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We consider generalized Berinde-type contractions in the context of partial metric spaces. Such contractions are also known as
generalized almost contractions in the literature. In this paper, we extend, generalize, and enrich the results in this direction. Some
examples are presented to illustrate our results.

1. Introduction and Preliminaries

Matthews [1] introduced the notion of a partial metric space
as a part of the study of denotational semantics of data for
networks, showing that the contraction mapping principle
[2] can be generalized to the partial metric context for
applications in program verifications. Later, there have been
several recent extensive researchs on (common) fixed points
for different contractions on partial metric spaces, see [3–
28].

First, we recall some basic concepts and notations.

Definition 1. A partial metric on a nonempty set 𝑋 is a
function 𝑝 : 𝑋 × 𝑋 → [0, +∞) such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(𝑝1) 𝑥 = 𝑦 ⇔ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦),
(𝑝2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦),
(𝑝3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥),
(𝑝4) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

A partial metric space is a pair (𝑋, 𝑝) such that 𝑋 is a
nonempty set and 𝑝 is a partial metric on𝑋.

Example 2 (see [1]). Let 𝑋 = R+ and 𝑝 defined on 𝑋 by
𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑝) is a partial
metric space.

Example 3 (see [20, 26]). Let (𝑋, 𝑑) and (𝑋, 𝑝) be a metric
space and a partial metric space, respectively. Functions 𝜌

𝑖
:

𝑋 × 𝑋 → R+ (𝑖 ∈ {1, 2, 3}) given by
𝜌
1
(𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝑝 (𝑥, 𝑦) ,

𝜌
2
(𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) +max {𝑢 (𝑥) , 𝑢 (𝑦)} ,

𝜌
3
(𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) + 𝑎,

(1)

define partial metrics on 𝑋, where 𝑢 : 𝑋 → R+ is an
arbitrary function and 𝑎 ≥ 0.

Example 4 (see [1]). Let 𝑋 = {[𝑎, 𝑏] : 𝑎, 𝑏 ∈ R, 𝑎 ≤ 𝑏} and
define 𝑝([𝑎, 𝑏], [𝑐, 𝑑]) = max{𝑏, 𝑑} −min{𝑎, 𝑐}. Then (𝑋, 𝑝) is
a partial metric space.

Example 5 (see [1]). Let 𝑋 = [0, 1] ∪ [2, 3] and define 𝑝 :

𝑋 × 𝑋 → R+ by

𝑝 (𝑥, 𝑦) = {
max {𝑥, 𝑦} , if {𝑥, 𝑦} ∩ [2, 3] ̸= 0,

𝑥 − 𝑦
 , if {𝑥, 𝑦} ⊂ [0, 1] .

(2)

Then (𝑋, 𝑝) is a partial metric space.

Remark 6. It is clear that, if 𝑝(𝑥, 𝑦) = 0, then from (𝑝1) and
(𝑝2), we get 𝑥 = 𝑦. On the other hand, 𝑝(𝑥, 𝑦) may not be 0
even if 𝑥 = 𝑦.
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Each partial metric 𝑝 on𝑋 generates a 𝑇
0
topology 𝜏

𝑝
on

𝑋which has as a base the family of open 𝑝-balls {𝐵
𝑝
(𝑥, 𝜀), 𝑥 ∈

𝑋, 𝜀 > 0}, where 𝐵
𝑝
(𝑥, 𝜀) = {𝑦 ∈ 𝑋 : 𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑥)+ 𝜀} for

all 𝑥 ∈ 𝑋 and 𝜀 > 0.
If 𝑝 is a partial metric on 𝑋, then the functions 𝑑

𝑝
, 𝑑𝑝
𝑚

:

𝑋 × 𝑋 → R
+
given by

𝑑
𝑝
(𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) ,

𝑑
𝑝

𝑚
(𝑥, 𝑦) = max {𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) , 𝑝 (𝑥, 𝑦) − 𝑝 (𝑦, 𝑦)}

= 𝑝 (𝑥, 𝑦) −min {𝑝 (𝑥, 𝑥) , 𝑝 (𝑦, 𝑦)}

(3)

are equivalent metrics on𝑋.

Definition 7 (see [1]). Let (𝑋, 𝑝) be a partial metric space.

(1) A sequence {𝑥
𝑛
}
𝑛∈N in 𝑋 is called a Cauchy sequence

in (𝑋, 𝑝) if lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) exists and is finite.

(2) (𝑋, 𝑝) is called complete if every Cauchy sequence
{𝑥
𝑛
}
𝑛∈N converges with respect to 𝜏

𝑝
to a point 𝑥 ∈ 𝑋

such that 𝑝(𝑥, 𝑥) = lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

Lemma 8 (see [1]). Let (𝑋, 𝑝) be a partial metric space.

(1) {𝑥
𝑛
}
𝑛∈N is a Cauchy sequence in (𝑋, 𝑝) if and only if it

is a Cauchy sequence in the metric space (𝑋, 𝑑
𝑝
).

(2) A partial metric space (𝑋, 𝑝) is complete if and only
if the metric space (𝑋, 𝑑

𝑝
) is complete. Furthermore,

lim
𝑛→+∞

𝑑
𝑝
(𝑥
𝑛
, 𝑥) = 0 if and only if

𝑝 (𝑥, 𝑥) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥) = lim

𝑛,𝑚→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) . (4)

Lemma 9 (see [20]). Let {𝑥
𝑛
}
𝑛∈N be a convergent sequence in

a partial metric space 𝑋 such that 𝑥
𝑛
→ 𝑥 and 𝑥

𝑛
→ 𝑦 with

respect to 𝜏
𝑝
. If

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) = 𝑝 (𝑥, 𝑥) = 𝑝 (𝑦, 𝑦) , (5)

then 𝑥 = 𝑦.

Lemma 10 (see [20]). Let {𝑥
𝑛
}
𝑛∈N and {𝑦

𝑛
}
𝑛∈N be two

sequences in a partial metric space𝑋 such that

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥) = lim

𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) = 𝑝 (𝑥, 𝑥) ,

lim
𝑛→+∞

𝑝 (𝑦
𝑛
, 𝑦) = lim

𝑛→+∞

𝑝 (𝑦
𝑛
, 𝑦
𝑛
) = 𝑝 (𝑦, 𝑦) ,

(6)

then lim
𝑛→+∞

𝑝(𝑥
𝑛
, 𝑦
𝑛
) = 𝑝(𝑥, 𝑦). In particular,

lim
𝑛→+∞

𝑝(𝑥
𝑛
, 𝑧) = 𝑝(𝑥, 𝑧) for every 𝑧 ∈ 𝑋.

Lemma 11 (see [3]). Let (𝑋, 𝑝) be a partial metric space
and 𝑥

𝑛
→ 𝑧, with respect to 𝜏

𝑝
, with 𝑝(𝑧, 𝑧) = 0. Then

lim
𝑛→+∞

𝑝(𝑥
𝑛
, 𝑦) = 𝑝(𝑧, 𝑦) for all 𝑦 ∈ 𝑋.

The concept of almost contractions was introduced by
Berinde [29, 30] on metric spaces. Other results on almost
contractions could be found in [31–34]. Recently, Altun

and Acar [35] characterized this concept in the setting of
partial metric space and proved some fixed point theorems
using these concepts. Very recently, Turkoglu and Ozturk
[27] established a fixed point theorem for four mappings
satisfying an almost generalized contractive condition on
partial metric spaces. In this paper, we generalize the results
given in [27, 35] by presenting some fixed point results for self
mappings involving some almost generalized contractions
in the setting of partial metric spaces. Also, we give some
illustrative examples making our results proper.

2. Main Results

We start to this section by defining some sets of auxiliary
functions. LetFdenote all functions𝑓 : [0, +∞) → [0, +∞)

such that 𝑓(𝑡) = 0 if and only if 𝑡 = 0. We denote by Ψ andΦ

be subsets ofF such that

Ψ = {𝜓 ∈ F : 𝜓 is continuous and nondecreasing} ,

Φ = {𝜙 ∈ F : 𝜙 is lower semicontinuous} .
(7)

Let (𝑋, 𝑝) a partial metric space. We consider the following
expressions:

𝑀(𝑥, 𝑦) = max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦) ,

1

2
[𝑝 (𝑥, 𝑇𝑦) + 𝑝 (𝑦, 𝑇𝑥)]} ,

𝑁 (𝑥, 𝑦) = min {𝑑𝑝
𝑚
(𝑥, 𝑇𝑥) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑦) ,

𝑑
𝑝

𝑚
(𝑥, 𝑇𝑦) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑥)} ,

(8)

for all 𝑥, 𝑦 ∈ 𝑋.
Our first result is the following.

Theorem 12. Let (𝑋, 𝑝) be a complete partial metric space. Let
𝑇 : 𝑋 → 𝑋 be a self mapping. Suppose there exist 𝜓 ∈ Ψ,
𝜙 ∈ Φ and 𝐿 ≥ 0 such that for all 𝑥, 𝑦 ∈ 𝑋

𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦)) − 𝜙 (𝑀 (𝑥, 𝑦)) + 𝐿𝑁 (𝑥, 𝑦) .

(9)

Then 𝑇 has a unique fixed point, say 𝑢 ∈ 𝑋. Also, one has
𝑝(𝑢, 𝑢) = 0.

Proof. Let 𝑥
0
∈ 𝑋. We construct a sequence {𝑥

𝑛
}
𝑛∈N in𝑋 in a

way that 𝑥
𝑛
= 𝑇𝑥
𝑛−1

for all 𝑛 ≥ 1. Suppose that𝑝(𝑥
𝑛0
, 𝑥
𝑛0+1

) =

0 for some 𝑛
0
≥ 0. So we have 𝑥

𝑛0
= 𝑥
𝑛0+1

= 𝑇𝑥
𝑛0
, that is, 𝑥

𝑛0

is the fixed point of 𝑇.
From now on, assume that 𝑝(𝑥

𝑛
, 𝑥
𝑛+1

) > 0 for all 𝑛 ≥ 0.
By (9), we have

𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓 (𝑝 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
))

≤ 𝜓 (𝑀(𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜙 (𝑀 (𝑥

𝑛−1
, 𝑥
𝑛
))

+ 𝐿𝑁 (𝑥
𝑛−1

, 𝑥
𝑛
) ,

(10)
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where

𝑁(𝑥
𝑛−1

, 𝑥
𝑛
) = min {𝑑𝑝

𝑚
(𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑥
𝑛+1

) ,

𝑑
𝑝

𝑚
(𝑥
𝑛−1

, 𝑥
𝑛+1

) , 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑥
𝑛
)} .

(11)

Since 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑥
𝑛
) = 0, we get 𝑁(𝑥

𝑛−1
, 𝑥
𝑛
) = 0. Hence, it

follows that

𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓 (𝑀(𝑥
𝑛−1

, 𝑥
𝑛
)) − 𝜙 (𝑀 (𝑥

𝑛−1
, 𝑥
𝑛
)) ,

(12)

which yields that

𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓 (𝑀(𝑥
𝑛−1

, 𝑥
𝑛
)) . (13)

Since 𝜓 is nondecreasing, then

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑀(𝑥
𝑛−1

, 𝑥
𝑛
) , (14)

where

𝑀(𝑥
𝑛−1

, 𝑥
𝑛
)

= max {𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛−1
, 𝑇𝑥
𝑛−1

) , 𝑝 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ,

1

2
[𝑝 (𝑥
𝑛−1

, 𝑇𝑥
𝑛
) + 𝑝 (𝑥

𝑛
, 𝑇𝑥
𝑛−1

)]}

= max {𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) ,

1

2
[𝑝 (𝑥
𝑛−1

, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛
, 𝑥
𝑛
)]} .

(15)

Due to (𝑝4), we have

𝑝 (𝑥
𝑛−1

, 𝑥
𝑛+1

) + 𝑝 (𝑥
𝑛
, 𝑥
𝑛
) ≤ 𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) + 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) .

(16)

Hence, the expression (15) turns into

𝑀(𝑥
𝑛−1

, 𝑥
𝑛
) = max {𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)} . (17)

If for some 𝑛,

max {𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)} = 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) (18)

then by (12)

𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ 𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)) − 𝜙 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)) , (19)

so 𝜙(𝑝(𝑥
𝑛
, 𝑥
𝑛+1

)) = 0. By (𝜙
2
), we get 𝑝(𝑥

𝑛
, 𝑥
𝑛+1

) = 0, which
is a contradiction with respect to 𝑝(𝑥

𝑛
, 𝑥
𝑛+1

) > 0 for all 𝑛 ≥ 0.
Thus

𝑀(𝑥
𝑛−1

, 𝑥
𝑛
) = 𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) , for each 𝑛 ≥ 1, (20)

so from (14)

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) , for each 𝑛 ≥ 1. (21)

Thus, the sequence {𝑝(𝑥
𝑛
, 𝑥
𝑛+1

)} is non-increasing and so
there exists 𝛿 ≥ 0 such that

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝛿. (22)

Suppose that 𝛿 > 0. Taking lim sup
𝑛→+∞

in inequality (12)
and using (20), we get

lim sup
𝑛→+∞

𝜓 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)) ≤ lim sup
𝑛→+∞

𝜓 (𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
))

− lim inf
𝑛→+∞

𝜙 (𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)) .

(23)

By continuity of 𝜓 and lower semicontinuity of 𝜙, we get
𝜓(𝛿) ≤ 𝜓(𝛿)−𝜙(𝛿), so𝜙(𝛿) = 0, that is, 𝛿 = 0, a contradiction.
We conclude that

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (24)

We will show that {𝑥
𝑛
}
𝑛∈N is a Cauchy sequence in the partial

metric space (𝑋, 𝑝). From Lemma 8, we need to prove that
{𝑥
𝑛
}
𝑛∈N is a Cauchy sequence in the metric space (𝑋, 𝑑

𝑝
).

Suppose to the contrary that {𝑥
𝑛
}
𝑛∈N is not a Cauchy sequence

in the metric space (𝑋, 𝑑
𝑝
). Then, there is a 𝜀 > 0 such that

for an integer 𝑘 there exist integers𝑚(𝑘) > 𝑛(𝑘) > 𝑘 such that

𝑑
𝑝
(𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

) > 𝜀. (25)

By definition of 𝑑
𝑝
, we have 𝑑

𝑝
(𝑥, 𝑦) ≤ 2𝑝(𝑥, 𝑦) for each

𝑥, 𝑦 ∈ 𝑋, so (25) gives us

𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

) >
𝜀

2
. (26)

For every integer 𝑘, let 𝑚(𝑘) be the least positive integer
exceeding 𝑛(𝑘) satisfying (26) then

𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) ≤
𝜀

2
. (27)

Now, using (26), (27), and the triangular inequality (which
still holds for the partial metric 𝑝), we obtain

𝜀

2
< 𝑝 (𝑥

𝑛(𝑘)
, 𝑥
𝑚(𝑘)

)

≤ 𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) + 𝑝 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

)

− 𝑝 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)−1

)

≤ 𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) + 𝑝 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

)

≤
𝜀

2
+ 𝑝 (𝑥

𝑚(𝑘)−1
, 𝑥
𝑚(𝑘)

) .

(28)

Then by (24) it follows that

lim
𝑘→+∞

𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

) =
𝜀

2
. (29)

Also, by the triangle inequality, we have
𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) − 𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

)
 ≤ 𝑝 (𝑥

𝑚(𝑘)−1
, 𝑥
𝑚(𝑘)

) .

(30)
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From (24) and (29) we get

lim
𝑘→+∞

𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) =
𝜀

2
. (31)

Similarly, by triangle inequality

𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

) ≤ 𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) + 𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑚(𝑘)

)

≤ 𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) + 𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑚(𝑘)−1

)

+ 𝑝 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

)

≤ 2𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) + 𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

)

+ 𝑝 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

)

(32)

and from (24), (29), and (31) we get

lim
𝑘→+∞

𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑚(𝑘)

) =
𝜀

2
, (33)

lim
𝑘→+∞

𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑚(𝑘)−1

) =
𝜀

2
. (34)

Having

𝑑
𝑝

𝑚
(𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

)

= 𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

)

−min {𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)

) , 𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑛(𝑘)+1

)}

≤ 𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) ,

(35)

so referring to (24), we get

lim
𝑘→+∞

𝑑
𝑝

𝑚
(𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) = 0. (36)

Moreover

𝑀(𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

)

= max {𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) , 𝑝 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) ,

𝑝 (𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑚(𝑘)−1

) ,

1

2
[𝑝 (𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑚(𝑘)−1

) + 𝑝 (𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑛(𝑘)

)]}

= max {𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) , 𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) ,

𝑝 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

) ,

1

2
[𝑝 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

) + 𝑝 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)+1

)]} .

(37)

Thus, from (24), (29), (31), and (34), we get

lim
𝑘→+∞

𝑀(𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) = max { 𝜀
2
, 0, 0,

𝜀

2
} =

𝜀

2
. (38)

From (9), we have

𝜓 (𝑝 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑚(𝑘)

))

≤ 𝜓 (𝑝 (𝑇𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑚(𝑘)−1

))

≤ 𝜓 (𝑀(𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

))

− 𝜙 (𝑀 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

)) + 𝐿𝑁 (𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) ,

(39)

where

𝑁(𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

)

= min {𝑑𝑝
𝑚
(𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑛(𝑘)

) , 𝑑
𝑝

𝑚
(𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑚(𝑘)−1

) ,

𝑑
𝑝

𝑚
(𝑥
𝑛(𝑘)

, 𝑇𝑥
𝑚(𝑘)−1

) , 𝑑
𝑝

𝑚
(𝑥
𝑚(𝑘)−1

, 𝑇𝑥
𝑛(𝑘)

)}

= min {𝑑𝑝
𝑚
(𝑥
𝑛(𝑘)

, 𝑥
𝑛(𝑘)+1

) , 𝑑
𝑝

𝑚
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑚(𝑘)

) ,

𝑑
𝑝

𝑚
(𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)

) , 𝑑
𝑝

𝑚
(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)+1

)} .

(40)

By (36), we get

lim
𝑘→+∞

𝑁(𝑥
𝑛(𝑘)

, 𝑥
𝑚(𝑘)−1

) = 0 (41)

and referring to (33), (38) and letting 𝑘 → +∞, we get

𝜓(
𝜀

2
) ≤ 𝜓(

𝜀

2
) − 𝜙(

𝜀

2
) , (42)

so 𝜙(𝜀/2) = 0, which is a contradiction with respect to 𝜀 >

0. Thus we proved that {𝑥
𝑛
}
𝑛∈N is a Cauchy sequence in the

metric space (𝑋, 𝑑
𝑝
).

Since (𝑋, 𝑝) is complete, then from Lemma 8, (𝑋, 𝑑
𝑝
)

is a complete metric space. Therefore, the sequence {𝑥
𝑛
}
𝑛∈N

converges to some 𝑢 ∈ 𝑋 in (𝑋, 𝑑
𝑝
), that is,

lim
𝑛→+∞

𝑑
𝑝
(𝑥
𝑛
, 𝑢) = 0. (43)

Again, from Lemma 8,

𝑝 (𝑢, 𝑢) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑢) = lim

𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) . (44)

On the other hand, thanks to (24) and the condition (𝑝2)

from Definition 1,

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) = 0, (45)

so it follows that

𝑝 (𝑢, 𝑢) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑢) = lim

𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑛
) = 0. (46)

Now, we show that𝑝(𝑢, 𝑇𝑢) = 0. Assume this is not true, then
from (9) we obtain

𝜓 (𝑝 (𝑥
𝑛+1

, 𝑇𝑢)) = 𝜓 (𝑝 (𝑇𝑥
𝑛
, 𝑇𝑢))

≤ 𝜓 (𝑀(𝑥
𝑛
, 𝑢)) − 𝜙 (𝑀 (𝑥

𝑛
, 𝑢))

+ 𝐿min {𝑑𝑝
𝑚
(𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑
𝑝

𝑚
(𝑢, 𝑇𝑢) ,

𝑑
𝑝

𝑚
(𝑢, 𝑇𝑥

𝑛
) , 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑇𝑢)} ,

(47)
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where

𝑀(𝑥
𝑛
, 𝑢) = max {𝑝 (𝑥

𝑛
, 𝑢) , 𝑝 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑝 (𝑢, 𝑇𝑢) ,

1

2
[𝑝 (𝑥
𝑛
, 𝑇𝑢) + 𝑝 (𝑢, 𝑇𝑥

𝑛
)]}

= max {𝑝 (𝑥
𝑛
, 𝑢) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) , 𝑝 (𝑢, 𝑇𝑢) ,

1

2
[𝑝 (𝑥
𝑛
, 𝑇𝑢) + 𝑝 (𝑢, 𝑥

𝑛+1
)]} .

(48)

Thanks to (46), it is obvious that lim
𝑛→+∞

𝑝(𝑥
𝑛
, 𝑇𝑢) =

𝑝(𝑢, 𝑇𝑢).Therefore, using (24) and again (46), we deduce that

lim
𝑛→+∞

𝑀(𝑥
𝑛
, 𝑢) = max {0, 0, 𝑝 (𝑢, 𝑇𝑢) ,

1

2
𝑝 (𝑢, 𝑇𝑢)}

= 𝑝 (𝑢, 𝑇𝑢) .

(49)

Also
lim
𝑛→+∞

𝑁(𝑥
𝑛
, 𝑢) = 0 (50)

because (24) and (45) give lim
𝑛→+∞

𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. Now,

taking the upper limit as 𝑛 → +∞, we obtain using the
properties of 𝜓 and 𝜙

𝜓 (𝑝 (𝑢, 𝑇𝑢)) ≤ 𝜓 (𝑝 (𝑢, 𝑇𝑢)) − 𝜙 (𝑝 (𝑢, 𝑇𝑢)) , (51)
so 𝜙(𝑝(𝑢, 𝑇𝑢)) = 0, that is, 𝑝(𝑢, 𝑇𝑢) = 0, so 𝑇𝑢 = 𝑢. We
conclude that 𝑇 has a fixed point 𝑢 ∈ 𝑋 and 𝑝(𝑢, 𝑢) = 0.

Now if 𝑣 ̸= 𝑢 (so 𝑝(𝑢, 𝑣) ̸= 0) is another fixed point of 𝑇
(with 𝑝(𝑣, 𝑣) = 0), then by (46),

𝑁(𝑢, 𝑣) = min {𝑑𝑝
𝑚
(𝑢, 𝑇𝑢) , 𝑑

𝑝

𝑚
(𝑣, 𝑇𝑣) ,

𝑑
𝑝

𝑚
(𝑢, 𝑇𝑣) , 𝑑

𝑝

𝑚
(𝑣, 𝑇𝑢)}

= min {𝑑𝑝
𝑚
(𝑢, 𝑢) , 𝑑

𝑝

𝑚
(𝑣, 𝑣) , 𝑑

𝑝

𝑚
(𝑢, 𝑣) , 𝑑

𝑝

𝑚
(𝑣, 𝑢)}

= 0,

𝑀 (𝑢, 𝑣) = max {𝑝 (𝑢, 𝑣) , 𝑝 (𝑢, 𝑇𝑢) , 𝑝 (𝑣, 𝑇𝑣) ,

1

2
[𝑝 (𝑢, 𝑇𝑣) + 𝑝 (𝑣, 𝑇𝑢)]}

= max {𝑝 (𝑢, 𝑣) , 𝑝 (𝑢, 𝑢) , 𝑝 (𝑣, 𝑣) ,

1

2
[𝑝 (𝑢, 𝑣) + 𝑝 (𝑣, 𝑢)]}

= max {𝑝 (𝑢, 𝑣) , 0, 0,
1

2
[𝑝 (𝑢, 𝑣) + 𝑝 (𝑣, 𝑢)]}

= 𝑝 (𝑢, 𝑣) .

(52)

Hence, using (9) we obtain

𝜓 (𝑝 (𝑢, 𝑣)) = 𝜓 (𝑝 (𝑇𝑢, 𝑇𝑣))

≤ 𝜓 (𝑀 (𝑢, 𝑣)) − 𝜙 (𝑀 (𝑢, 𝑣)) + 𝐿𝑁 (𝑣, 𝑢)

= 𝜓 (𝑝 (𝑢, 𝑣)) − 𝜙 (𝑝 (𝑢, 𝑣)) ,

(53)

that is, 𝑝(𝑢, 𝑣) = 0, which is a contradiction. The proof of
Theorem 12 is completed.

As a consequence of Theorem 12, we may state the
following corollaries.

First, taking 𝐿 = 0 in Theorem 12, we have the following.

Corollary 13. Let (𝑋, 𝑝) be a complete partial metric space.
Let 𝑇 : 𝑋 → 𝑋 be a self mapping. Suppose there exist 𝜓 ∈ Ψ

and 𝜙 ∈ Φ such that for all 𝑥, 𝑦 ∈ 𝑋

𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝑀(𝑥, 𝑦)) − 𝜓 (𝑀 (𝑥, 𝑦)) . (54)

Then 𝑇 has a unique fixed point, say 𝑢 ∈ 𝑋. Also, one has
𝑝(𝑢, 𝑢) = 0.

Corollary 14. Let (𝑋, 𝑝) be a complete partial metric space.
Let 𝑇 : 𝑋 → 𝑋 be a self mapping. Suppose there exist 𝑘 ∈

[0, 1) and 𝐿 ≥ 0 such that for all 𝑥, 𝑦 ∈ 𝑋

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑀(𝑥, 𝑦)

+ 𝐿min {𝑑𝑝
𝑚
(𝑥, 𝑇𝑥) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑦) ,

𝑑
𝑝

𝑚
(𝑥, 𝑇𝑦) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑥)} .

(55)

Then 𝑇 has a unique fixed point, say 𝑢 ∈ 𝑋. Also, one has
𝑝(𝑢, 𝑢) = 0.

Proof. It follows by taking 𝜓(𝑡) = 𝑡 and 𝜙(𝑡) = (1 − 𝑘)(𝑡) in
Theorem 12.

Denote by Λ the set of functions 𝜆 : [0, +∞) → [0, +∞)

satisfying the following hypotheses:

(1) 𝜆 is a Lebesgue-integrable mapping on each compact
subset of [0, +∞),

(2) for every 𝜖 > 0, we have ∫𝜖
0
𝜆(𝑠)𝑑𝑠 > 0.

We have the following result.

Corollary 15. Let (𝑋, 𝑝) be a complete partial metric space.
Let𝑇 : 𝑋 → 𝑋 be a self mapping. Suppose there exist 𝛼, 𝛽 ∈ Λ

and 𝐿 ≥ 0 such that for all 𝑥, 𝑦 ∈ 𝑋

∫

𝑝(𝑇𝑥,𝑇𝑦)

0

𝛼 (𝑠) 𝑑𝑠 ≤ ∫

𝑝(𝑇𝑥,𝑇𝑦)

0

𝛼 (𝑠) 𝑑𝑠 − ∫

𝑀(𝑥,𝑦)

0

𝛽 (𝑠) 𝑑𝑠

+ 𝐿min {𝑑𝑝
𝑚
(𝑥, 𝑇𝑥) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑦) ,

𝑑
𝑝

𝑚
(𝑥, 𝑇𝑦) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑥)} .

(56)

Then 𝑇 has a unique fixed point, say 𝑢 ∈ 𝑋. Also, one has
𝑝(𝑢, 𝑢) = 0.

Proof. It follows fromTheorem 12 by taking

𝜓 (𝑡) = ∫

𝑡

0

𝛼 (𝑠) 𝑑𝑠,

𝜙 (𝑡) = ∫

𝑡

0

𝛽 (𝑠) 𝑑𝑠.

(57)
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Taking 𝐿 = 0 in Corollary 15, we obtain the following
result.

Corollary 16. Let (𝑋, 𝑝) be a complete partial metric space.
Let𝑇 : 𝑋 → 𝑋 be a self mapping. Suppose there exist 𝛼, 𝛽 ∈ Λ

such that for all 𝑥, 𝑦 ∈ 𝑋

∫

𝑝(𝑇𝑥,𝑇𝑦)

0

𝛼 (𝑠) 𝑑𝑠 ≤ ∫

𝑝(𝑇𝑥,𝑇𝑦)

0

𝛼 (𝑠) 𝑑𝑠 − ∫

𝑀(𝑥,𝑦)

0

𝛽 (𝑠) 𝑑𝑠.

(58)

Then 𝑇 has a unique fixed point, say 𝑢 ∈ 𝑋. Also, one has
𝑝(𝑢, 𝑢) = 0.

Now, let F be the set of functions 𝜑 : [0, +∞) →

[0, +∞) satisfying the following hypotheses:

(𝜑
1
) 𝜑 is nondecreasing

(𝜑
2
) ∑+∞
𝑛=0

𝜑
𝑛
(𝑡) converges for all 𝑡 > 0.

Note that if 𝜑 ∈ F, 𝜑 is said a (𝐶)-comparison function.
It is easily proved that if 𝜑 is a (𝐶)-comparison function, then
𝜑(𝑡) < 𝑡 for any 𝑡 > 0. Our second main result is as follows.

Theorem 17. Let (𝑋, 𝑝) be a complete partial metric space. Let
𝑇 : 𝑋 → 𝑋 be a mapping such that there exist 𝜑 ∈ F and
𝐿 ≥ 0 such that for all 𝑥, 𝑦 ∈ 𝑋

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑀 (𝑥, 𝑦))

+ 𝐿min {𝑑𝑝
𝑚
(𝑥, 𝑇𝑥) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑦) ,

𝑑
𝑝

𝑚
(𝑥, 𝑇𝑦) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑥)} .

(59)

Then 𝑇 has a unique fixed point, say 𝑢 ∈ 𝑋. Also, one has
𝑝(𝑢, 𝑢) = 0.

Proof. Let 𝑥
0
∈ 𝑋. Let {𝑥

𝑛
}
𝑛∈N in𝑋 such that 𝑥

𝑛
= 𝑇𝑥
𝑛−1

for
all 𝑛 ≥ 1.

If for some 𝑛 ∈ N, 𝑝(𝑥
𝑛
, 𝑥
𝑛+1

) = 0, the proof is completed.
Assume that 𝑝(𝑥

𝑛
, 𝑥
𝑛+1

) ̸= 0 for all 𝑛 ≥ 0.
From (59)

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑝 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

≤ 𝜑 (𝑀 (𝑥
𝑛−1

, 𝑥
𝑛
))

= 𝐿min {𝑑𝑝
𝑚
(𝑥
𝑛−1

, 𝑇𝑥
𝑛−1

) , 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑇𝑥
𝑛
) ,

𝑑
𝑝

𝑚
(𝑥
𝑛−1

, 𝑇𝑥
𝑛
) , 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑇𝑥
𝑛−1

)} .

(60)

As explained in the proof of Theorem 12, we may get

min {𝑑𝑝
𝑚
(𝑥
𝑛−1

, 𝑇𝑥
𝑛−1

) , 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑇𝑥
𝑛
) ,

𝑑
𝑝

𝑚
(𝑥
𝑛−1

, 𝑇𝑥
𝑛
) , 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑇𝑥
𝑛−1

)} = 0,

𝑀 (𝑥
𝑛−1

, 𝑥
𝑛
) = max {𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)} .

(61)

Therefore

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜑 (max {𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)}) . (62)

If for some 𝑛 ≥ 1, we have 𝑝(𝑥
𝑛−1

, 𝑥
𝑛
) ≤ 𝑝(𝑥

𝑛
, 𝑥
𝑛+1

). So from
(62), we obtain that

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜑 (𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)) < 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) , (63)

a contradiction. Thus, for all 𝑛 ≥ 1, we have

𝑀(𝑥
𝑛−1

, 𝑥
𝑛
) = max {𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)}

= 𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) .

(64)

Using (62) and (64), we get that

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜑 (𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)) ∀𝑛 ≥ 1. (65)

By induction, we get

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜑
𝑛

(𝑝 (𝑥
0
, 𝑥
1
)) (66)

for all 𝑛 ≥ 0. By triangle inequality, we have for𝑚 > 𝑛

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) ≤

𝑘=𝑚−1

∑

𝑘=𝑛

𝑝 (𝑥
𝑘
, 𝑥
𝑘+1

) −

𝑘=𝑚−1

∑

𝑘=𝑛+1

𝑝 (𝑥
𝑘
, 𝑥
𝑘
)

≤

𝑘=𝑚−1

∑

𝑘=𝑛

𝑝 (𝑥
𝑘
, 𝑥
𝑘+1

)

≤

𝑘=+∞

∑

𝑘=𝑛

𝑝 (𝑥
𝑘
, 𝑥
𝑘+1

)

≤

𝑘=+∞

∑

𝑘=𝑛

𝜑
𝑘

(𝑝 (𝑥
0
, 𝑥
1
)) .

(67)

Keeping in mind that 𝜑 is a (𝐶)-comparison function, then
lim
𝑛→+∞

∑
𝑘=+∞

𝑘=𝑛
𝜑
𝑘
(𝑝(𝑥
0
, 𝑥
1
)) = 0 and so {𝑥

𝑛
}
𝑛∈N is a

Cauchy sequence in (𝑋, 𝑝) with lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) = 0.

Since (𝑋, 𝑝) is complete then {𝑥
𝑛
}
𝑛∈N converges, with respect

to 𝜏
𝑝
, to a point 𝑢 ∈ 𝑋 such that

𝑝 (𝑢, 𝑢) = lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑢) = lim

𝑛,𝑚→+∞

𝑝 (𝑥
𝑛
, 𝑥
𝑚
) = 0. (68)

Now we claim that 𝑝(𝑢, 𝑇𝑢) = 0. Suppose the contrary, then
𝑝(𝑢, 𝑇𝑢) > 0. By (59), we have

𝑝 (𝑢, 𝑇𝑢) ≤ 𝑝 (𝑢, 𝑥
𝑛+1

) + 𝑝 (𝑇𝑥
𝑛
, 𝑇𝑢)

≤ 𝑝 (𝑢, 𝑥
𝑛+1

) + 𝜑 (𝑀 (𝑥
𝑛
, 𝑢))

+ 𝐿min {𝑑𝑝
𝑚
(𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑
𝑝

𝑚
(𝑢, 𝑇𝑢) ,

𝑑
𝑝

𝑚
(𝑢, 𝑇𝑥

𝑛
) , 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑇𝑢)} ,

(69)

where

𝑀(𝑥
𝑛
, 𝑢) = max {𝑝 (𝑥

𝑛
, 𝑢) , 𝑝 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑝 (𝑢, 𝑇𝑢) ,

1

2
[𝑝 (𝑥
𝑛
, 𝑇𝑢) + 𝑝 (𝑢, 𝑇𝑥

𝑛
)]}

= max {𝑝 (𝑥
𝑛
, 𝑢) , 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) , 𝑝 (𝑢, 𝑇𝑢) ,

1

2
[𝑝 (𝑥
𝑛
, 𝑇𝑢) + 𝑝 (𝑢, 𝑥

𝑛+1
)]} .

(70)
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By (68), we have

lim
𝑛→+∞

min {𝑑𝑝
𝑚
(𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑
𝑝

𝑚
(𝑢, 𝑇𝑢) ,

𝑑
𝑝

𝑚
(𝑢, 𝑇𝑥

𝑛
) , 𝑑
𝑝

𝑚
(𝑥
𝑛
, 𝑇𝑢)} = 0,

lim
𝑛→+∞

𝑀(𝑥
𝑛
, 𝑢) = 𝑝 (𝑢, 𝑇𝑢) .

(71)

Therefore

𝑝 (𝑢, 𝑇𝑢) ≤ 𝜑 (𝑝 (𝑢, 𝑇𝑢)) < 𝑝 (𝑢, 𝑇𝑢) , (72)

which is a contradiction. That is 𝑝(𝑢, 𝑇𝑢) = 0. Thus, we
obtained that 𝑢 is a fixed point for 𝑇 and 𝑝(𝑢, 𝑢) = 0.

Now if 𝑣 ̸= 𝑢 (so 𝑝(𝑢, 𝑣) ̸= 0) is another fixed point of 𝑇,
then by (68),

min {𝑑𝑝
𝑚
(𝑢, 𝑇𝑢) , 𝑑

𝑝

𝑚
(𝑣, 𝑇𝑣) , 𝑑

𝑝

𝑚
(𝑢, 𝑇𝑣) , 𝑑

𝑝

𝑚
(𝑣, 𝑇𝑢)}

= min {𝑑𝑝
𝑚
(𝑢, 𝑢) , 𝑑

𝑝

𝑚
(𝑣, 𝑣) , 𝑑

𝑝

𝑚
(𝑢, 𝑣) , 𝑑

𝑝

𝑚
(𝑣, 𝑢)}

= 0,

𝑀 (𝑢, 𝑣) = max {𝑝 (𝑢, 𝑣) , 𝑝 (𝑢, 𝑇𝑢) , 𝑝 (𝑣, 𝑇𝑣) ,

1

2
[𝑝 (𝑢, 𝑇𝑣) + 𝑝 (𝑣, 𝑇𝑢)]}

= max {𝑝 (𝑢, 𝑣) , 𝑝 (𝑢, 𝑢) , 𝑝 (𝑣, 𝑣) ,

1

2
[𝑝 (𝑢, 𝑣) + 𝑝 (𝑣, 𝑢)]}

= 𝑝 (𝑢, 𝑣) .

(73)

Hence, using (59) we obtain

𝑝 (𝑢, 𝑣) = 𝑝 (𝑇𝑢, 𝑇𝑣)

≤ 𝜑 (𝑀 (𝑢, 𝑣))

+ 𝐿min {𝑑𝑝
𝑚
(𝑢, 𝑇𝑢) , 𝑑

𝑝

𝑚
(𝑣, 𝑇𝑣) ,

𝑑
𝑝

𝑚
(𝑢, 𝑇𝑣) , 𝑑

𝑝

𝑚
(𝑣, 𝑇𝑢)}

≤ 𝜑 (𝑝 (𝑢, 𝑣))

< 𝑝 (𝑢, 𝑣)

(74)

which is a contradiction. Thus 𝑢 = 𝑣 and the proof of
Theorem 17 is completed.

Taking 𝐿 = 0 in Theorem 17, we have the following.

Corollary 18. Let (𝑋, 𝑝) be a complete partial metric space.
Let 𝑇 : 𝑋 → 𝑋 be a mapping such that there exists 𝜑 ∈ F
such that for all 𝑥, 𝑦 ∈ 𝑋

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝑀(𝑥, 𝑦)) . (75)

Then 𝑇 has a unique fixed point, say 𝑢 ∈ 𝑋. Also, one has
𝑝(𝑢, 𝑢) = 0.

Taking 𝜑(𝑡) = ℎ𝑡 where 0 ≤ ℎ < 1 in Corollary 18, we
obtain the Ćirić fixed point theorem [36] in the setting of
metric spaces (by considering 𝑝 = 𝑑 is a metric).

Corollary 19. Let (𝑋, 𝑑) be a complete metric space. Let 𝑇 :

𝑋 → 𝑋 be a mapping such that there exists ℎ ∈ [0, 1) such
that for all 𝑥, 𝑦 ∈ 𝑋

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ ℎmax {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

1

2
[𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)]} .

(76)

Then 𝑇 has a unique fixed point.

Remark 20. Corollary 14 generalizes Theorem 10 (with 𝑓 =

𝑔 = 𝑇 = 𝑆) of Turkoglu and Ozturk [27]. Corollary 18
improves Theorem 1 of Altun et al. [4] by assuming that 𝜑
is not continuous.

3. Examples

We give in this section some examples making effective our
obtained results.

Example 21. Let 𝑋 = [0, 1] and 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all
𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑝) is a complete partial metric space.
Consider 𝑇 : 𝑋 → 𝑋 defined by

𝑇𝑥 =
𝑥
2

1 + 𝑥
. (77)

Take 𝜓(𝑡) = 𝑡 and 𝜙(𝑡) = 𝑡/(1 + 𝑡) for all 𝑡 ≥ 0. Note that
𝜓 ∈ Ψ and 𝜙 ∈ Φ. Take 𝑥 ≤ 𝑦, then

𝜓 (𝑝 (𝑇𝑥, 𝑇𝑦))

=
𝑦
2

1 + 𝑦
= 𝑦 −

𝑦

1 + 𝑦

= 𝜓 (𝑀(𝑥, 𝑦)) − 𝜙 (𝑀 (𝑥, 𝑦))

(since 𝑀(𝑥, 𝑦) = 𝑦)

≤ 𝜓 (𝑀(𝑥, 𝑦)) − 𝜙 (𝑀 (𝑥, 𝑦))

+ 𝐿min {𝑑𝑝
𝑚
(𝑥, 𝑇𝑥) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑦) ,

𝑑
𝑝

𝑚
(𝑥, 𝑇𝑦) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑥)}

(78)

for all 𝐿 ≥ 0. Thus, (9) holds. Applying Theorem 12, 𝑇 has a
unique fixed point, which is 𝑢 = 0.

Example 22. Let 𝑋 = {0, 1, 2, 3, 4} and 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}.
Let 𝑇 : 𝑋 → 𝑋 be defined as follows:

𝑇0 = 0, 𝑇1 = 𝑇3 = 2, 𝑇4 = 𝑇2 = 1. (79)
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By simple calculation, we get that

𝑝 (𝑇2, 𝑇2) = 𝑝 (𝑇4, 𝑇4) = 𝑝 (𝑇2, 𝑇0)

= 𝑝 (𝑇4, 𝑇0) = 𝑝 (𝑇2, 𝑇4) = 1,

𝑝 (𝑇0, 𝑇0) = 0,

𝑝 (𝑇1, 𝑇1) = 𝑝 (𝑇3, 𝑇3) = 𝑝 (𝑇1, 𝑇0)

= 𝑝 (𝑇3, 𝑇0) = 𝑝 (𝑇1, 𝑇3) = 2,

𝑝 (𝑇4, 𝑇1) = 𝑝 (𝑇4, 𝑇3) = 𝑝 (𝑇2, 𝑇1)

= 𝑝 (𝑇2, 𝑇3) = 2.

(80)

Hence, we derive that

𝑀(𝑇1, 𝑇4) = 𝑀 (𝑇2, 𝑇4) = 𝑀 (𝑇3, 𝑇4)

= 𝑀 (𝑇4, 𝑇4) = 𝑀 (𝑇0, 𝑇4) = 4,

𝑀 (𝑇1, 𝑇3) = 𝑀 (𝑇2, 𝑇3)

= 𝑀 (𝑇0, 𝑇3) = 𝑀 (𝑇3, 𝑇3) = 3,

𝑀 (𝑇0, 𝑇0) = 0,

𝑀 (𝑇1, 𝑇2) = 𝑀 (𝑇2, 𝑇0) = 𝑀 (𝑇1, 𝑇1)

= 𝑀 (𝑇0, 𝑇1) = 𝑀 (𝑇2, 𝑇2) = 2,

𝑁 (𝑇1, 𝑇4) = 𝑁 (𝑇2, 𝑇1) = 𝑁 (𝑇1, 𝑇0) = 𝑁 (𝑇2, 𝑇0)

= 𝑁 (𝑇3, 𝑇0) = 𝑁 (𝑇4, 𝑇0) = 𝑁 (𝑇0, 𝑇0) = 0,

𝑁 (𝑇1, 𝑇1) = 𝑁 (𝑇1, 𝑇3) = 𝑁 (𝑇2, 𝑇3)

= 𝑁 (𝑇3, 𝑇3) = 𝑁 (𝑇2, 𝑇2) = 𝑁 (𝑇2, 𝑇4) = 1,

𝑁 (𝑇4, 𝑇3) = 2, 𝑁 (𝑇4, 𝑇4) = 3.

(81)

For 𝜓(𝑡) = 𝑡/3, 𝜙(𝑡) = 𝑡/6 and 𝐿 ≥ 1/5 all conditions of
Theorem 12 are satisfied. Notice that 0 is the unique fixed
point of 𝑇.

Example 23. Let𝑋 = [0, 2] and 𝑝 : 𝑋 × 𝑋 → R+ be defined
by 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}. Define 𝑇 : 𝑋 → 𝑋 by

𝑇 (𝑥) =

{{{{{

{{{{{

{

𝑥
2

𝑥 + 1
, if 𝑥 ∈ [0, 1[ ,

0, if 𝑥 ∈ [1, 2[ ,

4

3
if 𝑥 = 2

(82)

and let 𝜑 : [0, +∞[→ [0, +∞[ defined by

𝜑 (𝑡) =
𝑡
2

𝑡 + 1
. (83)

By induction, we have 𝜑𝑛(𝑡) ≤ 𝑡(𝑡/(1 + 𝑡))
𝑛 for all 𝑛 ≥ 1, so

it is clear that 𝜑 is a (𝐶)-comparison function. Now we show

that (59) is satisfied for all 𝑥, 𝑦 ∈ 𝑋. It suffices to prove it for
𝑥 ≤ 𝑦. Consider the following six cases.

Case 1. Let 𝑥, 𝑦 ∈ [0, 1[, then

𝑝 (𝑇𝑥, 𝑇𝑦) =
𝑦
2

𝑦 + 1

= 𝜑 (𝑝 (𝑥, 𝑦))

≤ 𝜑 (𝑀 (𝑥, 𝑦)) .

(84)

Case 2. Let 𝑥, 𝑦 ∈ [1, 2[, then

𝑝 (𝑇𝑥, 𝑇𝑦) = 𝑝 (0, 0) = 0

≤ 𝜑 (𝑀(𝑥, 𝑦)) .

(85)

Case 3. Let 𝑥 = 𝑦 = 2, then

𝑝 (𝑇𝑥, 𝑇𝑦) = 𝑝(
4

3
,
4

3
) =

4

3

= 𝜑 (2)

≤ 𝜑 (𝑀 (𝑥, 𝑦)) .

(86)

Case 4. Let 𝑥 ∈ [0, 1[ and 𝑦 ∈ [1, 2[ then

𝑝 (𝑇𝑥, 𝑇𝑦) = 𝑝(
𝑥
2

𝑥 + 1
, 0) =

𝑥
2

𝑥 + 1

≤
𝑦
2

𝑦 + 1

= 𝜑 (𝑝 (𝑥, 𝑦))

≤ 𝜑 (𝑀 (𝑥, 𝑦)) .

(87)

Case 5. Let 𝑥 ∈ [0, 1[ and 𝑦 = 2, then

𝑝 (𝑇𝑥, 𝑇𝑦) = 𝑝(
𝑥
2

𝑥 + 1
,
4

3
) =

4

3

= 𝜑 (2)

= 𝜑 (𝑝 (𝑥, 𝑦))

≤ 𝜑 (𝑀 (𝑥, 𝑦)) .

(88)

Case 6. Let 𝑥 ∈ [1, 2[ and 𝑦 = 2 then

𝑝 (𝑇𝑥, 𝑇𝑦) = 𝑝(0,
4

3
) =

4

3

= 𝜑 (2)

= 𝜑 (𝑝 (𝑥, 𝑦))

≤ 𝜑 (𝑀 (𝑥, 𝑦)) .

(89)

Since, for all 𝑥, 𝑦 ∈ 𝑋

𝐿min {𝑑𝑝
𝑚
(𝑥, 𝑇𝑥) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑦) , 𝑑

𝑝

𝑚
(𝑥, 𝑇𝑦) , 𝑑

𝑝

𝑚
(𝑦, 𝑇𝑥)} ≥ 0

(90)

then (59) is verified. Applying Theorem 17, 𝑇 has a unique
fixed point, which is 𝑢 = 0.
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All presented theorems involve generalized almost con-
tractive mappings which have a unique fixed point. But, one
of the main features of Berinde contractions is the fact that
they do possess more that one fixed point. In this direction,
Altun and Acar [35] proved the following result.

Theorem24. Let (𝑋, 𝑝) a complete partial metric space. Given
𝑇 : 𝑋 → 𝑋 satisfying

there exist 𝑘 ∈ [0, 1) , 𝐿 ≥ 0

such that 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑥, 𝑦) + 𝐿𝑑
𝑝

𝑚
(𝑥, 𝑇𝑦) ,

(91)

for all 𝑥, 𝑦 ∈ 𝑋. Then, 𝑇 has a fixed point.

The following example illustrates Theorem 24 where we
have two fixed points.

Example 25. Let 𝑋 = {0, 1, 2}. A partial metric 𝑝 : 𝑋 × 𝑋 →

R+ is defined by

𝑝 (0, 0) = 𝑝 (1, 1) = 0, 𝑝 (2, 2) =
1

4
,

𝑝 (0, 1) = 𝑝 (1, 0) =
1

3
,

𝑝 (0, 2) = 𝑝 (2, 0) =
11

24
,

𝑝 (1, 2) = 𝑝 (2, 1) =
1

2
.

(92)

Define the mapping 𝑇 : 𝑋 → 𝑋 by

𝑇0 = 𝑇2 = 0, 𝑇1 = 1. (93)

It is easy to show that (91) is satisfied. Applying Theorem 24,
𝑇 has a fixed point. Note that 𝑇 has two fixed points which
are 0 and 1.
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type almost contractions,” Carpathian Journal of Mathematics,
vol. 25, no. 2, pp. 157–162, 2009.

[33] V. Berinde, “Approximating common fixed points of non-
commuting almost contractions in metric spaces,” Fixed Point
Theory, vol. 11, no. 2, pp. 179–188, 2010.

[34] V. Berinde, “Common fixed points of noncommuting almost
contractions in cone metric spaces,” Mathematical Communi-
cations, vol. 15, no. 1, pp. 229–241, 2010.

[35] I. Altun and O. Acar, “Fixed point theorems for weak contrac-
tions in the sense of Berinde on partial metric spaces,” Topology
and Its Applications, vol. 159, no. 10-11, pp. 2642–2648, 2012.
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