝐸
𝑡
(𝑥 − 𝜉) 𝐸

𝑠
(𝑦 − 𝜂) 𝑑𝜉 𝑑𝜂

= ∫𝜓 (𝜂) 𝐸
𝑠
(𝜂 − 𝑦) 𝑑𝜂 = (𝜓 ∗ 𝐸

𝑠
) (𝑦) .

(126)

By Lemma 12 there exist 𝜆
1
, 𝜆
2
∈ C, not both zero, and𝑀 > 0

such that
𝜆1𝑈 (𝑥, 𝑡) − 𝜆2𝑉 (𝑥, 𝑡)

 ≤ 𝑀, (127)

or else 𝑈,𝑉 satisfy

𝑉 (𝑥 − 𝑦, 𝑡 + 𝑠) − 𝑉 (𝑥, 𝑡) 𝑉 (𝑦, 𝑠) − 𝑈 (𝑥, 𝑡) 𝑈 (𝑦, 𝑠) = 0
(128)

for all 𝑥, 𝑦 ∈ R𝑛, 𝑡, 𝑠 > 0.
Firstly we assume that (127) holds. Letting 𝑡 → 0+

in (i) of Lemma 13, by Lemma 6, the initial values 𝑢, V of
𝑈(𝑥, 𝑡), 𝑉(𝑥, 𝑡) as 𝑡 → 0+ are boundedmeasurable functions,
respectively, which gives case (i). Using the same approach of
the proof of case (iii) of Theorem 10, we have V = 𝑔 in G. It
follows from (104) that

V (𝑥) = cos (𝑎 ⋅ 𝑥) + 𝑟 (𝑥) , (129)

where 𝑟(𝑥) is a continuous function satisfying

|𝑟 (𝑥)| ≤
1

2
𝜓 (𝑥) (130)

for all 𝑥 ∈ R𝑛. Letting 𝑡 → 0+ in (ii) of Lemma 13 we have

±𝑖𝑢 (𝑥) = V (𝑥) − 𝑒
𝑖𝑎⋅𝑥. (131)

Putting (129) in (131) we have

±𝑢 (𝑥) = sin (𝑎 ⋅ 𝑥) + 𝑖𝑟 (𝑥) . (132)
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Secondly we assume that (128) holds. Letting 𝑡, 𝑠 → 0+ in
(127) we have

V ∘ (𝑥 − 𝑦) − V
𝑥
⊗ V
𝑦
− 𝑢
𝑥
⊗ 𝑢
𝑦
= 0. (133)

By Lemma 7 the solution of (133) satisfies (i) or (iii). This
completes the proof.

Every infraexponential function 𝑓 of order 2 defines an
element ofG(R𝑛) via the correspondence

⟨𝑓, 𝜑⟩ = ∫𝑓 (𝑥) 𝜑 (𝑥) 𝑑𝑥 (134)

for 𝜑 ∈ G. Thus as a direct consequence of Corollary 11 and
Theorem 14 we have the followings.

Corollary 15. Let 0 < 𝑝 < 1 or 𝑝 > 1. Suppose that 𝑓, 𝑔 are
infraexponential functions of order 2 satisfying the inequality

𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥) 𝑔 (𝑦) + 𝑔 (𝑥) 𝑓 (𝑦)
 ≤ 𝜖|𝑥|

𝑝 (135)

for almost every (𝑥, 𝑦) ∈ R2𝑛. Then (𝑓, 𝑔) satisfies one of the
following:

(i) 𝑓(𝑥) = 0, almost everywhere 𝑥 ∈ R𝑛, and 𝑔 is arbitr-
ary,

(ii) 𝑓 and 𝑔 are bounded in almost everywhere,
(iii) 𝑓(𝑥) = 𝑓

0
(𝑥), 𝑔(𝑥) = 𝜆𝑓

0
(𝑥) + 𝑒𝑖𝑐⋅𝑥 for almost every-

where 𝑥 ∈ R𝑛, where 𝜆 ∈ C, 𝑐( ̸= 0) ∈ R𝑛, and 𝑓
0

is a continuous function satisfying the condition; there
exists 𝑑 ≥ 0

𝑓0 (𝑥)
 ≤ 𝜖|𝑥|

𝑝 + 𝑑 (136)

for all 𝑥 ∈ R𝑛,
(iv) 𝑓(𝑥) = 𝑓

0
(𝑥), 𝑔(𝑥) = 𝜆𝑓

0
(𝑥)+1 for a.e. 𝑥 ∈ R𝑛, where

𝜆 ∈ C and 𝑓
0
is a continuous function satisfying the

condition; there exists 𝑎 ∈ C𝑛 such that

𝑓0 (𝑥) − 𝑎 ⋅ 𝑥
 ≤

2𝜖|𝑥|𝑝

|2𝑝 − 2|
(137)

for all 𝑥 ∈ R𝑛,
(v) 𝑓(𝑥) = 𝜆 sin(𝑐 ⋅ 𝑥), 𝑔(𝑥) = cos(𝑐 ⋅ 𝑥) + 𝜆 sin(𝑐 ⋅ 𝑥) for

a.e. 𝑥 ∈ R𝑛, where 𝑐 ∈ C𝑛, 𝜆 ∈ C.

Corollary 16. Suppose that 𝑓, 𝑔 are infraexponential func-
tions of order 2 satisfying the inequality

𝑔 (𝑥 − 𝑦) − 𝑔 (𝑥) 𝑔 (𝑦) − 𝑓 (𝑥) 𝑓 (𝑦)
 ≤ 𝜖

𝑦

𝑝 (138)

for almost every (𝑥, 𝑦) ∈ R2𝑛. Then (𝑓, 𝑔) satisfies one of the
followings:

(i) 𝑓 and 𝑔 are bounded in almost everywhere,
(ii) there exists 𝑎 ∈ R𝑛 such that

𝑔 (𝑥) − cos (𝑎 ⋅ 𝑥) ≤
1

2
𝜖|𝑥|
𝑝, (139)

𝑓 (𝑥) ± sin (𝑎 ⋅ 𝑥) ≤
1

2
𝜖|𝑥|
𝑝 (140)

for almost every 𝑥 ∈ R𝑛,

(iii) 𝑔(𝑥) = cos(𝑐 ⋅ 𝑥) and 𝑓(𝑥) = sin(𝑐 ⋅ 𝑥) for a.e. 𝑥 ∈ R𝑛,
where 𝑐 ∈ C𝑛.

Remark 17. Taking the growth of 𝑢 = 𝑒𝑐⋅𝑥 as |𝑥| → ∞ into
account, 𝑢 ∈ S(R𝑛) only when 𝑐 = 𝑖𝑎 for some 𝑎 ∈ R𝑛. Thus
Theorems 10 and 14 are reduced to the following:

Corollary 18. Let 𝑢, V ∈ S satisfy (19). Then (𝑢, V) satisfies
one of the followings:

(i) 𝑢 = 0, and V is arbitrary,

(ii) 𝑢 and V are bounded measurable functions,

(iii) V(𝑥) = 𝜆𝑢(𝑥)+𝑒𝑖𝑐⋅𝑥 for some𝜆 ∈ C, 𝑐( ̸= 0) ∈ R𝑛, where
𝑢 is a continuous function satisfying the condition;
there exists 𝑑 ≥ 0

|𝑢 (𝑥)| ≤ 𝜓 (−𝑥) + 𝑑 (141)

for all 𝑥 ∈ R𝑛,

(iv) V(𝑥) = 𝜆𝑢(𝑥) + 1 for some 𝜆 ∈ C, where 𝑢 is a
continuous function satisfying one of the following
conditions; there exists 𝑎

1
∈ C𝑛 such that

𝑢 (𝑥) − 𝑎1 ⋅ 𝑥
 ≤ Φ1 (𝑥) (142)

for all 𝑥 ∈ R𝑛, or there exists 𝑎
2
∈ C𝑛 such that

𝑢 (𝑥) − 𝑎2 ⋅ 𝑥
 ≤ Φ2 (𝑥) (143)

for all 𝑥 ∈ R𝑛.

Corollary 19. Let 𝑢, V ∈ S satisfy (20). Then (𝑢, V) satisfies
one of the followings:

(i) 𝑢 and V are bounded measurable functions,

(ii) V(𝑥) = cos(𝑎 ⋅ 𝑥) + 𝑟(𝑥), ±𝑢(𝑥) = sin(𝑎 ⋅ 𝑥) + 𝑖𝑟(𝑥)
for some 𝑎 ∈ R𝑛, where 𝑟(𝑥) is a continuous function
satisfying

|𝑟 (𝑥)| ≤
1

2
𝜓 (𝑥) (144)

for all 𝑥 ∈ R𝑛.
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