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We introduce the concepts of ordered variational inequalities and ordered complementarity problems with both domain and range
in Banach lattices. Then we apply the Fan-KKM theorem and KKMmappings to study the solvability of these problems.

1. Introduction

Let𝑋 be a real Banach space with its norm dual𝑋. Let 𝐶 be
a nonempty convex subset of 𝑋 and 𝑓 : 𝐶 → 𝑋

 a single-
valued mapping. The variational inequality problem associ-
ated with 𝐶 and 𝑓, simply denoted as VI(𝐶, 𝑓), is to find an
𝑥
∗
∈ 𝐶 such that

⟨𝑓 (𝑥
∗
) , (𝑥 − 𝑥

∗
)⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (1)

A nonempty convex subset 𝐾 of a Banach space𝑋 is called a
convex cone in𝑋whenever the following two conditions hold:

(1) 𝐾 ̸= {0} and 𝑎𝐾 ⊆ 𝐾, for any nonnegative number 𝑎;
(2) (−𝐾) ∩ 𝐾 = {0}.

Let 𝐾 be a convex cone in 𝑋; the complementarity problem
associated with 𝐾 and 𝑓, simply denoted as CP(𝐾, 𝑓), is to
find an 𝑥∗ ∈ 𝐾 such that

⟨𝑓 (𝑥
∗
) , 𝑥
∗
⟩ = 0, ⟨𝑓 (𝑥

∗
) , 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐾. (2)

The variational inequality problemVI(𝐶, 𝑓) and complemen-
tarity problem CP(𝐾, 𝑓) have been extensively studied by
many authors. This theory has been recognized as an impor-
tant branch in nonlinear analysis and has been widely applied
to optimization theory, game theory, economic equilibrium,
mechanics, and so forth. During the last five decades, many
researchers have studied the existence of solutions of these

problems and their applications to applied mathematical
fields from finite-dimensional Euclidean spaces to infinite-
dimensional general Banach spaces (see, e.g., [1–11]).

Since most classical Banach spaces are Banach lattices
equippedwith some lattice orders onwhich the positive oper-
ators appear naturally, the domain of an ordinal variational
inequality defined in (1) and the complementarity problem
defined in (2) may be in a Banach lattice (in particular, a
Hilbert lattice). In this case, to investigate the properties of
the solution set of (1) related to the partial order may be
an important topic in economics theory and other applied-
mathematics fields. In 2011, Li and Yao [8] and Nishimura
and Ok [12] studied the solvability and the existence of
order-maximum and order-minimum solutions to general
variational inequalities defined in Hilbert lattices. In 2012, Li
and Ok [13] extended these results to Banach lattices as the
domain of the variational inequalities.

The ranges of the pairing in the variational inequality (1)
and the complementarity problem (2) are both the set of real
numbers, where the inequalities in (1) and (2) are the usual
inequality for real numbers, which is the ordinal order of
real numbers that is a complete order. In some economic
circumstances, the preferences of a certain type of outcomes
may not be totally ordered; that is, it may be a partial order, in
particular a lattice order. In this case, any preference optimal
problem must be defined under the given partial order that
describes the preferences. To further demonstrate this aspect,
we consider the following example.
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For any positive integer 𝑘, let (R𝑘; ≽𝑘) denote the 𝑘-di-
mensional Hilbert lattice where R𝑘 is the 𝑘-dimensional
Euclidean space equipped with the coordinate partial order
≽
𝑘, which is defined as 𝑥≽𝑘𝑦 whenever 𝑥

𝑗
≥ 𝑦
𝑗
, for 𝑗 = 1,

2, . . . , 𝑘, for 𝑥 = (𝑥
1
, 𝑥
1
, . . . , 𝑥

𝑘
), and 𝑦 = (𝑦

1
, 𝑦
1
, . . . , 𝑦

𝑘
) ∈

R𝑘. Now let (R𝑛; ≽𝑛) and (R𝑚; ≽𝑚) be two finite-dimensional
Hilbert lattices and 𝐶 a nonempty closed convex subset of
(R𝑛; ≽𝑛). Let 𝑓 : 𝐶 → 𝐿(R𝑛,R𝑚) be a mapping. Then a
new and more general (than (1) and (2)) problem is to find
an 𝑥∗ ∈ 𝐶 such that

𝑓 (𝑥
∗
) (𝑥) ≽

𝑚
𝑓 (𝑥
∗
) (𝑥
∗
) , that is,

𝑓 (𝑥
∗
) (𝑥 − 𝑥

∗
) ≽
𝑚
0, ∀𝑥 ∈ 𝐶,

(3)

where, without causing any confusion, 0 is the origin of R𝑚.
Taking 𝑚 = 1, this problem turns to be the VI(𝐶, 𝑓) defined
in (1), and hence it is an obvious generalization of (1).

Based on thismotivation, we consider two Banach lattices
(𝑋; ≽
𝑋
) and (𝑈; ≽

𝑈
), where (𝑋; ≽

𝑋
) is considered as the

domain and (𝑈; ≽𝑈) as the range for the values of a mapping
𝑓 that is from a subset of (𝑋; ≽𝑋) to 𝐿(𝑋,𝑈). Then we extend
the variational inequality problem VI(𝐶, 𝑓) and the com-
plementarity problem CP(𝐾, 𝑓) to more general cases which
are called the ordered variational inequalities and ordered
complementarity problems defined by (9) and (10) in
Section 3.

This paper is organized as follows. In Section 2, we
recall some concepts and provide some properties of Banach
lattices; in Section 3, we introduce the concepts of ordered
variational inequalities, ordered complementarity problems
and prove some solution existence theorems; in Section 4, the
properties of the solution set of ordered variational inequal-
ities, such as the order optimal solutions, will be provided;
in Section 5, we give an example as an application of themain
theorem (Theorem 10) in this paper.

2. Preliminaries

In this section, we recall some definitions of Banach lattices
and provide some properties that are useful in this paper.
Here, we adopt the notions from [14].

Let 𝑋 be a vector lattice with a partial order ≽. As usual,
the origin of𝑋 is denoted by 0, and 𝑥+ := 𝑥∨0, 𝑥− := (−𝑥)∨0,
and |𝑥| = 𝑥+ ∨ 𝑥−, for all 𝑥 ∈ 𝑋. A Banach space𝑋 equipped
with a lattice order ≽ is called a Banach lattice, which is
written as (𝑋; ≽), if the following properties hold:

(1) 𝑥 ≽ 𝑦 implies 𝑥 + 𝑧 ≽ 𝑦 + 𝑧, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋;
(2) 𝑥 ≽ 𝑦 implies 𝛼𝑥 ≽ 𝛼𝑦, for all 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ≥ 0;
(3) |𝑥| ≽ |𝑦| implies ‖𝑥‖ ≥ ‖𝑦‖, for every 𝑥, 𝑦 ∈ 𝑋.

It is well known that, in a Banach lattice 𝑋, the distributive
properties hold: 𝑥+(𝑦∨𝑧) = (𝑥+𝑦)∨(𝑥+𝑧) and 𝑥+(𝑦∧𝑧) =
(𝑥+𝑦)∧(𝑥+𝑧), for all 𝑥, 𝑦, and 𝑧 in𝑋. We could not find the
extension of these distributive properties to infinite cases, so
we include them below as a lemma. They will be used in the
content of this paper.

Lemma 1. Let 𝑥 be an element and let 𝐴, 𝐵 be subsets of a
Banach lattice𝑋 satisfying that∨𝐴, ∧𝐴, ∨𝐵, and∧𝐵 exist; then
the following distributive properties hold:

(1) ∨(𝑥 + 𝐴) = 𝑥 + ∨𝐴 and ∧(𝑥 + 𝐴) = 𝑥 + ∧𝐴;
(2) ∧(𝑥 − 𝐴) = 𝑥 − ∨𝐴 and ∨(𝑥 − 𝐴) = 𝑥 − ∧𝐴;
(3) ∨𝐴 = − ∧ (−𝐴) and ∧𝐴 = − ∨ (−𝐴);
(4) ∨(𝐴 + 𝐵) = ∨𝐴 + ∨𝐵 and ∧(𝐴 + 𝐵) = ∧𝐴 + ∧𝐵.

Proof. Theproofs of Parts 1, 2, and 3 are straightforward (e.g.,
see page 4 in [14] for the first equality in Part 1).Weonly prove
Part 4. For every 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, it is clear that ∧𝐴 ≼ 𝑎 and
∧𝐵 ≼ 𝑏. From the order linearity of Banach lattices, it yields
∧𝐴 + ∧𝐵 ≼ 𝑎 + 𝑏. It implies that ∧𝐴 + ∧𝐵 is a lower bound
of 𝐴 + 𝐵. On the other hand, suppose that 𝑧 is an arbitrary
lower bound of𝐴+𝐵.Then for all 𝑎 ∈ 𝐴, from Part 1, we have
𝑧 ≼ ∧(𝑎 + 𝐵) = 𝑎 + ∧𝐵. Applying Part 1 again, it implies that
𝑧 ≼ ∧(𝐴 + ∧𝐵) = ∧𝐴 + ∧𝐵. We obtain ∧(𝐴 + 𝐵) = ∧𝐴 + ∧𝐵.
This completes the proof of this lemma.

Anet {𝑥
𝛼
} in a Banach lattice (𝑋; ≽) is said to be decreasing

(it is denoted by 𝑥
𝛼
↓) whenever 𝛼≽𝐼𝛽 implies 𝑥

𝛼
≼ 𝑥
𝛽
,

where ≽𝐼 is the partial order on the index net. If a net {𝑥
𝛼
}

satisfies 𝑥
𝛼
↓ and ∧{𝑥

𝛼
} = 𝑥, then we denote it by 𝑥

𝛼
↓ 𝑥. The

meanings𝑥
𝛼
↑ and𝑥

𝛼
↓ 𝑥 are analogously defined. A net {𝑥

𝛼
}

in a Banach lattice (𝑋; ≽) is said to be order convergent to a
vector 𝑥, which is denoted by 𝑥

𝛼

0

→ 𝑥, whenever there exists
another net {𝑦

𝛼
} with the same index net satisfying 𝑦

𝛼
↓ 0

and |𝑥
𝛼
− 𝑥| ≼ 𝑦

𝛼
, for each 𝛼. A subset 𝐴 of a Banach lattice

(𝑋; ≽) is said to be order closed whenever for any {𝑥
𝛼
} ⊆ 𝐴

satisfying 𝑥
𝛼

0

→ 𝑥 implies 𝑥 ∈ 𝐴.
The positive cone of a Banach lattice (𝑋; ≽) is denoted by

𝑋
+ which is defined as𝑋+ = {𝑥 ∈ 𝑋 : 𝑥 ≽ 0}. It is well known

that the positive cone𝑋+ of a Banach lattice𝑋 is norm closed.
In the next two lemmas, we show that the positive cone also
has the order closeness and weak closeness.

Lemma 2. Let (𝑋; ≽) be an arbitrary Banach lattice. Then the
positive cone 𝑋+ is order closed.

Proof. Let {𝑥
𝛼
} be a net in 𝑋+, which order converges to 𝑥.

That is, 𝑥
𝛼

0

→ 𝑥. So there exists another net {𝑦
𝛼
} with the

same index net satisfying 𝑦
𝛼
↓ 0 and |𝑥

𝛼
− 𝑥| ≼ 𝑦

𝛼
, for each

𝛼. Then for every 𝛼, we have

𝑥
𝛼
= (𝑥
𝛼
− 𝑥)
+

+ 𝑥
𝛼
∧ 𝑥

≼
𝑥𝛼 − 𝑥

 + 𝑥𝛼 ∧ 𝑥

≼ 𝑦
𝛼
+ 𝑥
𝛼
∧ 𝑥

≼ 𝑦
𝛼
+ 𝑥.

(4)

It implies that ∧(𝑥
𝛼
) ≼ ∧(𝑦

𝛼
+ 𝑥). Since ∧𝑦

𝛼
= 0, from

Lemma 1, we have ∧(𝑦
𝛼
+ 𝑥) = ∧𝑦

𝛼
+ 𝑥 = 𝑥. Substituting

this to the above order inequality and noticing {𝑥
𝛼
} ⊆ 𝑋

+, we
get 0 ≼ ∧(𝑥

𝛼
) ≼ ∧(𝑦

𝛼
+ 𝑥) = 𝑥. So 𝑥 ∈ 𝑋+, and hence 𝑋+ is

order closed.
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Lemma 3. Let (𝑋; ≽) be a Banach lattice. Then the positive
cone𝑋+ is weakly closed.

Proof. It is clear that the positive cone𝑋+ of the Banach lattice
𝑋 is convex. We have mentioned that the positive cone𝑋+ of
the Banach lattice𝑋 is norm closed. ApplyingMazur’s lemma
(see [12] or [15]), we have in a Banach space, a convex set is
norm closed if and only if it is weakly closed. This completes
the proof of this lemma.

Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices. A linear
operator 𝑇 : 𝑋 → 𝑈 is said to be order bounded if it maps
every order bounded subset of𝑋 to order-bounded subset of
𝑈. Let L

𝑏
(𝑋,𝑈) denote the collection of all order bounded

linear operators from𝑋 to𝑈.L
𝑏
(𝑋,𝑈) is also a vector space.

A natural partial order ≽L on L
𝑏
(𝑋,𝑋) is induced by the

positive cone 𝑋+ as follows: for any 𝑆, 𝑇 ∈ L
𝑏
(𝑋,𝑈), we

say that 𝑆 ≽L𝑇 if and only if 𝑆(𝑥) ≽𝑈𝑇(𝑥), for all 𝑥≽𝑋0. Then
L
𝑏
(𝑋,𝑈) is a partially ordered vector space with respect to

≽
L.
A linear operator 𝑇 : 𝑋 → 𝑈 between two Banach lat-

tices is said to be order continuous if 𝑥
𝛼

0

→ 𝑥 in 𝑋 implies
𝑇(𝑥
𝛼
)
0

→ 𝑇(𝑥) in 𝑈. It is known that all order-continuous
linear operators between two Banach lattices are order-
bounded linear operators. The following lemma is useful in
the content of this paper.

Lemma 4. Let (𝑋; ≽𝑋) and (𝑈; ≽
𝑈
) be two Banach lattices

with 𝑈 being Dedekind complete. Then one has

L
𝑏
(𝑋,𝑈) ⊆ 𝐿 (𝑋,𝑈) . (5)

Proof. A linear operator 𝑇 : 𝑋 → 𝑈 between two
Banach lattices is said to be positive whenever 𝑇(𝑋+) ⊆

𝑈
+. It is known that any positive linear operator between

two Banach lattices is an order-bounded linear operator. Let
L
𝑟
(𝑋,𝑈) denote the collection of all linear operators from

𝑋 to 𝑈 which can be represented as a difference between
two positive operators. Then as a consequence, we have
L
𝑟
(𝑋,𝑈) ⊆ L

𝑏
(𝑋,𝑈). Furthermore, if 𝑈 is Dedekind com-

plete, then L
𝑟
(𝑋,𝑈) = L

𝑏
(𝑋,𝑈). From Theorem 4.3 in

[14], we have that every positive linear operator between two
Banach lattices is (strongly) continuous. It implies that if𝑈 is
Dedekind complete, then we have L

𝑏
(𝑋,𝑈) = L

𝑟
(𝑋,𝑈) ⊆

𝐿(𝑋,𝑈). This lemma is proved.

If (𝑋; ≽𝑋) and (𝑈; ≽
𝑈
) are two Banach lattices with 𝑈

Dedekind complete, then for any 𝑇 in L
𝑏
(𝑋,𝑈), we have

|𝑇| ∈ L
𝑏
(𝑋,𝑈); therefore, from Lemma 4, |𝑇| ∈ 𝐿(𝑋,𝑈)

holds. Hence we can define a norm ‖ ⋅ ‖
𝑟
on L

𝑏
(𝑋,𝑈) by

‖𝑇‖
𝑟
= ‖|𝑇|‖, for all 𝑇 ∈ L

𝑏
(𝑋,𝑈). This norm ‖ ⋅ ‖

𝑟
is called

the regular norm on L
𝑏
(𝑋,𝑈) that satisfies the following

inequality

‖𝑇‖ ≤ ‖𝑇‖
𝑟
, ∀𝑇 ∈ L

𝑏
(𝑋,𝑈) . (6)

By applying the Riesz-Kantorovich theorem,L
𝑏
(𝑋,𝑈) under

the regular norm and with the partial order ≽L becomes a

Dedekind-complete Banach lattice. In addition, for any net
{𝑇
𝛼
} inL

𝑏
(𝑋,𝑈), we have

𝑇
𝛼
↓ 0 in L

𝑏
(𝑋,𝑈) , iff, 𝑇

𝛼
(𝑥) ↓ 0 in 𝑈 for each 𝑥 ∈ 𝑋.

(7)

Let (𝑋; ≽) be a Banach lattice. The norm of𝑋 is said to be an
order-continuous norm, if for any net {𝑥

𝛼
} in𝑋, 𝑥

𝛼

0

→ 0 in𝑋
implies ‖𝑥

𝛼
‖ → 0. A Banach lattice with order-continuous

norm has many useful properties. We list some below.

(1) Every Banach lattice with order-continuous norm is
Dedekind complete.

(2) Every reflexive Banach lattice has order-continuous
norm (Nakano theorem); therefore, every reflexive
Banach lattice is Dedekind complete.

The class of Banach lattices with order-continuous norms is
pretty large and includes many useful Banach spaces. For
example, the classical 𝐿

𝑝
(𝜇), where 1 ≤ 𝑝 < ∞, are Banach

lattices with order-continuous norms. The following result
is a consequence of order-continuous norm. We list it as a
lemma which is useful in the following sections.

Lemma 5. If the norm of a Banach lattice (𝑋; ≽𝑋) is order
continuous, then the 𝜎-order convergence implies norm conver-
gence, that is,

𝑥
𝑛

0

→ 𝑥 implies 𝑥
𝑛
→ 𝑥, in the norm of 𝑋. (8)

Proof. Suppose that {𝑥
𝑛
} is a sequence in𝑋 satisfying𝑥

𝑛

0

→ 𝑥.
It is equivalent to 𝑥

𝑛
−𝑥
0

→ 0. Since (𝑋; ≽𝑋) is a Banach lattice
with order-continuous norm, it implies ‖𝑥

𝑛
− 𝑥‖ → 0. This

completes the proof of this lemma.

3. The Solvability of Ordered Variational
Inequalities in Banach Lattices

In this section, we introduce the concepts of ordered vari-
ational inequalities and ordered complementarity problems
on suitable Banach lattices. Then we extend some already
known solvability results about variational inequalities and
complementarity problems (see [3–8, 10, 12, 13]) to the cases
of ordered variational inequalities and ordered complemen-
tarity problems.

Definition 6. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices.
Let 𝐶 be a nonempty convex subset of 𝑋 and 𝑓 : 𝐶 →

L
𝑏
(𝑋,𝑈) a mapping. The ordered variational inequality

problem associated with 𝐶 and 𝑓, denoted by VOI(𝐶, 𝑓), is
to find an 𝑥∗ ∈ 𝐶 such that

𝑓 (𝑥
∗
) (𝑥 − 𝑥

∗
) ≽
𝑈
0, ∀𝑥 ∈ 𝐶, (9)

where, as usual, 0 denotes the origin of 𝑈. If 𝑓 is linear, then
the problem VOI(𝐶, 𝑓) is called a linear ordered variational
inequality problem; otherwise, it is called a nonlinear ordered
variational inequality problem.
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Definition 7. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices.
Let 𝐾 be a convex cone of 𝑋 and 𝑓 : 𝐾 → L

𝑏
(𝑋,𝑈) a

mapping. The ordered complementarity problem associated
with 𝐾 and 𝑓, denoted by OCP(𝐾, 𝑓), is to find an 𝑥∗ ∈ 𝐾

such that

𝑓 (𝑥
∗
) (𝑥
∗
) = 0, 𝑓 (𝑥

∗
) (𝑥) ≽

𝑈
0, ∀𝑥 ∈ 𝐾. (10)

If 𝑓 is linear, then the problem OCP(𝐾, 𝑓) is called a linear
ordered complementarity problem; otherwise, it is called a
nonlinear ordered complementarity problem.

For a given Banach lattice (𝑋, ≽), let 𝑋 denote the norm
dual of 𝑋, that is, 𝑋 = 𝐿(𝑋,R). The order dual of (𝑋, ≽) is
denoted by𝑋∼ that is defined to beL

𝑏
(𝑋,R), where (R, ≥) is

the Banach lattice of the set of real numbers with the ordinal
topology and the standard order ≥, which is complete. From
Garrett Birkhoff Theorem, the norm dual 𝑋 of a Banach
lattice (𝑋, ≽) coincides with its order dual𝑋∼, that is,

𝑋

= 𝐿 (𝑋,R) = L

𝑏
(𝑋,R) = 𝑋

∼
. (11)

In Definitions 6 and 7, if we take (𝑈; ≽𝑈) = (R, ≥), then
L
𝑏
(𝑋,R) = 𝑋 holds; therefore, in this case, we have

𝑓 (𝑥
∗
) (𝑥 − 𝑥

∗
) = ⟨𝑓 (𝑥

∗
) , (𝑥 − 𝑥

∗
)⟩ , (12)

where ⟨⋅, ⋅⟩ is the pairing between 𝑋
 and 𝑋. Hence, the

ordered variational inequality VOI(𝐶, 𝑓) and the ordered
complementarity problem OCP(𝐾, 𝑓) turn to be an ordinary
variational inequality VI(𝐶, 𝑓) and an ordinal complemen-
tarity problem CP(𝐾, 𝑓), respectively. Thus the ordered vari-
ational inequality problems and the ordered complementarity
problems in Banach lattices are generalizations of the varia-
tional inequality problems and complementarity problems in
Banach spaces that extend the ranges from the real numbers
to more general Banach lattices.

There are close connections between variational inequal-
ity problems and complementarity problems in Banach
spaces (e.g., see [3–5, 9–11]). In the next lemma, we show the
similar connections between ordered variational inequality
problems and ordered complementarity problems in Banach
lattices.

Lemma8. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices. Let
𝐾 be a convex cone of 𝑋 and 𝑓 : 𝐾 → L

𝑏
(𝑋,𝑈) a mapping.

Then 𝑥∗ ∈ 𝐾 is a solution to VOI(𝐾, 𝑓) if and only if 𝑥∗ is a
solution to OCP(𝐾, 𝑓).

Proof. It can be seen that 𝑥∗ is a solution to OCP(𝐾, 𝑓) that
implies that 𝑥∗ is a solution to VOI(𝐾, 𝑓). Conversely, we
will show that (9) implies (10). Suppose 𝑥∗ is a solution to
VOI(𝐾, 𝑓) satisfying (9). In the case, if 𝑥∗ = 0, then (10)
obviously follows from (9). So we assume 𝑥∗ ̸= 0. Since𝐾 is a
convex cone, then 2𝑥∗ and 0.5𝑥∗ are both in𝐾. From (9), we
have

𝑓 (𝑥
∗
) (2𝑥
∗
− 𝑥
∗
) ≽
𝑈
0, 𝑓 (𝑥

∗
) (0.5𝑥

∗
− 𝑥
∗
) ≽
𝑈
0.

(13)

They imply

𝑓 (𝑥
∗
) (𝑥
∗
) ≽
𝑈
0, 𝑓 (𝑥

∗
) (− 𝑥

∗
) ≽
𝑈
0. (14)

The last order inequality is equivalent to𝑓(𝑥∗)(𝑥∗)≼𝑈0. From
the antisymmetric property of ≼𝑈, we obtain 𝑓(𝑥∗)(𝑥∗) = 0.
Since𝑓(𝑥∗) ∈ L

𝑏
(𝑋,𝑈), then from the linearity of𝑓(𝑥∗) and

by substituting𝑓(𝑥∗)(𝑥∗) = 0 into (9), it yields 𝑓(𝑥∗)(𝑥)≽𝑈0,
for all 𝑥 ∈ 𝐶. This lemma is proved.

Definition 9. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices.
Let𝐶 be a nonempty convex subset of𝑋. Amapping𝑓 : 𝐶 →

𝐿(𝑋,𝑈) is said to be linearly order comparable on𝐶whenever
for any given 𝑥, 𝑦 ∈ 𝐶 and for every 𝛼 ∈ (0, 1), 𝑓(𝛼𝑥 + (1 −

𝛼)𝑦)(𝑥), and 𝑓(𝛼𝑥 + (1 − 𝛼)𝑦)(𝑦) are ≽𝑈-comparable in 𝑈,
that is, either

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑥) ≽
𝑈
𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑦) (15)

or

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑥) ≺
𝑈
𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑦) . (16)

Now we prove the main theorem of this paper.

Theorem 10. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices.
Let 𝐶 be a nonempty convex closed subset of 𝑋 and let 𝑓 :

𝐶 → 𝐿(𝑋,𝑈) be a linearly order comparable and continuous
mapping (see Remark 11 below). If there exists a point 𝑦

0
∈ 𝐶

such that

{𝑥 ∈ 𝐶 : 𝑓 (𝑥) (𝑦
0
− 𝑥) ≽

𝑈
0} is compact in 𝑋, (17)

then the problemVOI(𝐶, 𝑓) is solvable, that is, there exists𝑥∗ ∈
𝐶 such that

𝑓 (𝑥
∗
) (𝑦 − 𝑥

∗
) ≽
𝑈
0, ∀𝑦 ∈ 𝐶. (18)

Remark 11. That a mapping 𝑓 : 𝐶 → 𝐿(𝑋,𝑈) is continuous
means that, for any sequence {𝑥

𝑛
} ⊆ 𝐶, whenever 𝑥

𝑛
→ 𝑥 in

𝑋, the following conditions hold:

(1)
𝑓 (𝑦) 𝑥𝑛 − 𝑓 (𝑦) 𝑥

𝑈
→ 0, as 𝑛 → ∞,

for every fixed 𝑦 ∈ 𝐶;
(19)

(2)
𝑓(𝑥𝑛) − 𝑓(𝑥)

𝐿(𝑋,𝑈)
→ 0, as 𝑛 → ∞. (20)

Proof of Theorem 10. In the proof and the following contents,
not causing confusion, we drop the foot marks for the norms
of the Banach spaces 𝑋,𝑈, and 𝐿(𝑋,𝑈). Define a set valued
mapping Γ : 𝐶 → 2

𝐶 as follows:

Γ (𝑦) = {𝑥 ∈ 𝐶 : 𝑓 (𝑥) (𝑦 − 𝑥) ≽
𝑈
0} , ∀𝑦 ∈ 𝐶. (21)

It is clear that 𝑦 ∈ Γ(𝑦), and hence Γ(𝑦) ̸= 𝜙, for all 𝑦 ∈ 𝐶.
Next, we show that for any 𝑦 ∈ 𝐶, Γ(𝑦) is a closed subset of𝐶.
To this end, take any sequence {𝑥

𝑛
} ⊆ Γ(𝑦) satisfying 𝑥

𝑛
→

𝑥 in 𝑋. Since 𝐶 is closed, then 𝑥 ∈ 𝐶. On the other hand,
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the condition 𝑥
𝑛
→ 𝑥 clearly implies 𝑦 − 𝑥

𝑛
→ 𝑦 − 𝑥 in 𝑋.

We have
𝑓 (𝑥𝑛) (𝑦 − 𝑥𝑛) − 𝑓 (𝑥) (𝑦 − 𝑥)



=
𝑓 (𝑥𝑛) (𝑦 − 𝑥𝑛) − 𝑓 (𝑥) (𝑦 − 𝑥𝑛)

+𝑓 (𝑥) (𝑦 − 𝑥
𝑛
) − 𝑓 (𝑥) (𝑦 − 𝑥)



≤
𝑓 (𝑥𝑛) (𝑦 − 𝑥𝑛) − 𝑓 (𝑥) (𝑦 − 𝑥𝑛)



+
𝑓 (𝑥) (𝑦 − 𝑥𝑛) − 𝑓 (𝑥) (𝑦 − 𝑥)



≤
𝑓 (𝑥𝑛) − 𝑓 (𝑥)



𝑦 − 𝑥𝑛
 +

𝑓 (𝑥) (𝑥𝑛) − 𝑓 (𝑥) (𝑥)
 .

(22)

Since {𝑦 − 𝑥
𝑛
} is a convergent sequence in𝑋, then {‖𝑦 − 𝑥

𝑛
‖}

is bounded. Applying (20) and (19), inequality (22) implies

𝑓 (𝑥
𝑛
) (𝑦 − 𝑥

𝑛
) → 𝑓 (𝑥) (𝑦 − 𝑥) in 𝑈. (23)

The assumption that {𝑥
𝑛
} ⊆ Γ(𝑦) implies 𝑓(𝑥

𝑛
)(𝑦 − 𝑥

𝑛
) ≽
𝑈
0,

that is, 𝑓(𝑥
𝑛
)(𝑦 − 𝑥

𝑛
) ∈ 𝑈
+ for all 𝑛. In Section 2, we recalled

that for any Banach lattice𝑈, its positive cone𝑈+ is ‖⋅‖-closed
and from the limit (23), it yields that 𝑓(𝑥)(𝑦 − 𝑥) ∈ 𝑈+, that
is, 𝑓(𝑥)(𝑦 − 𝑥) ≽𝑈0. Hence 𝑥 ∈ Γ(𝑦), and, therefore, Γ(𝑦) is
closed in 𝐶.

Now we show that Γ is a KKMmapping. Assume, by way
of contradiction, that Γ is not a KKM mapping, that is, there
is a finite subset {𝑦

𝑖
: 1 ≤ 𝑖 ≤ 𝑛} of𝐶, for some positive integer

𝑛 > 1, and a finite set of positive numbers {𝜆
𝑖
: 1 ≤ 𝑖 ≤ 𝑛}

satisfying ∑
1≤𝑖≤𝑛

𝜆
𝑖
= 1, such that ∑

1≤𝑖≤𝑛
𝜆
𝑖
𝑦
𝑖
∉ ⋃
1≤𝑖≤𝑛

Γ(𝑦
𝑖
).

Set 𝑦 = ∑
1≤𝑖≤𝑛

𝜆
𝑖
𝑦
𝑖
. It implies 𝑦 ∉ Γ(𝑦

𝑗
), for all 𝑗, that is,

𝑓 (𝑦) (𝑦
𝑗
− 𝑦) ⋡

𝑈
0, ∀1 ≤ 𝑗 ≤ 𝑛. (24)

Notice that for any fixed 1 ≤ 𝑗 ≤ 𝑛, 𝑦 can be rewritten as

𝑦 = ∑

1≤𝑖≤𝑛

𝜆
𝑖
𝑦
𝑖
= 𝜆
𝑗
𝑦
𝑗
+ (1 − 𝜆

𝑗
) ∑

𝑖 ̸= 𝑗

𝜆
𝑖

1 − 𝜆
𝑗

𝑦
𝑖

= 𝜆
𝑗
𝑦
𝑗
+ (1 − 𝜆

𝑗
) 𝑧
𝑗
,

(25)

where 𝑧
𝑗
:= ∑
𝑖 ̸= 𝑗

(𝜆
𝑖
/(1 − 𝜆

𝑗
))𝑦
𝑖
. Since 𝐶 is convex, then 𝑧

𝑗
∈

𝐶, for any fixed 1 ≤ 𝑗 ≤ 𝑛. We have

𝑓 (𝑦) (𝑦
𝑗
− 𝑦)= 𝑓 (𝜆

𝑗
𝑦
𝑗
+(1 − 𝜆

𝑗
) 𝑧
𝑗
) ((1 − 𝜆

𝑗
) (𝑦
𝑗
− 𝑧
𝑗
))

= (1 − 𝜆
𝑗
) 𝑓 (𝜆

𝑗
𝑦
𝑗
+ (1 − 𝜆

𝑗
) 𝑧
𝑗
) (𝑦
𝑗
− 𝑧
𝑗
) .

(26)

Since 𝑓(𝜆
𝑗
𝑦
𝑗
+(1−𝜆

𝑗
)𝑧
𝑗
)(𝑦
𝑗
−𝑧
𝑗
)⋡
𝑈
0, for all 1 ≤ 𝑗 ≤ 𝑛, from

the linearly order comparable property of 𝑓, we must have

𝑓 (𝜆
𝑗
𝑦
𝑗
+ (1 − 𝜆

𝑗
) 𝑧
𝑗
) (𝑦
𝑗
− 𝑧
𝑗
) ≺
𝑈
0, ∀1 ≤ 𝑗 ≤ 𝑛.

(27)

From (26), we obtain

𝑓 (𝑦) (𝑦
𝑗
− 𝑦) ≺

𝑈
0, ∀1 ≤ 𝑗 ≤ 𝑛. (28)

Multiplying by 𝜆
𝑗
the above order inequality and summing

up from 1 to 𝑛, we get

𝑓 (𝑦) (𝑦 − 𝑦) ≺
𝑈
0. (29)

It is a contradiction to the fact that 𝑓(𝑦) ∈ 𝐿(𝑋,𝑈), which
must satisfy 𝑓(𝑦)(0) = 0. Hence we must have ∑

1≤𝑖≤𝑛
𝜆
𝑖
𝑦
𝑖
∈

⋃
1≤𝑖≤𝑛

Γ(𝑦
𝑖
); therefore, Γ is a KKM mapping. Condition (17)

implies that there exists a point 𝑦
0
∈ 𝐶 such that Γ(𝑦

0
) is

compact. Applying the Fan-KKMTheorem, we obtain

⋂

𝑦 ∈ 𝐶

Γ (𝑦) ̸= 0. (30)

Taking 𝑥∗⋂
𝑦∈𝐶

Γ(𝑦), then 𝑓(𝑥∗)(𝑦 − 𝑥∗) ≽𝑈0, for all 𝑦 ∈ 𝐶.
Hence 𝑥∗ is a solution to VOI(𝐶, 𝑓).This completes the proof
of this theorem.

In particular, if 𝐶 is compact, as a special case of
Theorem 10, we get the following corollary.

Corollary 12. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices.
Let 𝐶 be a nonempty convex compact subset of 𝑋 and let 𝑓 :

𝐶 → 𝐿(𝑋,𝑈) be a linearly order comparable and continuous
mapping. Then the problem VOI(𝐶, 𝑓) is solvable.

In the following result, we apply Theorem 10 to the case
that 𝑈 has order-continuous norm.

Corollary 13. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices
with 𝑈 having order-continuous norm. Let 𝐶 be a nonempty
convex closed subset of 𝑋 and let 𝑓 : 𝐶 → L

𝑏
(𝑋,𝑈) be

a linearly order comparable and continuous mapping (with
respect to the regular norm onL

𝑏
(𝑋,𝑈)). If there exists a point

𝑦
0
∈ 𝐶 such that

{𝑥 ∈ 𝐶 : 𝑓 (𝑥) (𝑦
0
− 𝑥) ≽

𝑈
0} is compact, (31)

then the problem VOI(𝐶, 𝑓) is solvable.

Proof. From the properties of Banach lattices with order-con-
tinuous norms, 𝑈 is Dedekind complete. Then (L

𝑏
(𝑋, 𝑌),

≽
L
) under the regular norm ‖ ⋅ ‖

𝑟
is a Dedekind-complete

Banach lattice. FromLemma 4, we haveL
𝑏
(𝑋,𝑈) ⊆ 𝐿(𝑋,𝑈).

From (6), ‖𝑇‖ ≤ ‖𝑇‖
𝑟
holds, for all 𝑇 ∈ L

𝑏
(𝑋, 𝑌). Since 𝑓

is continuous in L
𝑏
(𝑋,𝑈) with respect to the regular norm

‖ ⋅ ‖
𝑟
onL
𝑏
(𝑋,𝑈), it implies that 𝑓 is continuous in 𝐿(𝑋,𝑈)

with respect to the norm ‖ ⋅ ‖ in 𝐿(𝑋,𝑈). Then this corollary
immediately follows fromTheorem 10.

It is well known that every reflexive Banach lattice has
order-continuous norm. As reflexive Banach lattices have
been widely used in many mathematics fields, we list the fol-
lowing result as a special case of Corollary 13.

Corollary 14. Let (𝑋; ≽𝑋) be a Banach lattice and (𝑈; ≽𝑈) a
reflexive Banach lattice. Let 𝐶 be a nonempty convex closed
subset of 𝑋 and let 𝑓 : 𝐶 → L

𝑏
(𝑋,𝑈) be a linearly

order comparable and continuous mapping (with respect to



6 Abstract and Applied Analysis

the regular norm on L
𝑏
(𝑋,𝑈)). If there exists a point 𝑦

0
∈ 𝐶

such that

{𝑥 ∈ 𝐶 : 𝑓 (𝑥) (𝑦
0
− 𝑥) ≽

𝑈
0} is compact, (32)

then the problem VOI(𝐶, 𝑓) is solvable.

Taking into account Lemma 8, an easy application of
Theorem 10 to ordered complementarity problem yields
the following result that provides a solvability of ordered
complementarity problem in Banach lattices. Similarly, the
solvability results for problem VOI(𝐶, 𝑓) provided in Corol-
laries 13 and 14 can be extended to solvability of ordered
complementarity problems.

Corollary 15. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices.
Let 𝐾 be a nonempty convex closed cone of 𝑋, and let 𝑓 :

𝐾 → 𝐿(𝑋,𝑈) be a linearly order comparable and continuous
mapping. If there exists a point 𝑦

0
∈ 𝐾 such that

{𝑥 ∈ 𝐾 : 𝑓 (𝑥) (𝑦
0
− 𝑥) ≽

𝑈
0} is compact in 𝑋, (33)

then the problem OCP(𝐾, 𝑓) is solvable; that is, there exists
𝑥
∗
∈ 𝐾 such that

𝑓 (𝑥
∗
) (𝑥
∗
) = 0, 𝑓 (𝑥

∗
) (𝑦))≽

𝑈
0, ∀𝑦 ∈ 𝐾. (34)

Recall that for a given Banach lattice (𝑈; ≽𝑈), the partial
order ≽𝑈∼ in its order dual (𝑈∼; ≽𝑈∼) is induced by its
positive cone 𝑈+, that is, for any 𝑤 ∈ 𝑈

∼
, 𝑤 ≽
𝑈∼
0, if and

only if ⟨𝑤, 𝑢⟩ ≥ 0, for all 𝑢 ∈ 𝑈
+. In particular, if 𝑈 is

reflexive, applying the Garrett BirkhoffTheorem, we have the
following result. It describes the connections between ordinal
variational inequalities and ordered variational inequalities.

Proposition 16. Let (𝑋; ≽𝑋) be a Banach lattice and (𝑈; ≽𝑈)
a reflexive Banach lattice. Let 𝐶 be a nonempty convex closed
subset of 𝑋, and let 𝑓 : 𝐶 → 𝐿(𝑋,𝑈) be a mapping. Then
𝑥
∗
∈ 𝐶 is a solution to the problem VOI(𝐶, 𝑓) if and only if the

following inequality holds:

⟨𝑤, 𝑓 (𝑥
∗
) (𝑥 − 𝑥

∗
)⟩ ≥ 0, ∀𝑤 ∈ (𝑈

∼
)
+

. (35)

4. The Existence of Order-Optimal Solutions of
Ordered Variational Inequalities

As mentioned in the introduction, Li and Yao [8], Nishimura
and Ok [12], and Li and Ok [13] have studied the existence
of order-maximum and order-minimum solutions to general
variational inequalities defined in Banach lattices with real
values. After we studied the solvability of ordered variational
inequalities in Section 3, in this section, we investigate the
existence of order-optimal solutions and the convexity of
the solution set of ordered variational inequalities defined in
Banach lattices.

Definition 17. A linear operator 𝑇 from a Banach lattice
(𝑋; ≽
𝑋
) to a Banach lattice (𝑈; ≽𝑈) is said to be

(1) a positive operator whenever it maps positive element
to positive element, that is, whenever 𝑥≽𝑋 0 implies
𝑇
𝑥
≽
𝑈
0;

(2) a negative operatorwhenever itmaps positive element
to negative element, that is, whenever 𝑥≽𝑋 0 implies
𝑇
𝑥
≼
𝑈
0.

The collection of all positive (negative) operators between
(𝑋; ≽
𝑋
) and (𝑈; ≽𝑈) is denoted byL

𝑝
(𝑋,𝑈)(L

𝑛
(𝑋,𝑈)). It is

clear that a linear operator 𝑇 is negative if and only if −𝑇 is
positive. It is well known that every positive operator between
two Banach lattices (𝑋; ≽𝑋) and (𝑈; ≽𝑈) is an order-bounded
linear operator, so is every negative operator; therefore we
have

−L
𝑛
(𝑋,𝑈) = L

𝑝
(𝑋,𝑈) ⊆ L

𝑏
(𝑋,𝑈) . (36)

The theory of positive operators between two Banach lattices
has become a major theme in the field of Banach lattices.
It has been widely applied to many fields. In this section,
we apply it to study the existence of order-optimal solutions
and the order-preserving properties of solutions to ordered
variational inequalities defined in Banach lattices.

The following results are easy consequences of positive
and negative operators. We state them as a lemma without
proof.

Lemma 18. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices
and 𝐶 a nonempty convex subset of𝑋. Let 𝑓 : 𝐶 → L

𝑏
(𝑋,𝑈)

be a mapping. Let 𝑆 denote the set of solutions to VOI(𝐶, 𝑓).
Then 𝑆 has the following order preserving properties.

(1) If𝑓(𝐶) ⊆ L
𝑝
(𝑋,𝑈),∧𝐶 exists, and∧𝐶 ∈ 𝐶, then 𝑆 ̸= 𝜙

and ∧𝐶 ∈ 𝑆.
(2) If𝑓(𝐶) ⊆ L

𝑛
(𝑋,𝑈),∨𝐶 exists, and∨𝐶 ∈ 𝐶, then 𝑆 ̸= 𝜙

and ∨𝐶 ∈ 𝑆.

Definition 19. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices
and 𝐴 a nonempty subset of 𝑋. Let 𝑓 : 𝐶 → L

𝑏
(𝑋,𝑈) be a

mapping. 𝑓 is said to be

(1) totally order increasing on𝐴whenever 𝑥≽𝑋 𝑧 implies
𝑓(𝑥)(𝑦) ≽

𝑈
𝑓(𝑧)(𝑦), for all 𝑦 ∈ 𝑋;

(2) totally order decreasing on𝐴whenever𝑥≽𝑋 𝑧 implies
𝑓(𝑥)(𝑦) ≼

𝑈
𝑓(𝑧)(𝑦), for all 𝑦 ∈ 𝑋.

Noticing that 𝑓(𝑥) ≽L𝑓(𝑧) if and only if 𝑓(𝑥)(𝑦) ≽𝑈
𝑓(𝑧)(𝑦), for all 𝑦 ∈ 𝑋

+, we immediately obtain that a
mapping 𝑓 is totally order increasing (decreasing) on 𝐴

implying that 𝑓 is ≽L-increasing (decreasing) on 𝐴.

Lemma 20. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices
and 𝐶 a nonempty convex subset of𝑋. Let 𝑓 : 𝐶 → L

𝑏
(𝑋,𝑈)

be a mapping. Let 𝑆 denote the set of solutions to VOI(𝐶, 𝑓).
Then 𝑆 has the following order preserving properties.

(1) If 𝑓 : 𝐶 → L
𝑝
(𝑋,𝑈) is totally order decreasing on 𝐶,

then 𝑥∗ ∈ 𝑆, 𝑥∗≽𝑋 𝑧, and 𝑧 ∈ 𝐶 imply 𝑧 ∈ 𝑆.
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(2) If 𝑓 : 𝐶 → L
𝑛
(𝑋,𝑈) is totally order increasing on 𝐶,

then 𝑥∗ ∈ 𝑆, 𝑥∗≼𝑋 𝑧, and 𝑧 ∈ 𝐶 imply 𝑧 ∈ 𝑆.

Proof. At first we prove Part 1. Suppose that 𝑓 is totally order
decreasing on 𝐶. For any 𝑥∗ ∈ 𝑆 and for any 𝑧 ∈ 𝐶 satisfying
𝑥
∗
≽
𝑋
𝑧, we have

𝑓 (𝑧) (𝑦 − 𝑧)

≽
𝑈
𝑓 (𝑥
∗
) (𝑦 − 𝑧) (totally order decreasing)

≽
𝑈
𝑓 (𝑥
∗
) (𝑦 − 𝑥

∗
) (𝑓 (𝑥

∗
) ∈ L

𝑝
(𝑋,𝑈))

≽
𝑈
0, ∀𝑦 ∈ 𝐶. (𝑥

∗
∈ 𝑆) .

(37)

It implies 𝑧 ∈ 𝑆. To show Part 2, suppose that𝑓 is totally order
increasing on 𝐶. For any 𝑥∗ ∈ 𝑆 and for any 𝑧 ∈ 𝐶 satisfying
𝑥
∗
≼
𝑋
𝑧, we have

𝑓 (𝑧) (𝑦 − 𝑧)

≽
𝑈
𝑓 (𝑥
∗
) (𝑦 − 𝑧) (totally order increasing)

≽
𝑈
𝑓 (𝑥
∗
) (𝑦 − 𝑥

∗
) (𝑓 (𝑥

∗
) ∈ L

𝑛
(𝑋,𝑈))

≽
𝑈
, ∀𝑦 ∈ 𝐶. (𝑥

∗
∈ 𝑆) .

(38)

It implies 𝑧 ∈ 𝑆. This proves the lemma.

As an immediate consequence, we have the following
result.

Corollary 21. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices
and 𝐶 a nonempty convex Dedekind-complete subset of 𝑋.
Let 𝑓 : 𝐶 → L

𝑏
(𝑋,𝑈) be a mapping. Let 𝑆 denote the

set of solutions to VOI(𝐶, 𝑓). Then 𝑆 has the following order
preserving properties.

(1) If 𝑓 : 𝐶 → L
𝑝
(𝑋,𝑈) is totally order decreasing on 𝐶

and ∧𝑆 exists, then ∧𝑆 ∈ 𝑆.
(2) If 𝑓 : 𝐶 → L

𝑛
(𝑋,𝑈) is totally order increasing on 𝐶

and ∨𝑆 exists, then ∨𝑆 ∈ 𝑆.

Proof. Since 𝐶 is Dedekind complete, if ∧𝑆(∨𝑆) exists, then
∧𝑆(∨𝑆) ∈ 𝐶. The rest of the proof immediately follows from
Lemma 20.

Lemma 20 and Corollary 21 do not claim the convexity
of the solution set 𝑆 of the problem VOI(𝐶, 𝑓). However,
there are some conditions on the mapping 𝑓 to guarantee the
convexity of 𝑆. To this end, we need some concepts.

Definition 22. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices.
Let 𝐶 be a nonempty convex subset of 𝑋 and 𝑓 : 𝐶 →

L
𝑏
(𝑋,𝑈) a mapping. 𝑓 is said to be

(1) order monotone if (𝑓(𝑦) − 𝑓(𝑥))(𝑦 − 𝑥) ≽𝑈 0, for any
𝑥, 𝑦 ∈ 𝐶;

(2) order pseudomonotone if 𝑓(𝑥)(𝑦 − 𝑥) ≽
𝑈
0 implies

𝑓(𝑦)(𝑦 − 𝑥) ≽
𝑈
0, for any 𝑥, 𝑦 ∈ 𝐶.

From the above definition, it is clear that every order-
monotone mapping is order-pseudomonotone. It is well-
known that, in the special case (R, ≥), there are examples of
pseudomonotone mappings which are not monotonic.

Definition 23. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices.
Let 𝐶 be a nonempty convex subset of 𝑋 and 𝑓 : 𝐶 →

𝐿(𝑋,𝑈) a mapping. 𝑓 is said to be hemicontinuous on 𝐶

whenever, for any 𝑥, 𝑦 ∈ 𝐶, the following limit holds:

𝑓 (𝑡𝑥 + (1 − 𝑡) 𝑦) (𝑦 − 𝑥) → 𝑓 (𝑦) (𝑦 − 𝑥)

in 𝑈 as 𝑡 ↓ 0, 𝑡 ∈ (0, 1] .

(39)

Lemma 24. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices.
Let 𝐶 be a nonempty convex order-closed subset of 𝑋 and 𝑓 :

𝐶 → 𝐿(𝑋,𝑈) an order-pseudomonotone and hemicontinuous
mapping. Then 𝑥∗ is a solution to the problem VOI(𝐾, 𝑓), for
some 𝑥∗ ∈ 𝐶, if and only if the following order inequality holds:

𝑓 (𝑥) (𝑥 − 𝑥
∗
) ≽
𝑈
0, ∀𝑥 ∈ 𝐶. (40)

Proof. If 𝑥∗ is a solution to the problem VOI(𝐾, 𝑓), then

𝑓 (𝑥
∗
) (𝑥 − 𝑥

∗
) ≽
𝑈
0, ∀𝑥 ∈ 𝐶. (41)

The order inequality (40) immediately follows from the order
pseudomonotony of 𝑓. Conversely, for any 𝑦 ∈ 𝐶 and 𝑡 ∈
(0, 1], we define 𝑦

𝑡
= (1 − 𝑡)𝑥

∗
+ 𝑡𝑦. Since 𝐶 is convex, then

𝑦
𝑡
∈ 𝐶 for all 𝑡 ∈ (0, 1]. From (40), we have

𝑓 (𝑦
𝑡
) (𝑦
𝑡
− 𝑥
∗
) ≽
𝑈
0, ∀𝑡 ∈ (0, 1] . (42)

Noticing that 𝑦
𝑡
− 𝑥
∗
= 𝑡(𝑦 − 𝑥

∗
), for 𝑡 > 0, and 𝑓(𝑦

𝑡
) ∈

𝐿(𝑋,𝑈), the above order inequality implies

𝑓 (𝑦
𝑡
) (𝑦 − 𝑥

∗
) ≽
𝑈
0, ∀𝑡 ∈ (0, 1] . (43)

Since 𝑓 is hemicontinuous on 𝐶, we have

𝑓 ((1 − 𝑡) 𝑥
∗
+ 𝑡𝑦) (𝑦 − 𝑥

∗
) → 𝑓 (𝑥

∗
) (𝑦 − 𝑥

∗
)

in 𝑈 as 𝑡 ↓ 0.
(44)

From (42), 𝑓((1 − 𝑡)𝑥∗ + 𝑡𝑦)(𝑦 − 𝑥∗) ∈ 𝑈
+ and since 𝑈+ is

norm closed, (44) implies 𝑓(𝑥∗)(𝑦 − 𝑥∗)≽𝑈0. This completes
the proof of this lemma.

Theorem 25. Let (𝑋; ≽𝑋) and (𝑈; ≽𝑈) be two Banach lattices
both with order-continuous norms. Let 𝐶 be a nonempty
convex, closed, Dedekind-complete subset of 𝑋, and let 𝑓 :

𝐶 → 𝐿(𝑋,𝑈) be a linearly order comparable and continuous
mapping. Suppose that there exists a point 𝑦

0
∈ 𝐶 such that

{𝑥 ∈ 𝐶 : 𝑓 (𝑥) (𝑦
0
− 𝑥) ≽

𝑈
0} is compact in 𝑋. (45)

If 𝑓 is also order-pseudomonotone and hemicontinuous map-
ping, then the solution set 𝑆 to the problem VOI(𝐶, 𝑓) is a non-
empty closed convex subset of 𝐶.

Proof. FromTheorem 10, we have 𝑆 ̸= 𝜙.We need to show that
𝑆 is convex. To this end, for any 𝑥

1
, 𝑥
2
∈ 𝑆, from Lemma 24,

we have

𝑓 (𝑦) (𝑦 − 𝑥
𝑖
) ≽
𝑈
0, ∀𝑦 ∈ 𝐶, for 𝑖 = 1, 2. (46)
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Then for any 𝛼 ∈ [0, 1], it implies

𝑓 (𝑦) (𝑦 − (𝛼𝑥
1
+ (1 − 𝛼) 𝑥

2
))

= 𝛼𝑓 (𝑦) (𝑦 − 𝑥
1
)+(1 − 𝛼) 𝑓 (𝑦) (𝑦 − 𝑥

2
) ≽
𝑈
0, ∀𝑦 ∈ 𝐶.

(47)

From Lemma 24 again, we obtain

𝑓 ((𝛼𝑥
1
+ (1 − 𝛼) 𝑥

2
)) (𝑦 − (𝛼𝑥

1
+ (1 − 𝛼) 𝑥

2
)) ≽
𝑈
0,

∀𝑦 ∈ 𝐶.

(48)

It implies that 𝛼𝑥
1
+ (1−𝛼)𝑥

2
∈ 𝑆, and hence 𝑆 is convex.The

closeness of 𝐶 follows from the closeness of the positive cone
of a Banach lattice. The proof is finished.

5. An Application

In this section, we give an example of ordered variational
inequality problem in finite-dimensional cases as an applica-
tion ofTheorem 10, which can be considered as an application
to economics theory.

Example 26. In an economy, we consider two finite-
dimensional Hilbert lattices (R𝑛; ≽𝑛), (R𝑚; ≽𝑚) equipped
with the coordinate partial orders. Let𝐶 be a bounded closed
convex subset of (R𝑛; ≽𝑛), which is the capital resources set
and (R𝑚; ≽𝑚) is the outcome set. Suppose that a mapping
𝑓 : 𝐶 → 𝐿(R𝑛,R𝑚) is the plan-product function in this
economy which assigns every point in 𝐶 to a producing
plan. This plan is a production function with 𝐶 as the capital
resources and with (R𝑚; ≽𝑚) as the outcome space. Suppose
that there is a fixed 𝑛×𝑚matrix 𝜙 = (𝑎

𝑖𝑗
)
0≤𝑖≤𝑛,0≤𝑗≤𝑚

satisfying
∑
1≤𝑖≤𝑛

𝑎
𝑖𝑗
≥ 0, for 𝑗 = 1, 2, . . . , 𝑚, and the plan-product 𝑓 is a

linearly weighted distribution defined by

𝑓 (𝑥) = (𝑥
𝑇
, 𝑥
𝑇
, . . . , 𝑥

𝑇
) 𝜙, ∀𝑥 ∈ 𝐶, (49)

where (𝑥𝑇, 𝑥𝑇, . . . , 𝑥𝑇) is an 𝑛 × 𝑛 squarewith every column as
𝑥
𝑇. Then there exists 𝑥∗ ∈ 𝐶 such that the economy takes the

least production at the capital 𝑥∗ under the producing plan
𝑓(𝑥
∗
):

𝑓 (𝑥
∗
) (𝑦) ≽

𝑚
𝑓 (𝑥
∗
) (𝑥
∗
) , ∀𝑦 ∈ 𝐶. (50)

That is, the problem VOI(𝐶, 𝑓) is solvable. Furthermore,
there is 𝑧∗ ∈ 𝐶 such that the economy takes the most
production at the capital 𝑧∗ under the producing plan 𝑓(𝑧∗):

𝑓 (𝑧
∗
) (𝑧
∗
) ≽
𝑚
𝑓 (𝑧
∗
) (𝑦) , ∀𝑦 ∈ 𝐶. (51)

Remark 27. The capitals 𝑥∗ and 𝑧∗ obtained in the previous
example can be, respectively, viewed as the worst-case sce-
nario and the best-case scenario in this economy.

Proof. At first, we show that 𝑓 : 𝐶 → 𝐿(R𝑛,R𝑚) is linearly
order comparable on 𝐶. To this end, for any given 𝑥, 𝑦 ∈ 𝐶

and for every 𝛼 ∈ (0, 1), we have

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑥)

= 𝑥 ((𝛼𝑥 + (1 − 𝛼) 𝑦)
𝑇

, . . . , (𝛼𝑥 + (1 − 𝛼) 𝑦)
𝑇

) 𝜙,

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑦)

= 𝑦 ((𝛼𝑥 + (1 − 𝛼) 𝑦)
𝑇

, . . . , (𝛼𝑥 + (1 − 𝛼) 𝑦)
𝑇

) 𝜙.

(52)

Calculating gets

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑥)

= (𝛼‖𝑥‖
2
+ (1 − 𝛼) ⟨𝑥, 𝑦⟩ , ‖𝑥‖

2

+ (1 − 𝛼) ⟨𝑥, 𝑦⟩ , . . . , 𝛼‖𝑥‖
2
+ (1 − 𝛼) ⟨𝑥, 𝑦⟩ ) 𝜙,

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑦)

= (𝛼 ⟨𝑥, 𝑦⟩ + (1 − 𝛼)
𝑦


2

, 𝛼 ⟨𝑥, 𝑦⟩

+ (1 − 𝛼)
𝑦


2

, . . . , 𝛼 ⟨𝑥, 𝑦⟩ + (1 − 𝛼)
𝑦


2

) 𝜙.

(53)

We obtain

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑥)

= (𝛼‖𝑥‖
2
+ (1 − 𝛼) ⟨𝑥, 𝑦⟩)

× ( ∑

1≤𝑖≤𝑛

𝑎
𝑖1
, ∑

1≤𝑖≤𝑛

𝑎
𝑖2
, . . . , ∑

1≤𝑖≤𝑛

𝑎
𝑖𝑚
) ,

𝑓 (𝛼𝑥 + (1 − 𝛼) 𝑦) (𝑦)

= (𝛼 ⟨𝑥, 𝑦⟩ + (1 − 𝛼)
𝑦


2

)

× ( ∑

1≤𝑖≤𝑛

𝑎
𝑖1
, ∑

1≤𝑖≤𝑛

𝑎
𝑖2
, . . . , ∑

1≤𝑖≤𝑛

𝑎
𝑖𝑚
) .

(54)

Since 𝛼‖𝑥‖2 + (1 − 𝛼)⟨𝑥, 𝑦⟩ and 𝛼⟨𝑥, 𝑦⟩ + (1 − 𝛼)‖𝑦‖
2 are

both real numbers and ∑
1≤𝑖≤𝑛

𝑎
𝑖𝑗
≥ 0, for 𝑗 = 1, 2, . . . , 𝑚,

it yields that 𝑓(𝛼𝑥 + (1 − 𝛼)𝑦)(𝑥) and 𝑓(𝛼𝑥 + (1 − 𝛼)𝑦)(𝑦)
are ≽𝑚-comparable in (R𝑚; ≽𝑚). Hence 𝑓 is linearly order
comparable on 𝐶. To apply Theorem 10, we have to check
that 𝑓(𝑥) ∈ 𝐿(𝑋,𝑈) and 𝑓 satisfies Conditions (19) and (20).
For this purpose, suppose that {𝑥𝑘} ⊆ 𝐶 satisfying 𝑥𝑘 → 𝑥

in R𝑛. Since 𝐶 is closed, it implies 𝑥 ∈ 𝐶. For every fixed
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𝑧 ∈ 𝐶,𝑓(𝑧) = (𝑧
𝑇, 𝑧𝑇, . . . , 𝑧𝑇)𝜙 is an 𝑛 × 𝑚 matrix. Then

immediately following from 𝑥
𝑘
→ 𝑥 in R𝑛, we have


𝑓 (𝑧) 𝑥

𝑘
− 𝑓 (𝑧) 𝑥

R𝑚

=

(𝑥
𝑘
− 𝑥) (𝑧

𝑇
, 𝑧
𝑇
, . . . , 𝑧

𝑇
) 𝜙
R𝑚

≤

(𝑥
𝑘
− 𝑥)

R𝑚


(𝑧
𝑇
, 𝑧
𝑇
, . . . , 𝑧

𝑇
) 𝜙
𝐿(R𝑛,R𝑚)

→ 0, as 𝑘 → ∞.

(55)

Hence, 𝑓 satisfies Condition (19) in Theorem 10. Similarly,
𝑓(𝑥
𝑘
) and 𝑓(𝑥) are also 𝑛 × 𝑚 matrices and from 𝑥

𝑘
→ 𝑥

in R𝑛, we obtain

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥)

𝐿(R𝑛,R𝑚)

=


((𝑥
𝑘
− 𝑥)
𝑇

, (𝑥
𝑘
− 𝑥)
𝑇

, . . . , (𝑥
𝑘
− 𝑥)
𝑇

)𝜙

𝐿(R𝑛,R𝑚)

→ 0, as 𝑘 → ∞.

(56)

This is Condition (20) in Theorem 10. Since 𝐶 is compact,
all conditions for 𝑓 in Theorem 10 are satisfied. Hence the
problem VOI(𝐶, 𝑓) is solvable, that is, there exists 𝑥∗ ∈ 𝐶

such that

𝑓 (𝑥
∗
) (𝑦 − 𝑥

∗
) ≽
𝑚
0, ∀𝑦 ∈ 𝐶. (57)

The proof of the second part can be reduced to Part 1 by
considering a new function 𝑔 = −𝑓.This completes the proof
of this example.
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