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The purpose of this note is to present the different fractional order derivatives definition that are commonly used in the literature on
one hand and to present a table of fractional order derivatives of some functions in Riemann-Liouville sense On other the hand.We
present some advantages and disadvantages of these fractional derivatives. And finally we propose alternative fractional derivative
definition.

1. Introduction

Fractional calculus has been used to model physical and
engineering processes, which are found to be best described
by fractional differential equations. It is worth nothing that
the standard mathematical models of integer-order deriva-
tives, including nonlinear models, do not work adequately
in many cases. In the recent years, fractional calculus has
played a very important role in various fields such as
mechanics, electricity, chemistry, biology, economics, notably
control theory, and signal and image processing.Major topics
include anomalous diffusion, vibration and control, continu-
ous time random walk, Levy statistics, fractional Brownian
motion, fractional neutron point kinetic model, power law,
Riesz potential, fractional derivative and fractals, computa-
tional fractional derivative equations, nonlocal phenomena,
history-dependent process, porous media, fractional filters,
biomedical engineering, fractional phase-locked loops, frac-
tional variational principles, fractional transforms, fractional
wavelet, fractional predator-prey system, softmattermechan-
ics, fractional signal and image processing; singularities
analysis and integral representations for fractional differential
systems; special functions related to fractional calculus, non-
Fourier heat conduction, acoustic dissipation, geophysics,
relaxation, creep, viscoelasticity, rheology, fluid dynamics,

chaos and groundwater problems. An excellent literature of
this can be found in [1–9].These entiremodels aremaking use
of the fractional order derivatives that exist in the literature.
However, there are many of these definitions in the literature
nowadays, but few of them are commonly used, including
Riemann-Liouville [10, 11], Caputo [5, 12], Weyl [10, 11, 13],
Jumarie [14, 15], Hadamard [10, 11], Davison and Essex [16],
Riesz [10, 11], Erdelyi-Kober [10, 11], and Coimbra [17]. All
these fractional derivatives definitions have their advantages
and disadvantages. The purpose of this note is to present the
result of fractional order derivative for some function and
from the results establish the disadvantages and advantages
of these fractional order derivative definitions. We shall start
with the definitions.

2. Definitions

There exists a vast literature on different definitions of frac-
tional derivatives. The most popular ones are the Riemann-
Liouville and the Caputo derivatives. For Caputo we have
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For the case of Riemann-Liouville we have the following
definition:
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Guy Jumarie proposed a simple alternative definition to the
Riemann-Liouville derivative:
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For the case of Weyl we have the following definition:
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With the Erdelyi-Kober typewe have the following definition:
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With Hadamard type, we have the following definition:
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With Riesz type, we have the following definition:
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We will not mention the Grunward-Letnikov type here
because it is in series form. This is not more suitable for
analytical purpose. In 1998, Davison and Essex [16] published
a paper which provides a variation to the Riemann-Liouville
definition suitable for conventional initial value problems

within the realm of fractional calculus. The definition is as
follows:
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In an article published by Coimbra [17] in 2003, a variable
order differential operator is defined as follows:

𝐷
𝛼(𝑡)

0
(𝑓 (𝑥)) =

1

Γ (1 − 𝛼 (𝑥))
∫

𝑥

0

(𝑥 − 𝑡)
−𝛼(𝑡)

𝑑𝑓 (𝑡)

𝑑𝑡
𝑑𝑡

+
(𝑓 (0
+

) − 𝑓 (0
−

)) 𝑥
−𝛼(𝑥)

Γ (1 − 𝛼 (𝑥))
.

(10)

3. Table of Fractional Order Derivative for
Some Functions

In this section we present the fractional of some special func-
tions. The fractional derivatives in Table 1 are in Riemann-
Liouville sense.

In Table 1, HypergeometricPFQ [{}, {}, {}] is the general-
ized hypergeometric function which is defined as follows in
the Euler integral representation:
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The PolyGamma[𝑛, 𝑧] and PolyGamma[𝑧] are the logarith-
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Γ is denotes the gamma function, which is the Mellin
transform of exponential function and is defined as
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The above obtained special functions as derivation of Rie-
mann-Liouville fractional derivative are solution of some
fractional ordinary differential equation, for instance, Cauchy
type.

4. Advantages and Disadvantages

4.1. Advantages. It is very important to point out that all these
fractional derivative order definitions have their advantages
and disadvantages; here we will include Caputo, variational
order, Riemann-Liouville Jumarie andWeyl.Wewill examine
first the Variational order differential operator. Anomalous
diffusion phenomena are extensively observed in physics,
chemistry, and biology fields [18–21]. To characterize anoma-
lous diffusion phenomena, constant-order fractional diffu-
sion equations are introduced and have received tremendous
success. However, it has been found that the constant order
fractional diffusion equations are not capable of characteriz-
ing some complex diffusion processes, for instance, diffusion
process in inhomogeneous or heterogeneous medium [22].
In addition, when we consider diffusion process in porous
medium, if the medium structure or external field changes
with time, in this situation, the constant-order fractional
diffusion equation model cannot be used to well characterize
such phenomenon [23, 24]. Still in some biology diffusion
processes, the concentration of particles will determine the
diffusion pattern [25, 26]. To solve the above problems, the
variable-order (VO) fractional diffusion equation models
have been suggested for use [27]. The ground-breaking work
of VO operator can be traced to Samko et al. by introducing
the variable order integration and Riemann-Liouville deriva-
tive in [27]. It has been recognized as a powerful modelling
approach in the fields of viscoelasticity [17–32] viscoelastic
deformation [28], viscous fluid [29] and anomalous diffusion
[30]. With the Jumarie definition which is actually the
modified Riemann-Liouville fractional derivative, an arbi-
trary continuous function needs not to be differentiable; the
fractional derivative of a constant is equal to zero and more
importantly it removes singularity at the origin for all func-
tions for which𝑓(0) = constant for instance, the exponentials
functions and Mittag-Leffler functions. With the Riemann-
Liouville fractional derivative, an arbitrary function needs
not to be continuous at the origin and it needs not to be
differentiable. One of the great advantages of the Caputo
fractional derivative is that it allows traditional initial and
boundary conditions to be included in the formulation of the
problem [5, 12]. In addition its derivative for a constant is zero.
It is customary in groundwater investigations to choose a
point on the centerline of the pumped borehole as a reference
for the observations and therefore neither the drawdown nor
its derivatives will vanish at the origin, as required [33]. In
such situationswhere the distribution of the piezometric head
in the aquifer is a decreasing function of the distance from the
borehole, the problem may be circumvented by rather using
the complementary, or Weyl, fractional order derivative [33].

4.2. Disadvantages. Although these fractional derivative dis-
play great advantages, they are not applicable in all the

situations. We shall begin with the Liouville-Riemann type.
The Riemann-Liouville derivative has certain disadvantages
when trying to model real-world phenomena with fractional
differential equations. The Riemann-Liouville derivative of
a constant is not zero. In addition, if an arbitrary function
is a constant at the origin, its fractional derivation has a
singularity at the origin for instant exponential and Mittag-
Leffler functions. Theses disadvantages reduce the field of
application of the Riemann-Liouville fractional derivative.
Caputo’s derivative demands higher conditions of regularity
for differentiability: to compute the fractional derivative of
a function in the Caputo sense, we must first calculate its
derivative. Caputo derivatives are defined only for differ-
entiable functions while functions that have no first-order
derivative might have fractional derivatives of all orders less
than one in the Riemann-Liouville sense. With the Jumarie
fractional derivative, if the function is not continuous at the
origin, the fractional derivative will not exist, for instance
what will be the fractional derivative of ln(𝑥) andmany other
ones. Variational order differential operator cannot easily be
handled analytically. Numerical approach is sometimes needs
to deal with the problem under investigation. AlthoughWeyl
fractional derivative found its place in groundwater investi-
gation, it still displays a significant disadvantage; because the
integral defining these Weyl derivatives is improper, greater
restrictions must be placed on a function. For instance, the
Weyl derivative of a constant is not defined. On the other
hand, general theorem aboutWeyl derivatives are often more
difficult to formulate and be proved than are corresponding
theorems for Riemann-Liouville derivatives.

5. Derivatives Revisited

5.1. Variational Order Differential Operator Revisited. Let 𝑓 :

R → R, 𝑥 → 𝑓(𝑥) denotes a continuous but necessary
differentiable, let𝛼(𝑥) be a continuous function in (0, 1].Then
its variational order differential in [𝑎,∞) is defined as

𝐷
𝛼(𝑡)

𝑎
(𝑓 (𝑥))

= FP(
1

Γ (1 − 𝛼 (𝑥))

𝑑

𝑑𝑥

×∫

𝑥

𝑎

(𝑥 − 𝑡)
−𝛼(𝑡)

(𝑓 (𝑡) − 𝑓 (𝑎)) 𝑑𝑡) ,

(16)

where FP means finite part of the variational order operator.
Notice that the above derivative meets all the requirements of
the variational order differential operator; in additional, the
derivative of the constant is zero, which was not possible with
the standard version.

5.2. Variational Order Fractional Derivatives via Fractional
Difference. Let 𝑓 : R → R, 𝑥 → 𝑓(𝑥) denotes a continuous
but necessary differentiable, let𝛼(𝑥) be a continuous function
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in (0, 1], and ℎ > 0 denote a constant discretization span.
Define the forward operator FWℎ by the expression

FW (ℎ) (𝑓 (𝑥)) := 𝑓 (𝑥 + ℎ) (17)

Note that, the symbolmeans that the left side is defined by the
right side. Then the variational order fractional difference of
order 𝛼(𝑥) of 𝑓(𝑥) is defined by the expression

Δ
𝛼(𝑥)

𝑓 (𝑥) = (FW − 1)
𝛼(𝑥)

=

∞

∑

𝑘=0

(−1)
𝑘

1

Γ (𝑘 − 𝛼 (𝑥))
𝑓 (𝑥 − (𝛼 (𝑥) − 𝑘) ℎ) .

(18)

And its variational order fractional derivative of order 𝛼(𝑥) is
defined by the limit

𝑓
𝛼(𝑥)

(𝑥) = lim
ℎ→0

Δ
𝛼(𝑥)

(𝑓 (𝑥) − 𝑓 (0))

ℎ𝛼(𝑥)
. (19)

5.3. Jumarie Fractional Derivative Revisited. Recently, Guy
Jumarie proposed a simple alternative definition to the Rie-
mann-Liouville derivative. His modified Riemann-Liouville
derivative has the advantage of both standard Riemann-
Liouville and Caputo fractional derivatives: it is defined for
arbitrary continuous (nondifferentiable) functions and the
fractional derivative of a constant is equal to zero. However
if the function is not defined at the origin, the fractional
derivative will not exist, therefore in order to circumvent this
defeat we propose the following definition. Let 𝑓 : R → R,
𝑥 → 𝑓(𝑥) denotes a continuous but necessary at the origin
and not necessary differentiable, then its fractional derivative
is defined as:

𝐷
𝛼

0
(𝑓 (𝑥))

= FP(
1

Γ (1 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

(𝑓 (𝑡) − 𝑓 (0)) 𝑑𝑡) ,

(20)

where FP means finite part of the fractional derivative
order operator. Notice that, the above derivative meets all
the requirement of the fractional derivative operator; the
derivative of the constant is zero, in addition the function
needs not to be continuous at the origin.With this definition,
the fractional derivative of ln(𝑥) is given as

𝐷
𝛼

0
(ln (𝑥))

= −

𝑥
−𝛼

(EulerGamma + 𝜋Cot [𝜋 𝛼] − ln (𝑥) + PolyGamma [0, 𝛼])
Γ (1 − 𝛼)

.

(21)

The above fractional order derivative definition can be used
inmany field for instance in the field of groundwater. Because
this definition does not produce a fractional derivative
with any kind of singularity as in the case of Jumarie and
the traditional Riemann-Liouville fractional order deriva-
tive. This concept was introduced by Hadamard [34–36].

The Hadamard regularization [34–36], based on the concept
of finite part (“partie finie”) of a singular function or a
divergent integral, plays an important role in several branches
of Mathematical Physics see [29–37]. Typically one deals
with functions admitting some non-integrable singularities
on a discrete set of isolated points located at finite distances
from the origin. The regularization consists of assigning by
definition a value for the function at the location of one of
the singular points, and for the generally divergent integral of
that function. The definition may not be fully deterministic,
as the Hadamard “partie finie” depends in general on some
arbitrary constants [38].

6. Discussions and Conclusions

Wepresented the definitions of the commonly used fractional
derivatives operators which are ranging from Riemann-
Liouville to Guy Jumarie. We presented the disadvantages
and advantages of each definition. No definition has fulfilled
the entire requirement needed; for example, the Jumarie
definition fulfills some interesting requirements including the
derivative of a constant is zero, and a nondifferentiable func-
tionmay have a fractional derivative. However, if the function
is not defined at the origin, it may not have a fractional
derivative in Jumarie sense. With the Riemann-Liouville
fractional derivative, the function needs not to be continuous
at the origin and needs not to be differentiable; however, the
derivative of a constant is not zero; in addition, his has certain
disadvantages when trying to model real-world phenomena
with fractional differential equations. Also if an arbitrary
function is a zero at the origin, its fractional derivation has a
singularity at the origin, for instance exponential andMittag-
Leffler functions. Theses disadvantages reduce the field of
application of the Riemann-Liouville fractional derivative.
The Caputo derivative is very useful when dealing with
real-world problem because, it allows traditional initial and
boundary conditions to be included in the formulation of the
problem and in addition the derivative of a constant is zero;
however, functions that are not differentiable do not have
fractional derivative, which reduces the field of application of
Caputo derivative. It is in addition important to notice that,
to characterize anomalous diffusion phenomena, constant-
order fractional diffusion equations have been introduced
and have received tremendous success. However, it has been
found that the constant order fractional diffusion equations
are not capable of characterizing some complex diffusion pro-
cesses. To solve the above problems, the variable-order (VO)
fractional diffusion equation models have been suggested for
use; however, the calculations involved in these definitions
are very difficult to handle analytically; therefore, numerical
attentions are needed for these cases. To solve the problem
found in Jumarie definition, we proposed an alternative
fractional derivative and we extended the definition to the
case of variational differential operator. We provided a table
of Liouville fractional derivative of some special functions.
Now we can conclude here by observing, that all fractional
derivatives examined here are all useful, and they have to be
used according to the support of the function.
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of anomalous diffusion and Lévy flights in a two-dimensional
rotating flow,” Physical Review Letters, vol. 71, no. 24, pp. 3975–
3978, 1993.

[19] S. Bhalekar, V.Daftardar-Gejji, D. Baleanu, andR.Magin, “Frac-
tional Bloch equation with delay,” Computers & Mathematics
with Applications, vol. 61, no. 5, pp. 1355–1365, 2011.

[20] R. L. Magin, Fractional Calculus in Bioengineering, Begell
House, Connecticut, UK, 2006.

[21] R. L. Magin, O. Abdullah, D. Baleanu, and X. J. Zhou, “Anoma-
lous diffusion expressed through fractional order differential
operators in the Bloch-Torrey equation,” Journal of Magnetic
Resonance, vol. 190, no. 2, pp. 255–270, 2008.

[22] A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, “Fractional
diffusion in inhomogeneous media,” Journal of Physics A, vol.
38, no. 42, pp. L679–L684, 2005.

[23] F. Santamaria, S. Wils, E. de Schutter, and G. J. Augustine,
“Anomalous diffusion in Purkinje cell dendrites caused by
spines,” Neuron, vol. 52, no. 4, pp. 635–648, 2006.

[24] H. G. Sun, W. Chen, and Y. Q. Chen, “Variable order fractional
differential operators in anomalous diffusion modeling,” Phys-
ica A, vol. 388, no. 21, pp. 4586–4592, 2009.

[25] H. G. Sun, Y. Q. Chen, andW. Chen, “Random order fractional
differential equationmodels,” Signal Processing, vol. 91, no. 3, pp.
525–530, 2011.

[26] Y. Q. Chen and K. L. Moore, “Discretization schemes for
fractional-order differentiators and integrators,” IEEE Transac-
tions on Circuits and Systems I, vol. 49, no. 3, pp. 363–367, 2002.

[27] E. N. Azevedo, P. L. de Sousa, R. E. de Souza et al.,
“Concentration-dependent diffusivity and anomalous diffu-
sion: a magnetic resonance imaging study of water ingress in
porous zeolite,” Physical Review E, vol. 73, no. 1, part 1, Article
ID 011204, 2006.

[28] S. Umarov and S. Steinberg, “Variable order differential equa-
tions with piecewise constant order-function and diffusionwith
changing modes,” Zeitschrift für Analysis und ihre Anwendun-
gen, vol. 28, no. 4, pp. 431–450, 2009.

[29] B. Ross and S. Samko, “Fractional integration operator of
variable order in the holder spaces H𝜆(x),” International Journal
of Mathematics and Mathematical Sciences, vol. 18, no. 4, pp.
777–788, 1995.

[30] H. T. C. Pedro, M. H. Kobayashi, J. M. C. Pereira, and C. F.
M. Coimbra, “Variable order modeling of diffusive-convective
effects on the oscillatory flow past a sphere,” Journal of Vibration
and Control, vol. 14, no. 9-10, pp. 1659–1672, 2008.

[31] D. Ingman and J. Suzdalnitsky, “Application of differential
operator with servo-order function in model of viscoelastic
deformation process,” Journal of EngineeringMechanics, vol. 131,
no. 7, pp. 763–767, 2005.

[32] Y. L. Kobelev, L. Y. Kobelev, and Y. L. Klimontovich, “Statistical
physics of dynamic systems with variable memory,” Doklady
Physics, vol. 48, no. 6, pp. 285–289, 2003.



8 Abstract and Applied Analysis

[33] A. H. Cloot and J. P. Botha, “A generalized groundwater flow
equation using the concept of non-integer order,”Water SA, vol.
32, no. 1, pp. 1–7, 2006.
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