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This paper focuses on the development of a bilevel optimizationmodel with random coefficients for a production-inventory system.
The expected value operator technique is used to deal with the objective function, and rough approximation is applied to convert the
stochastic constraint into a crisp constraint. Then an interactive programming method and genetic algorithm are utilized to solve
the crispmodel. Finally, an application is given to show the efficiency of the proposedmodel and approaches in solving the problem.

1. Introduction

Production and inventory controls are a complex problem, as
these two systems are affected by the number of producers
and retailers, as well as the level of customer’s demand. In
a production-inventory system, the main problem is to
determine the correct orders tomeet the production quantity
under some capacity constraints. Some scholars have applied
bilevel programming models to formulate the decision mak-
ing process of both producers and retailers. For example, in a
decentralized firm, topmanagement and the executive board,
or head-quarters usually make decisions on the budget,
and then each division determines a production plan in
the full knowledge of the budget [1]. Many scholars [2–5]
have also applied two-stage/multistage programming to the
production inventory system. In fact, for a production-
inventory system, bilevel programming is different from
two-stage programming in the production-inventory system.
Two-stage programming/multistage programming is usually
used in an inventory system with two or multiple periods.
However, in this paper we consider a dynamic decision
making process between the producers and the retailers with
only a single period in the inventory system. Therefore, a
bievel programming approach is more suitable. In a previous
work, all parameters in the system were assumed to be
deterministic, or in part were assumed to be stochastic or

fuzzy. For example, Sun et al. [6] presented a bilevel pro-
gramming model with deterministic cost and demand to
seek an optimal location for logistics distribution centers.
Roghanian et al. [7] proposed a probabilistic bilevel linear
multiobjective model for supply chain planning in which the
market demand was assumed to be a random variable. Ji and
Shao [8] developed a bilevel programming model with fuzzy
demand and discounts for a newsboy problem.

Generally, there are many techniques to deal with
stochastic programming problems, such as the E model
(expectation optimization model), the V model (variance
minimization model) and the P model (probability maxi-
mization model), proposed by Charnes and Cooper [9, 10].
If we deal with stochastic bilevel programming using the
expected value operator or chance-constrained operator, this
may result in a loss of information in a realistic production-
inventory system. For example, if we use the expected value
operator to deal with the upper limit on the number of orders,
the upper limit-exceeding condition is strictly forbidden.
In fact, this system is usually unworkable when faced with
dramatic changes in demand, such as in holiday times.
Therefore, a flexible constraint is more suited to handling
realistic situations. The rough set, for example, is an efficient
tool when dealing with indistinct information. Since Pawlak
[11] proposed the concept of the rough set, it has rapidly
developed and been applied in many fields. Pawlak and
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Sowinski [12] applied the rough set approach tomultiattribute
decision problems. Xu and Yao [13] discussed a class of linear
multiobjective programming problems with random rough
coefficients and gave a crisp equivalent model. Youness [14]
applied the rough set to the classification of the feasible area
in mathematical programming and called it rough program-
ming. Shi et al. [15] proposed the rough approximation based
on the probability to deal with the feasible region in order
to determine a flexible constraint. In this paper, we deal with
a feasible set with random coefficients using probabilistic
rough sets in order to determine the flexible constraint.

Bilevel programming is an NP hard problem and it is
especially difficult to find numerical solutions using nonlin-
ear bilevel programming.The existence and uniqueness of the
bilevel programming solution have been discussed by many
scholars [16].They have also discussed the impact of the lower
level optimal solutions on the upper level decision variable.
Existing methods for solving bilevel programming problems
can be divided into the following categories.

(i) Vertex enumeration methods: its meaning that the
optimal solution is one of these vertices, which
are feasible space points in the multilevel problem.
Interested readers can refer to these works [17–19].

(ii) Methods based on Kuhn-Tucker conditions: these
methods apply Kuhn-Tucker to deal with the follow-
ing levels and convert the multilevel model into the
single level. This is referred to in [20, 21].

(iii) Fuzzy approach: the decision maker can define the
membership function for the objective functions on
all levels and obtain a satisfactory solution. These
references [22–24] give a detailed description of this
approach.

(iv) Meta heuristics methods. These methods include
genetic algorithms [25], simulated annealing [26],
and hybrid tabu-ascent algorithm [27].

However, these methods must be designed according to
the specific problem, and, therefore, it is often difficult to
determine a usual or normal pattern. Besides, Woon et al.
[28, 29] also provided the global optimization methods to
solve the dynamic bilevel programming problems.This paper
applies an interactive programming technique to convert the
bilevel model into a single-level and uses genetic algorithm to
solve the complicated nonlinear programming problem. The
rest of this paper is organized as follows. In Section 2, a bilevel
programmingmodel for a production-inventory system with
random demand is developed. An expected value bilevel
programming model and its crisp equivalent using rough
approximation are proposed, and some solution approaches
are suggested in Section 3. In Section 4, an application is
given to show the significance of the proposed models and
algorithms. Finally, some conclusions are made in Section 5.

2. Mathematical Modelling

Some scholars [6, 30] have applied the bilevel programming
model to research production-inventory systems, but have
usually considered it in only a crisp environment. However,

realistically, because there are some uncertain factors that
impact the system, this consideration is flawed. Thus, an
improved bilevel programming model for realistic situations
is considered in the following section.

2.1. Key Problem Statement. The production-inventory sys-
tem at Auchan’s second branch store in Chengdu is consid-
ered in this section. Since it is a new store, the production aim
is to expand the business to grabmarket share, so cost control
rather than the pursuit of profit is a key factor. However, the
primary objective of the retailer is to achieve a higher gross
profit and to pursue maximum net profit. In this system, on
one hand, Auchan wants to pursue profit, and, on the other
hand, it has to ensure the continuing support of producers.
Thus, determining a reasonable inventory plan for retailers
and a reasonable production plan for suppliers is important.
From the retailer’s view, this system is a bilevel programming
problem, where the upper level has the objective of achieving
maximum profit, while the lower level has the objective of
controlling supplier’s production costs.

A few commodities are selected to determine the plan.
Generally, order costs, available storage space, and available
storage costs limit inventory level; thus, customer’s demand
determines the order quantity. From historical data, cus-
tomer’s demand is often a normally distributed random
variable over a week (from Wednesday to Wednesday) and
peak sales are seen on the weekend. For instance, Wuhu Soya
Bean Oil sells about 1050 bottles with around 600 bottles
sold on the weekend, and 400 bottles sold over the 5 other
weekdays. Therefore, these sales can be seen as a normally
distributed random variable. Further, the order costs, holding
costs and shortage costs, may be vague values which change
according to the international price index. In this situa-
tion, the bilevel programming model becomes a stochastic
programming problem. In this paper, we only consider a
production-inventory problemwith random demand; that is,
only customer’s demand is considered a random variable.

Assume that there are 𝑚 plants which manufacture 𝑛
items. The decision maker orders items from 𝑚 plants. The
enterprise aims to maximize overall profit and minimize
overall costs including order costs and inventory costs. The
notations are as follows:

𝑛: number of items
𝑚: number of plants
𝑥
𝑖
: inventory holding of item 𝑖

𝑦
𝑖𝑗
: production amount of item 𝑖 in plant 𝑗

𝑐
𝑖𝑗
: production cost per item 𝑖 in plant 𝑗

𝐷
𝑖
: demand per period for the 𝑖th item
𝑡
𝑖
: unit selling price of item 𝑖

ℎ
𝑖
: unit holding cost for the 𝑖th item

𝑝
𝑖
: unit shortage cost for the 𝑖th item

𝑘
𝑖
: unit holding area for the 𝑖th item

𝑅: all available common resources
𝑅
𝑗
: special resource control of plant 𝑗

𝐾: available storage space
𝐵: available total budgetary costs
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CS(𝐷
𝑖
, 𝑥
𝑖
): total costs including shortage costs and storage
costs for item 𝑖

𝑃(𝐷
𝑖
, 𝑥
𝑖
): profit for item 𝑖.

For the 𝑖th item, some assumptions are introduced as
follows.

(i) The time horizon is infinite.
(ii) The production rate is instantaneous.
(iii) The lead time is zero.
(iv) There is no fixed ordering cost and there is no initial

inventory.
(v) The demand𝐷

𝑖
of the 𝑖th item in a cycle is a normally

distributed random variable with a mean 𝜇
𝑖
and a

variance 𝜎2
𝑖
.

(vi) The shortage cost depends on shortage level, that is,
for the 𝑖th item, the shortage cost is𝑝

𝑖
⋅max{0, 𝐷

𝑖
−𝑥
𝑖
}.

(vii) The holding cost is dependent on the inventory, that
is, for the 𝑖th item, the holding cost is ℎ

𝑖
⋅max{0, 𝑥

𝑖
−

𝐷
𝑖
}.

2.2. Model Formulation. As shown in Figure 1, the whole
decision process includes two sections for some market-
oriented commodities. As the upper level, the retailer has
to consider the optimal inventory level to satisfy cus-
tomer’s demand and achieve the maximal profit. However,
it is scarcely possible to accurately estimate the customer’s
demand, especially in some holidays. Hence, the market
information usually impacts the retailer’s decision on how
much the inventory level should be and further impacts
her/his order quantity. As the lower level, the producer has
to make the production plan according to the retailers’ feed-
back due to the fierce competition. The optimal production
quantity satisfying the retailer’s demand and some resource
limitations should be considered. To quickly grab the market
share, the producer usually considers theminimal production
as the first objective. Above all, the retailer and producer
alternatively interactwith each other by transfering the inven-
tory and production information. Therefore, a bilevel model,
in which the production is considered the lower level and
the retailer is considered the lower level, is mathematically
formulated to find the optimal production and inventory
strategy.

2.2.1. Lower Level. Production should satisfy the following
constraints and achieve the following objective.

(i) All producers share a common resource:

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≤ 𝑅. (1)

(ii) Some special resources may be controlled:

𝑛

∑

𝑖=1

𝑦
𝑖𝑗
≤ 𝑅
𝑗
, 𝑗 = 1, 2, . . . , 𝑚. (2)

(iii) Since the initial inventory amount is 0, the total
quantity of ordered items should be more than or
equal to the inventory holding for item 𝑖:

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≥ 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (3)

(iv) The objective of production is to minimize produc-
tion costs which is formulated as follows:

min
𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝑦
𝑖𝑗
. (4)

2.2.2. Upper Level. The retailer should satisfy the following
constraints and achieve the following objective.

(i) Inventory level is limited by overall capacity:

𝑛

∑

𝑖=1

𝑘
𝑖
𝑥
𝑖
≤ 𝐾. (5)

(ii) Inventory holdings should be more than or equal to
0:

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛. (6)

(iii) When the demand is 𝐷
𝑖
for the 𝑖th item, the real

amount of sold items is

min {𝐷
𝑖
, 𝑥
𝑖
} =

{

{

{

𝐷
𝑖
, if 𝐷

𝑖
< 𝑥
𝑖

𝑥
𝑖
, if 𝐷

𝑖
≥ 𝑥
𝑖
.

(7)

The overall cost CS(𝐷
𝑖
, 𝑥
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) (including

shortage cost and storage cost) of every item is calculated as
follows:

CS (𝐷
𝑖
, 𝑥
𝑖
) = 𝑝
𝑖
max {0, 𝐷

𝑖
− 𝑥
𝑖
} + ℎ
𝑖
max {0, 𝑥

𝑖
− 𝐷
𝑖
} . (8)

Because of the random demand 𝐷
𝑖
, the decision maker

usually expect the average total budgetary level to be less
than the predetermined level, so the following constraint is
obtained:

𝐸[

𝑛

∑

𝑖=1

CS (𝐷
𝑖
, 𝑥
𝑖
)] ≤ 𝐵. (9)

(iv) Similarly, the retailer’s objective is to maximize aver-
age overall profit which consists of expected sales
incomeminus expected overall costs, so it follows that

max𝐸[
𝑛

∑

𝑖=1

𝑃 (𝐷
𝑖
, 𝑥
𝑖
)]

=

𝑛

∑

𝑖=1

(𝑡
𝑖
𝐸 [min {𝐷

𝑖
, 𝑥
𝑖
}] − 𝐸 [CS (𝐷

𝑖
, 𝑥
𝑖
)]) .

(10)
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Figure 1: Structure of a production-inventory system.

Above all, the problem is defined as a bilevel optimization
model as follows:

max
𝑥𝑖

𝑛

∑

𝑖=1

(𝑡
𝑖
𝐸 [min {𝐷

𝑖
, 𝑥
𝑖
}] − 𝐸 [CS (𝐷

𝑖
, 𝑥
𝑖
)])

s.t.

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑛

∑

𝑖=1

𝑘
𝑖
𝑥
𝑖
≤ 𝐾

𝐸[

𝑛

∑

𝑖=1

CS (𝐷
𝑖
, 𝑥
𝑖
)] ≤ 𝐵

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛

min
𝑦𝑖𝑗

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝑦
𝑖𝑗

s.t.

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≤ 𝑅

𝑛

∑

𝑖=1

𝑦
𝑖𝑗
≤ 𝑅
𝑗

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≥ 𝑥
𝑖

𝑦
𝑖𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑚.

(11)

3. Approximate the Constraint Using
a Rough Set

In problem (11), although the objective function is changed
into a crisp function, the constraints still include random

coefficients. If we still deal with these using an expected
value operator, it may result in a loss of information in a
realistic production-inventory system. Here, we apply the
rough approximation technique to deal with the stochastic
programming problems. Some basic definitions and proper-
ties of the rough set are outlined in the following.

Definition 1 (Pawlak [11]). Let 𝑈 be a universe, and 𝑋 a
set representing a concept. Then its lower approximation is
defined by

𝑋 = {𝑥 ∈ 𝑈 | 𝑅
−1
(𝑥) ⊂ 𝑋} , (12)

and the upper approximation is defined by

𝑋 = ⋃

𝑥∈𝑋

𝑅 (𝑥) , (13)

where 𝑅 is the equivalence relationship on 𝑈. Obviously, we
have𝑋 ⊆ 𝑋 ⊆ 𝑋.

Slowinski and Vanderpooten [31] extended the equiva-
lence relation to a more general case and proposed a binary
similarity relation that does not encompass symmetry and
transitivity but reflexivity. Different from the equivalence
relation, the similarity relation does not generate partitions
on 𝑈; for example, the similarity relation defined on 𝑅 as “𝑥
is similar to 𝑦 if an only if |𝑥 − 𝑦| ≤ 1.”

Example 2. Consider the random event 𝐼 = {(𝑥, 𝑦) | (𝑥 −

𝜉)
2
+ 𝑦
2
≤ 1}, where 𝜉 ∼ 𝑈(0, 1.5) is a uniformly distributed

variable. If 𝜉
𝑖
takes the value in 𝐴

𝑖
with a probability 𝑝

𝑖
,
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Figure 2: Random set approximated using the rough set.

let us define the similarity relationship 𝑅 on the universe 𝑋
satisfying

𝐼
𝑅
= ⋃

𝑎∈[0,1.5]

{(𝑥, 𝑦) | (𝑥 − 𝑎)
2
+ 𝑦
2
≤ 1} , (14)

where 𝐼
𝑅
is the upper approximation of the feasible region 𝐼,

and its lower approximation is defined as follows:

𝐼
𝑅
= ⋂

𝑎∈[0,1.5]

{(𝑥, 𝑦) | (𝑥 − 𝑎)
2
+ 𝑦
2
≤ 1} . (15)

Let 𝐼
𝐸
= {(𝑥, 𝑦)|(𝑥 − 3/4)

2
+ 𝑦
2
≤ √13/4} represent the

expected feasible region dealt with by expected operator. As
shown in Figure 2, the red circle and its interior represent
the upper approximation 𝐼

𝑅
, the green circle and its interior

represent the lower approximation 𝐼
𝑅
, and the blue circle and

its interior represent the expected feasible region. Obviously,
when dealing with the feasible region using expected opera-
tor, some information is lost. Therefore, it is not appropriate
to apply this technique to deal with the feasible region,
especially, when a decision needs to be made quickly, so a
flexible method is more suitable.

In order to determine the upper and lower approximation
degree describing set 𝑋, the concept of approximation accu-
racy was proposed by Pawlak [11]:

𝛼
𝑅 (
𝑋) =

󵄨
󵄨
󵄨
󵄨
𝑋
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑋

󵄨
󵄨
󵄨
󵄨
󵄨

, (16)

where 𝑋 ̸=Φ and |𝑋| expresses the cardinal number of set 𝑋
when 𝑋 is a finite set; otherwise, it expresses the Lebesgue
measure.

Another ratio defines quality of 𝑋 using the attributes of
𝑅 according to Pawlak [11]:

𝛾
𝑅 (
𝑋) =

󵄨
󵄨
󵄨
󵄨
𝑋
󵄨
󵄨
󵄨
󵄨

|𝑋|

. (17)

The quality 𝛾
𝑅
(𝑋) represents the relative frequency of the

objects correctly classified using the attributes of 𝑅.

Many scholars consider the detailed statistical informa-
tion of the overlap of an equivalence class and define the
probabilistic approximation operators as follows [32]:

𝐼
𝛼
= {𝑥 ∈ 𝑋 | Pr {𝐼 | [𝑥]} ≥ 𝛼}

𝐼
𝛽
= {𝑥 ∈ 𝑋 | Pr {𝐼 | [𝑥]} > 𝛽} ,

(18)

where 0 ≤ 𝛽 < 𝛼 ≤ 1, and [𝑥] expresses the equivalent
class of 𝑥. We usually take the condition 0.5 < 𝛼 ≤ 1 and
𝛽 = 1 − 𝛼 to determine the dual properties. After being
dealt with like this, the unclear set 𝐼 is converted into two
crisp sets. According to Slowinski and Vanderpooten [31], we
can extend these to the expected approximation under the
following similarity relationship 𝑅

𝜀
for the function 𝑓(𝑥, 𝜉)

with random coefficient 𝜉:

𝑥𝑅
𝜀
𝑦 ⇐⇒ 𝐸 [

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑦, 𝜉) − 𝑓 (𝑥, 𝜉)

󵄨
󵄨
󵄨
󵄨
] ≤ 𝜀, (19)

where 𝑥, 𝑦 ∈ 𝑋, and 𝜀 is the deviation that the decision
maker permits. In fact, the following relationship𝐸[|𝑓(𝑥, 𝜉)−
𝑓(𝑥, 𝜉)|] = 0 ≤ 𝜀 must hold, so 𝑅

𝜀
has reflexivity. It is

apparent that it has symmetry, so 𝑅
𝜀
can be said to have a

similarity relationship. The determination of the program-
ming problem solution for the converted feasible set requires
two steps. The first step is a requirement that the lower and
upper approximation sets should be close enough to the
initial feasible set. This means that we must guarantee the
accuracy of the approximation to enable extension at some
levels. The second step is that the programming problem in
the lower and upper approximation sets is directly solved.
This is guaranteed by the property 𝐼 ⊆ 𝐼. Youness [14]
applied rough approximation to deal with a crisp feasible
set, so we can deal with the random feasible set using the
expected approximation operator. Similarly, after ensuring
that the required accuracy is achieved, only the programming
problem in the upper approximation can be solved.

Let 𝐼 = {𝑥 | ∑
𝑛

𝑖=1
CS(𝐷

𝑖
, 𝑥
𝑖
) ≤ 𝐵, 𝑥 ≥ 0}, 𝛼(𝐼) be the

confidence level, that is, the accuracy of the approximation
and 𝜃(0 ≤ 𝜃 ≤ 1) be the accuracy the decision maker
requires. Taking 𝛼(𝐼) = 𝜃, we can determine the value
of the deviation 𝜀 according to the confidence level 𝜃. As
the accuracy 𝜃 increases, the deviation 𝜀 decreases, and the
feasible region created by the upper approximation is close
to the one determined using the expected value operator.
This is especially true if 𝜃 = 1 as we get 𝐼 = 𝐼 = 𝐼.
Therefore, if decision makers make a plan which includes
upcoming holidays in the production-inventory system, they
could decrease the confidence level 𝜃 in order to cope with
increasing demand.

If the demand is subject to a normal distribution, we get
the following theorem.

Theorem 3. Assume that 𝐷
𝑖
is the normally distributed ran-

dom variable withmean vector𝜇
𝑖
and positive definite variance

𝜎
2

𝑖
, written as 𝐷

𝑖
∼ N(𝜇

𝑖
, 𝜎
2

𝑖
), and they are independent of



6 Abstract and Applied Analysis

each other.The similarity relationship 𝑅
𝜀
is therefore defined as

follows:

𝜍𝑅
𝜀
𝜁 ⇐⇒ 𝐸[

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑖=1

CS (𝐷
𝑖
, 𝜍
𝑖
) −

𝑛

∑

𝑖=1

CS (𝐷
𝑖
, 𝜁
𝑖
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

] ≤ 𝜀, (20)

where 𝜍 and 𝜁 are any two vectors in𝑋𝑛, and 𝜀 is the deviation.
Assume that 𝜃 (0 ≤ 𝜃 ≤ 1) is the confidence level, and then
problem (11) can be converted into the following model under
the similarity relationship 𝑅

𝜀
:

max 𝐻(𝑥)

=

1

2

𝑛

∑

𝑖=1

{ (𝑡
𝑖
− 𝑝
𝑖
− ℎ
𝑖
)

× (1+√
2

𝜋

[(𝑥
𝑖
+𝜇
𝑖
)Φ(

𝑥
𝑖
−𝜇
𝑖

𝜎
𝑖

)+𝜎
𝑖
𝑒
−(𝑥𝑖−𝜇𝑖)

2
/2𝜎
2

𝑖
])

+ [𝑡
𝑖
(𝜇
𝑖
+ 𝑥
𝑖
) + (𝜇

𝑖
− 𝑥
𝑖
) (ℎ
𝑖
− 𝑝
𝑖
)] }

s.t.

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑛

∑

𝑖=1

𝑘
𝑖
𝑥
𝑖
≤ 𝐾

1

2

𝑛

∑

𝑖=1

[(𝑝
𝑖
+ ℎ
𝑖
) (1 + √

2

𝜋

[(𝑥
𝑖
+ 𝜇
𝑖
)Φ(

𝑥
𝑖
− 𝜇
𝑖

𝜎
𝑖

)

+𝜎
𝑖
𝑒
−(𝑥𝑖−𝜇𝑖)

2
/2𝜎
2

])]

≤ 𝐵 −

1

2

𝑛

∑

𝑖=1

(ℎ
𝑖
− 𝑝
𝑖
) (𝑥
𝑖
− 𝜇
𝑖
) + (𝜀)0

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛

min
𝑦𝑖𝑗

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝑦
𝑖𝑗

s.t.

{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{

{

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≤ 𝑅

𝑛

∑

𝑖=1

𝑦
𝑖𝑗
≤ 𝑅
𝑗

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≥ 𝑥
𝑖

𝑦
𝑖𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑚.

(21)

Proof. Firstly, cope with the objective function using the
expected value operator. Since 𝐷

𝑖
∼ N(𝜇

𝑖
, 𝜎
2

𝑖
) is a normally

distributed random variable with a mean vector 𝜇
𝑖
and

a positive definite variance 𝜎2
𝑖
, it follows that min{𝐷

𝑖
, 𝑥
𝑖
}

and CS(𝐷
𝑖
, 𝑥
𝑖
) are both random variables. For the function

min{𝐷
𝑖
, 𝑥
𝑖
}, it follows that

𝐸 [min {𝐷
𝑖
, 𝑥
𝑖
}] = 𝐸 [

1

2

(𝐷
𝑖
+ 𝑥
𝑖
−
󵄨
󵄨
󵄨
󵄨
𝐷
𝑖
− 𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
)]

=

1

2

(𝐸 [𝐷
𝑖
] − 𝐸 [

󵄨
󵄨
󵄨
󵄨
𝐷
𝑖
− 𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
] + 𝑥
𝑖
)

=

1

2

(𝐸 [
󵄨
󵄨
󵄨
󵄨
𝐷
𝑖
− 𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
] + 𝜇
𝑖
+ 𝑥
𝑖
) .

(22)

It follows from the definition of the random variable that for
𝑥
𝑖
≥ 0

𝐸 [
󵄨
󵄨
󵄨
󵄨
𝐷
𝑖
− 𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
]

= ∫

+∞

−∞

󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑥
𝑖

󵄨
󵄨
󵄨
󵄨

√2𝜋𝜎

𝑒
−(𝑡−𝜇𝑖)

2
/2𝜎
2

𝑑𝑡

= ∫

𝑥𝑖

−∞

𝑥
𝑖
− 𝑡

√2𝜋𝜎

𝑒
−(𝑡−𝜇𝑖)

2
/2𝜎
2

𝑑𝑡 + ∫

+∞

𝑥𝑖

𝑡 − 𝑥
𝑖

√2𝜋𝜎

𝑒
−(𝑡−𝜇𝑖)

2
/2𝜎
2

𝑑𝑡

= 1 + 2∫

𝑥𝑖

−∞

𝑥
𝑖
− 𝑡

√2𝜋𝜎

𝑒
−(𝑡−𝜇𝑖)

2
/2𝜎
2

𝑑𝑡

= 1 + √
2

𝜋

[(𝑥
𝑖
+ 𝜇
𝑖
)Φ(

𝑥
𝑖
− 𝜇
𝑖

𝜎
𝑖

) + 𝜎
𝑖
𝑒
−(𝑥𝑖−𝜇𝑖)

2
/2𝜎
2

] ,

(23)

where Φ is the standard normally distributed function.
Similarly, we have

𝐸 [CS (𝐷
𝑖
, 𝑥
𝑖
)]

= 𝑝
𝑖
𝐸 [max {0, 𝐷

𝑖
− 𝑥
𝑖
}] + ℎ

𝑖
𝐸 [max {0, 𝑥

𝑖
− 𝐷
𝑖
}]

=

1

2

(𝑝
𝑖
+ ℎ
𝑖
) 𝐸 [

󵄨
󵄨
󵄨
󵄨
𝐷
𝑖
− 𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
] +

1

2

(ℎ
𝑖
− 𝑝
𝑖
) (𝑥
𝑖
− 𝜇
𝑖
) .

(24)

From the above, the objective function in the upper level can
be converted into

max𝐻(𝑥)

=

1

2

𝑛

∑

𝑖=1

{ (𝑡
𝑖
− 𝑝
𝑖
− ℎ
𝑖
)

× (1+√
2

𝜋

[(𝑥
𝑖
+𝜇
𝑖
)Φ(

𝑥
𝑖
−𝜇
𝑖

𝜎
𝑖

)+𝜎
𝑖
𝑒
−(𝑥𝑖−𝜇𝑖)

2
/2𝜎
2

𝑖
])

+ [𝑡
𝑖
(𝜇
𝑖
+ 𝑥
𝑖
) + (𝜇

𝑖
− 𝑥
𝑖
) (ℎ
𝑖
− 𝑝
𝑖
)] } .

(25)

Secondly, we deal with the constraint 𝐸[∑𝑛
𝑖=1

CS(𝐷
𝑖
,

𝑥
𝑖
)] ≤ 𝐵 using rough approximation. Let 𝐼 = {𝑥 | ∑𝑛

𝑖=1
CS(𝐷

𝑖
,

𝑥
𝑖
) ≤ 𝐵, 𝑥

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛}, so then it follows from the

similarity relationship 𝑅
𝜀
that,

𝐼 = {𝑥 |

𝑛

∑

𝑖=1

𝐸 [CS (𝐷
𝑖
, 𝑥
𝑖
)] ≤ 𝐵 − 𝜀, 𝑥 ≥ 0}

𝐼 = {𝑥 |

𝑛

∑

𝑖=1

𝐸 [CS (𝐷
𝑖
, 𝑥
𝑖
)] ≤ 𝐵 + 𝜀, 𝑥 ≥ 0} .

(26)
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It is known that |⋅| expresses the cardinality of a set in the finite
universe. For the infinite universe, we use this to express the
Lebesgue measure. Then we have

󵄨
󵄨
󵄨
󵄨
𝐼
󵄨
󵄨
󵄨
󵄨
= ∫∫ ⋅ ⋅ ⋅ ∫

𝐼

𝑑𝑥
1
𝑑𝑥
2
⋅ ⋅ ⋅ 𝑑𝑥

𝑛
,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
= ∫∫ ⋅ ⋅ ⋅ ∫

𝐼

𝑑𝑥
1
𝑑𝑥
2
⋅ ⋅ ⋅ 𝑑𝑥

𝑛
.

(27)

From the confidence level 𝜃, there must be a value (𝜀)
0

such that 𝛼(𝐼) = 𝜃, so, for risk takers, the constraint can be
converted into

1

2

𝑛

∑

𝑖=1

(𝑝
𝑖
+ ℎ
𝑖
)

× (1+√
2

𝜋

[(𝑥
𝑖
+ 𝜇
𝑖
)Φ(

𝑥
𝑖
− 𝜇
𝑖

𝜎
𝑖

)+𝜎
𝑖
𝑒
−(𝑥𝑖−𝜇𝑖)

2
/2𝜎
2

])

≤ 𝐵 −

1

2

𝑛

∑

𝑖=1

(ℎ
𝑖
− 𝑝
𝑖
) (𝑥
𝑖
− 𝜇
𝑖
) + (𝜀)0

.

(28)

Taking these into problem (11) andwe can get the transformed
model. This completes the proof.

4. Solution Approach

For bilevel programming (21), there are two key problems:
(i) Does an optimal solution exist? (ii) What is the global
optimal solution if the lower level has multiple optimal
solutions? Firstly, some scholars [20, 21] apply the Kuhn-
Tucker conditions to judge whether a global optimal solution
exists and then converts the bilevel model into a single level.
If the optimal solution for problem (21) does not exist, there
is no equilibrium between the producers and the retailers.
From the view of the retailer, they can just make a decision
without considering the cost control of the producer since
the retailer is mightier than the producers. If the optimal
solution for problem (21) does not exist, this means that
the producers and the retailers cannot reach an agreement
to achieve their respective objectives. Secondly, if the lower
level has multiple optimal solutions, this means that the
producers have multiple production strategies. All Pareto
optimal strategies are taken from the lower level to the upper
level, and then a Pareto optimal strategy can be found by
comparing the retailers’ profits. Finding an optimal solution
for the complete system is discussed in the following section.

Two steps can be implemented to solve the bilevel crisp
programming problem (21). Firstly, we apply an interactive
programming technique to convert it into a singl level.
Secondly, the genetic algorithm is applied to compute the
nonlinear programming problem generated by the first step.

4.1. Interactive Programming Technique. The interactive pro-
gramming technique proposed in [22, 23, 33] is usually
applied to solve bilevel programming problems. Problem (21)
is taken as an example to illustrate this method. We take the
uncertain objective function to evaluate the decision maker’s

imprecise considerations. For the each level’s objective func-
tion in problem (21), the decision maker has fuzzy goals such
as “the goal should be more than or equal to a certain value.”

Let 𝐻
1
(𝑥, 𝑦) = 𝐻(𝑥), 𝐻

2
(𝑥, 𝑦) = ∑

𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑐
𝑖𝑗
𝑦
𝑖𝑗
in

problem (21), where 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑚
).

We can, respectively, denote the maximum and minimum
values of each objective functions as follow:

𝐻
1

1
= max
𝑥∈𝑋,𝑦∈𝑌

𝐻
1
(𝑥, 𝑦) , 𝐻

1

2
= max
𝑥∈𝑋,𝑦∈𝑌

𝐻
2
(𝑥, 𝑦) ,

𝐻
0

1
= min
𝑥∈𝑋,𝑦∈𝑌

𝐻
1
(𝑥, 𝑦) , 𝐻

0

2
= min
𝑥∈𝑋,𝑦∈𝑌

𝐻
2
(𝑥, 𝑦) .

(29)

The functions 𝜇
𝑖
(𝐻
𝑖
(𝑥, 𝑦)) change between 𝐻0

𝑖
and 𝐻1

𝑖
, 𝑖 =

1, 2. Take the linear function to characterize the objective at
each level, which is defined as follows

𝜇
1
(𝐻
1
(𝑥, 𝑦)) =

{
{
{
{
{

{
{
{
{
{

{

1, 𝐻
1
(𝑥, 𝑦) ≥ 𝐻

1

1

𝐻
1
(𝑥, 𝑦) − 𝐻

0

1

𝐻
1

1
− 𝐻
0

1

, 𝐻
0

1
≤ 𝐻
1
(𝑥, 𝑦) < 𝐻

1

1

0, 𝐻
1
(𝑥, 𝑦) < 𝐻

0

1
,

𝜇
2
(𝐻
2
(𝑥, 𝑦)) =

{
{
{
{
{

{
{
{
{
{

{

0, 𝐻
2
(𝑥, 𝑦) ≥ 𝐻

1

2

𝐻
1

2
− 𝐻
2
(𝑥, 𝑦)

𝐻
1

2
− 𝐻
0

2

, 𝐻
0

2
≤ 𝐻
2
(𝑥, 𝑦) < 𝐻

1

2

1, 𝐻
2
(𝑥, 𝑦) < 𝐻

0

2
.

(30)

The retailer level is specified with a maximal satisfactory
level 𝜀 ∈ [0, 1]. Then the production level maximizes the
function such that 𝜇

1
(𝐻
1
(𝑥, 𝑦)) ≤ 𝜀. This means that the

production level should solve the following problem:

max 𝜇
2
(𝐻
2
(𝑥, 𝑦))

s.t.

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜇
1
(𝐻
1
(𝑥, 𝑦)) ≤ 𝜀

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≤ 𝑅

𝑛

∑

𝑖=1

𝑦
𝑖𝑗
≤ 𝑅
𝑗

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≥ 𝑥
𝑖

𝑦
𝑖𝑗
≥ 0.

(31)

To obtain a global satisfactory optimal solution for both lev-
els, the retailer level needs to be comprised of the production
level at the satisfaction of the retailer level. Therefore, the
satisfactory degree for both levels is defined as

𝜆 = min {𝜇
1
(𝐻
1
(𝑥, 𝑦)) , 𝜇

2
(𝐻
2
(𝑥, 𝑦))} , (32)
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and the problem (31) is converted into

max 𝜆

s.t.

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝜇
1
(𝐻
1
(𝑥, 𝑦)) ≥ 𝜆

𝜇
2
(𝐻
2
(𝑥, 𝑦)) ≥ 𝜆

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≤ 𝑅

𝑛

∑

𝑖=1

𝑦
𝑖𝑗
≤ 𝑅
𝑗

𝑚

∑

𝑗=1

𝑦
𝑖𝑗
≥ 𝑥
𝑖

𝑛

∑

𝑖=1

𝑘
𝑖
𝑥
𝑖
≤ 𝐾

1

2

𝑛

∑

𝑖=1

[(𝑝
𝑖
+ ℎ
𝑖
) (1 + √

2

𝜋

[(𝑥
𝑖
+ 𝜇
𝑖
)Φ(

𝑥
𝑖
− 𝜇
𝑖

𝜎
𝑖

)

+𝜎
𝑖
𝑒
−(𝑥𝑖−𝜇𝑖)

2
/2𝜎
2

])]

≤ 𝐵 −

1

2

𝑛

∑

𝑖=1

(ℎ
𝑖
− 𝑝
𝑖
) (𝑥
𝑖
− 𝜇
𝑖
) + (𝜀)0

𝑥
𝑖
≥ 0

𝑦
𝑖𝑗
≥ 0.

(33)

By solving problem (33), we determine the overall sat-
isfactory solution for both levels. Next, the efficiency of the
solutions to the problem (33) is proved.

Theorem 4. If problem (33) has optimal solutions, solutions to
problem (33)must also be the solutions to problem (21).

Proof. We consider 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
),

𝜆 as decision making variables, where 𝑦
𝑖
= (𝑦
𝑖1
, 𝑦
𝑖2
, . . . , 𝑦

𝑖𝑚
),

𝑖 = 1, 2, . . . , 𝑛. Let 𝑋∗ = (𝑥
∗
, 𝑦
∗
, 𝜆
∗
) be an optimal solution

for problem (33).𝑋∗ is subject to all constraints. Assume that
𝑋
∗ is not the optimal for problem (21). In the second level,

there is a solution 𝑦󸀠 = (𝑦󸀠
1
, 𝑦
󸀠

2
, . . . , 𝑦

󸀠

𝑛
) such that

𝐻
2
(𝑥, 𝑦
󸀠
) < 𝐻

2
(𝑥, 𝑦
∗
) . (34)

Then
𝐻
1

2
− 𝐻
2
(𝑥, 𝑦
󸀠
)

𝐻
1

2
− 𝐻
0

2

= 𝜇
2
(𝐻
2
(𝑥, 𝑦
󸀠
)) > 𝜇

2
(𝐻
2
(𝑥, 𝑦
∗
)) =

𝐻
1

2
− 𝐻
2
(𝑥, 𝑦∗)

𝐻
1

2
− 𝐻
0

2

.

(35)

Similarly, in the first level, we know that optimal 𝑥∗ is
subject to the constraint ∑𝑚

𝑗=1
𝑦
∗

𝑖𝑗
≥ 𝑥
∗ in the second level.

If 𝑥∗ is not the optimal solution for problem (21), there is 𝑥󸀠
such that𝐻

1
(𝑥
󸀠
, 𝑦
󸀠
) > 𝐻

1
(𝑥
∗
, 𝑦
∗
), and then

𝐻
1
(𝑥
󸀠
, 𝑦
󸀠
) − 𝐻

0

1

𝐻
1

1
− 𝐻
0

1

=𝜇
1
(𝐻
1
(𝑥
󸀠
, 𝑦
󸀠
))>𝜇
2
(𝐻
2
(𝑥
∗
, 𝑦
∗
)) =

𝐻
1

2
−𝐻
2
(𝑥
∗
, 𝑦
∗
)

𝐻
1

2
− 𝐻
0

2

.

(36)

𝜆𝑥𝑖1, · · · , 𝑥
𝑖
𝑛

𝑦𝑖11, · · · , 𝑦
𝑖
1𝑛; 𝑦

𝑖
21 · · · 𝑦

𝑖
2𝑛; · · · ; 𝑦

𝑖
𝑚1, · · · , 𝑦

𝑖
𝑚𝑛

Figure 3: Structure of one chromosome.

From (32), (35), and (36), it can be concluded that the
optimal solution 𝜆

󸀠 for variables 𝑥󸀠, 𝑦󸀠 must satisfy 𝜆󸀠 <
𝜆
∗. This shows a conflict that 𝜆∗ is the optimal solution to

problem (33). This completes the proof.

4.2. Genetic Algorithm. Since the early 1960s, many research-
ers have had an increasing interest in efficient methods for
solving complicated problems. There are many evolutionary
computation methods which have been well developed.
They include the following algorithms: genetic algorithms
(designed byHolland [34]), evolutionary strategies (designed
by Fogel [35]), and genetic programming (designed by Koza
[36]). As a searching method, the genetic algorithm is the
most powerful. For many years, significant research on the
genetic algorithms has been discussed and summarized by
several authors: Fonseca and Fleming [37], Holland [34],
Michalewicz [38], Fogel [35], Goldberg [39], and Gen and
Cheng [40]. In the following section, we apply the genetic
algorithm to solve problem (33). This can be summarized as
follows.

Step 1 (representation).

(i) For this problem, we consider a solution𝑋 = (𝑥, 𝑦, 𝜆)

to the problem as a chromosome, where 𝑥 = (𝑥
1
, 𝑥
2
,

. . . , 𝑥
𝑛
), 𝑦 = (𝑦

11
, . . . , 𝑦

1𝑛
; 𝑦
21
, . . . , 𝑦

2𝑛
; . . . ; 𝑦

𝑚1
, . . . ,

𝑦
𝑚𝑛
).

(ii) Randomly choose one chromosome in the fea-
sible region. Repeat the process 𝑁pop-size times,
and we get 𝑁pop-size initial feasible chromosomes
𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁pop-size (see Figure 3).

Step 2 (evaluation and selection). In problem (33), the evalu-
ation function can be given as follows:

eval (𝑥, 𝑦, 𝜆) = 𝑓 (𝑥, 𝑦, 𝜆) = 𝜆. (37)

Then we apply the roulette wheel method to develop the
selection process.

Each time we select a single chromosome for a new pop-
ulation in the following way. Compute the total probability
𝑞
𝑖
:

𝑞
𝑖
=

𝑖

∑

𝑗=1

eval𝑗, 𝑖 = 1, 2, . . . , 𝑁pop-size . (38)

Generate a random number 𝑟 in [0, 1] and select the 𝑖th chro-
mosome 𝑥𝑖 such that 𝑞

𝑖−1
< 𝑟 ≤ 𝑞

𝑖
, 1 ≤ 𝑖 ≤ 𝑁pop-size. Repeat

the above process 𝑁pop-size times and we obtain 𝑁pop-size
copies of chromosomes.

Step 3 (genetic operator).

(i) Crossover operation: to fully search all the possi-
ble feasible solutions in the feasible region, we cut
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𝑌1 𝑌𝑡

𝑍𝑗

𝑌𝑁pop-size

𝑋𝑁pop-size

𝑍𝑡

𝑋1 𝑋2

𝑍1
𝑍2

𝑋1

𝑌𝑖 𝑌𝑗

𝑍𝑖

𝑋𝑗

Crossover operator

Parents

Offspring 1

Offspring 2

Mutation
operator

Figure 4: GA Illustration.

the chromosome into three sections and, respectively,
carry out the crossover operation. Suppose the prob-
ability of the crossover operation in each section
is, respectively, 𝑃

𝛼
, 𝑃
𝛽
, 𝑃
𝛾
. Randomly generate three

numbers 𝛼, 𝛽, 𝛾 from (0, 1), and the chromosome 𝑋𝑖
is selected as a parent if 𝛼 < 𝑃

𝛼
, 𝛽 < 𝑃

𝛽
and 𝛾 <

𝑃
𝛾
. Repeat this𝑁pop-size times and getmin{𝑃

𝛼
, 𝑃
𝛽
, 𝑃
𝛾
}⋅

𝑁pop-size chromosomes to operate the crossover.
The crossover operator is produced as follows (see
Figure 4):

𝑌
𝑖
= (1 − 𝛼)

{

{

{

𝑥
𝑖

0

0

}

}

}

+ 𝛼

{

{

{

𝑥
𝑗

0

0

}

}

}

+ (1 − 𝛽)

{

{

{

0

𝑦
𝑖

0

}

}

}

+ 𝛽

{

{

{

0

𝑦
𝑗

0

}

}

}

+ (1 − 𝛾)

{

{

{

0

0

𝜆
𝑖

}

}

}

+ 𝛾

{

{

{

0

0

𝜆
𝑗

}

}

}

𝑌
𝑗
= 𝛼

{

{

{

𝑥
𝑖

0

0

}

}

}

+ (1 − 𝛼)

{

{

{

𝑥
𝑗

0

0

}

}

}

+ 𝛽

{

{

{

0

𝑦
𝑖

0

}

}

}

+ (1 − 𝛽)

{

{

{

0

𝑦
𝑗

0

}

}

}

+ 𝛾

{

{

{

0

0

𝜆
𝑖

}

}

}

+ (1 − 𝛾)

{

{

{

0

0

𝜆
𝑗

}

}

}

.

(39)

Check if the new chromosomes are feasible. If so, they are
selected as the offspring to replace the parents.

(ii) Mutation operation: 𝑃
𝑚

is the probability of the
mutation operation. Generate a random number 𝑚
from (0, 1), and the chromosome 𝑥𝑗 is selected as a
parent to undergo the mutation operation provided
that 𝑚 < 𝑃

𝑚
. Repeat this𝑁pop-size times and get 𝑃

𝑚
⋅

𝑁pop-size chromosomes to operate the mutation. Take
the chromosome 𝑋𝑖 as a parent. Suppose that 𝑀 is
a sufficiently large positive number and randomly

select a mutation direction d ∈ Rn. Operate the fol-
lowing mutation operator (see Figure 4):

𝑌
𝑖
=

{

{

{

𝑥
𝑖

𝑦
𝑖

𝜆
𝑖

}

}

}

+𝑀 ⋅

{

{

{

𝑥
󸀠

𝑦
󸀠

𝜆
󸀠

}

}

}

. (40)

Replace𝑋𝑖 with𝑋𝑖 +𝑀 ⋅d if𝑋𝑖 +𝑀 ⋅d is feasible. Otherwise
adjust𝑀 until𝑋𝑖 +𝑀 ⋅ d is feasible.

5. Practical Application

In this section, an example of the inventory system of some
goods in the Auchan supermarket in Chengdu is introduced.
Auchan is a global company with more than 186,000 staff
worldwide and nearly 1,200 stores and wholesale clubs across
12 countries. ByAugust 31, 2009, the companyhad 211 oversize
stores, 300 supermarkets, and 600 convenience stores. Inter-
nationally, the company operates units in Argentina (12),
Brazil (294), Canada (278), China (63), Costa Rica (133),
Germany (85), Guatemala (122), Honduras (37), Japan (391),
Mexico (828), Nicaragua (36), Puerto Rico (54), El Salvador
(59), South Korea (16), and the United Kingdom (323).

To improve its sales, Auchan stores investigate all factors
which might impact the market. The inventory system is an
important factor impacting the costs and profits of a store, as
the efficiency of an inventory system determines the retailer’s
profit. In this section, 5 items provided by 2 producers have
been selected. Table 1 shows the sales data for the 5 items
in one period. Some parameters are certain in the period
and they are easily incorporated into the computational
method. As is known, the sales amount (demand) of all
items changes every day. However, sales in another period
can be predicted using historical data. Ordinarily, demand
𝐷
𝑖
follows a stochastic distribution, for example, the normal

distribution at a certain time. However, if there is a holiday
in the next period, the sales volume sharply increases, so
will not satisfy demand if the decision maker makes orders
using the former method. Hence, decision makers have to
lower some limitations to face the increase in sales volume.
For every group (Pickles, Oils, Sauces), three representatives
which sell well are picked up and their parameters (including
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Table 1: Parameters of the random demand𝐷
𝑖
.

𝜆
𝑖

Item 1 Item 2 Item 3 Item 4 Item 5
𝜇
𝑖

50 70 100 40 60
𝜎
2

𝑖
4 6 9 2 4

Table 2: Other parameters in the production-inventory system.

Product Item 1 Item 2 Item 3 Item 4 Item 5
Unit selling price 𝑡

𝑖
100 80 60 85 100

Unit storage cost ℎ
𝑖

10 6 12 8 10
Unit shortage cost 𝑝

𝑖
40 35 30 45 50

Unit storage area 𝑘
𝑖

5 8 6 5 8
Production cost in plant 𝑗 15/12 8/10 4/4 10/9 14/15

Table 3: Optimal solutions under different confidence levels.

Variable Item 1 Item 2 Item 3 Item 4 Item 5
𝜃 = 0.85 𝐹

𝑈
= 35148.36, 𝐹

𝐿
= 5667.43

𝑥 182.5 0.54 1.62 0.84 0.073
𝑦
1𝑗

210.7 0 0.58 0.84 6.29
𝑦
2𝑗

0 0.56 0 0 480.51
𝜃 = 0.9 𝐹

𝑈
= 41916.68, 𝐹

𝐿
= 7140.244

𝑥 190.51 0.15 0.87 0.38 0.13
𝑦
1𝑗

307.81 0 0.481 0.38 4.48
𝑦
2𝑗

0 0.61 0 0 489.71
𝜃 = 0.95 𝐹

𝑈
= 49872.31, 𝐹

𝐿
= 8451.456

𝑥 198.05 0.058 0.42 0.33 0.081
𝑦
1𝑗

395.29 0 0.409 0.33 2.58
𝑦
2𝑗

0 0.42 0 0 495.37
𝜃 = 1 𝐹

𝑈
= 50132.57, 𝐹

𝐿
= 7725.394

𝑥 199.95 0.032 0.35 0.12 0.057
𝑦
1𝑗

394.39 0 0.345 0.12 2.231
𝑦
2𝑗

0 0.348 0 0 498.45
Note: 𝐹𝑈 and 𝐹𝐿 denote objective values of the upper level and lower level,
respectively. 𝑦1𝑗 and 𝑦2𝑗 denote the production quantity by producer 1 and
produce 2, respectively.

shortage cost, set up cost, holding cost, and production cost)
are listed in Table 1. Other parameters are in Table 2. The
common resource is 1000. The special resource controls for
plants 1 and 2 are 400 and 500, respectively. Available storage
space is 1000 and available total budgetary cost is 20000, and
the confidence level is 0.85.

From problem (21) in Theorem 3, the crisp model is
obtained. Then an interactive programming technique and a
GA are applied to solve this problem. After 5000 cycles, the
optimal solution is obtained for the above problems as shown
in Table 3. The decision maker can adjust the satisfaction
level according to her/his different purposes to obtain a more
optimal strategy.

5.1. Sensitivity Analysis. The decision maker can adjust the
parameter to obtain different solutions. From deduction, it
is found that accuracy is the key factor impacting the results.

If the accuracy 𝜃 decreases, the feasible set expands, so then
a better optimal solution can be determined. From Table 3, it
can be seen that, with an increase in 𝜃, the objective function
at the upper level increases and the objective function at the
lower level decreases, which is consistent with theoretical
analysis. This means that if the next holiday is long, the
sales volume sharply increases, so the decision maker must
decrease the accuracy to increase the retailer’s profit and
reduce the producers’ cost.

Furthermore, if the demand of a certain item sharply
increases in the next period, for example, oil consumption
during Spring Festival holidays, the weight of the oil must be
increased. From the second column in Table 3, it is known
that the objective values and order amounts of the second
kind of items increase as their weights increase. This leads to
the maximum probability that the inventory cost of oil is less
than the predetermined value; that is, although the oil order
quantities increase, the inventory does not increase because
of the large demand.

5.2. Comparison Analysis. Other research also introduces
other approaches to solve bilevel programming with crisp
parameters. For example, some scholars [41] have introduced
the Stackelberg-Nash equilibrium for multilevel program-
ming and have designed a genetic algorithm to obtain
the optimal solution. This can be solved using the above
algorithm to obtain the optimal solution as shown in Table 4.
From this, it can be seen that the optimal solutions in the
two tables are similar, and thus it can be concluded that the
two methods are aimed at different problems.The interactive
programming technique is efficient and convenient to those
problems which contain fewer variables and constraints and
more objectives, while the hybrid intelligent algorithm is
efficient and convenient for those problems which have more
variables and fewer objectives. Therefore, the decision maker
is able to choose an efficient method according to their the
real problems.

The expected operator is also usually used to deal with
a constraint with random coefficients [9]. This problem is
solved by using the constraint∑𝑛

𝑖=1
𝐸[CS(𝐷

𝑖
, 𝑥
𝑖
)] ≤ 𝐵, that is,

at a confidence level 𝜃 = 1, and by using a fuzzy programming
technique, both of which are listed in the first row in Table 3.
As can be seen, the objective function at the upper level is
smaller and the objective function at the lower level is larger
than those obtained using rough approximation. The reason
is that, the constraint ∑𝑛

𝑖=1
𝐸[CS(𝐷

𝑖
, 𝑥
𝑖
)] ≤ 𝐵 requires that

the order amount strictly satisfies the above condition under
average demand. This results in a lack of orders when facing
the next holiday under the former inventory level.

6. Conclusions

In this paper, we have discussed a bilevel programmingmodel
with random coefficients and its application to production-
inventory systems. We also converted it into a crisp model
using an expected value operator and rough approximation.
Then an interactive programming technique and a GA have
been applied to solve this bilevel programming problem.
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Table 4: Optimal solution by hybrid intelligent algorithm.

Variable
𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑦
11

𝑦
21

𝑦
31

𝑦
41

𝑦
51

𝑦
12

𝑦
22

𝑦
32

𝑦
42

𝑦
52

197.96 0.050 0.42 0.12 0.055 399.05 0.035 0.51 0.124 3.05 0 0.351 0.032 0 499.62

Finally, an application was exhibited to show the efficiency
of the proposed model and algorithm.

Although the model constructed in this paper should be
helpful for solving some real problems, it is only dealt with
using the expected value and rough approximation. If the
decision maker has different purposes, such as minimizing
budgetary costs or maximizing the probability that all costs
are lower than the budget, the chance constraint or dependent
chance techniques can be applied. In further research to be
under taken, a more complete detailed analysis will be given.
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