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We investigate the existence and multiplicity of homoclinic orbits for second-order Hamiltonian systems with local superquadratic
potential by using the Mountain Pass Theorem and the Fountain Theorem, respectively.

1. Introduction and Main Result

Consider the second-order nonautonomous Hamiltonian
systems

�̈� (𝑡) − 𝐿 (𝑡) 𝑢 (𝑡) + ∇𝑊 (𝑡, 𝑢 (𝑡)) = 0, (1)

where 𝐿 ∈ 𝐶(𝑅, 𝑅

𝑁
2

) is a symmetric matrix valued function,
𝑊 ∈ 𝐶

1
(𝑅 × 𝑅

𝑁
, 𝑅), and ∇𝑊(𝑡, 𝑥) = (𝜕𝑊/𝜕𝑥)(𝑡, 𝑥). We say

that a nonzero solution 𝑢 of problem (1) is homoclinic (to 0)
if 𝑢(𝑡) → 0 and �̇�(𝑡) → 0 as |𝑡| → ∞.

The existence of homoclinic orbits for Hamiltonian sys-
tems and their importance in the study of the behavior of
dynamical systems have been already recognized by Poincaré
[1]. Only during the last two decades such problem has been
studied by using critical point theory.

If 𝐿(𝑡) and 𝑊(𝑡, 𝑥) are independent of 𝑡 or periodic in 𝑡,
many authors have studied the existence of homoclinic orbits
for Hamiltonian systems, see, for instance, [2–9], and a more
general case is considered in recent papers [10, 11]. In this
case, the existence of homoclinic orbits is obtained by going
to the limit of periodic solutions of approximating problems.
In recent years, concentration compactness principle has also
beenwidely used to deal with the perturbations of periodic or
autonomous problems, for example, [12, 13].

If 𝐿(𝑡) and𝑊(𝑡, 𝑥) are neither autonomous nor periodic,
the problem is quite different from the ones just described,
because of the lack of compactness of the Sobolev embedding.

Rabinowitz and Tanaka [14] study without any periodicity
assumption and obtain the existence of homoclinic orbits of
problem (1) by using a variant of theMountain PassTheorem
without the Palais-Smale condition under the following
condition.

(𝐿) 𝐿 ∈ 𝐶(𝑅, 𝑅

𝑁
2

) is a symmetric and positively definite
matrix for all 𝑡 ∈ 𝑅, and there exists a continuous function
𝑙 : 𝑅 → 𝑅 such that 𝑙(𝑡) > 0 for all 𝑡 ∈ 𝑅 and

(𝐿 (𝑡) 𝑥, 𝑥) ≥ 𝑙 (𝑡) |𝑥|

2
, 𝑙 (𝑡) → ∞ as |𝑡| → ∞. (2)

Assuming coercivity assumption (𝐿), Omana andWillem [15]
obtain an improvement on the latter result by employing a
new compact embedding theorem; in fact, they show that
the (PS) condition is satisfied and obtain the existence and
multiplicity of homoclinic orbits of problem (1) by using the
usual Mountain Pass Theorem. After [14] and [15], many
results [16–22] are obtained for the case where 𝐿(𝑡) is neither
constant nor periodic in 𝑡.

Korman and Lazer [23] remove the technical coercivity
in case that 𝐿(𝑡) and 𝑊(𝑡, 𝑥) are even in 𝑡 and 𝐿(𝑡) is
positively definite for all 𝑡 ∈ 𝑅, by approximating homoclinic
orbits from solutions of boundary value problems, which is
complemented by [24].

Most of the papers mentioned previously tackle the
superquadratic case (see [2–10, 14–16, 18–21, 23, 24]) and
the subquadratic case (see [17–19, 22, 25]). The following
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Ambrosetti-Rabinowitz condition is widely used in almost all
papers tackling the superquadratic case.

(AR) There exists a constant 𝜇 > 2 such that, for every
𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑅

𝑛
\ {0},

0 < 𝜇𝑊 (𝑡, 𝑥) ≤ (∇𝑊 (𝑡, 𝑥) , 𝑥) . (3)

Many recent papers have complemented the (AR) condition,
for example, [6, 16, 20–22, 24].

There are also many papers that tackle the multiplicity of
homoclinic orbits, for example [20, 21, 23–25]. In particular,
based on the variant Fountain Theorem of [26], Yang and
Han [19] consider the multiplicity of homoclinic orbits for
problem (1).

TheoremA (see [19,Theorem 1.2]). Suppose that𝐿(𝑡) satisfies
(𝐿) and (𝐿). For some 𝑎 > 0 and 𝑟 > 0, one of the following is
true:

(i) 𝐿 ∈ 𝐶

1
(𝑅, 𝑅

𝑁
2

) and |𝐿


(𝑡)| ≤ 𝑎|𝐿(𝑡)|, for all |𝑡| ≥ 𝑟,

or
(ii) 𝐿 ∈ 𝐶

2
(𝑅, 𝑅

𝑁
2

) and 𝐿(𝑡) ≤ 𝑎𝐿(𝑡), for all |𝑡| ≥ 𝑟,

where 𝐿


(𝑡) = (𝑑/𝑑𝑡)𝐿(𝑡) and 𝐿


(𝑡) = (𝑑

2
/𝑑𝑡

2
)𝐿(𝑡) and

𝑊(𝑡, 𝑥) satisfies the following.

(W1) 𝑊(𝑡, 0) ≡ 0 for all 𝑡 ∈ 𝑅.
(W2) (∇𝑊(𝑡, 𝑥), 𝑥) ≥ 0, for all (𝑡, 𝑥) ∈ 𝑅 × 𝑅

𝑁.
(W3) There exist 𝑑

1
> 0, 𝜇 > 1 such that

|∇𝑊 (𝑡, 𝑥)| ≤ 𝑑

1
(1 + |𝑥|

𝜇
) , (4)

for all (𝑡, 𝑥) ∈ 𝑅 × 𝑅

𝑁.
(W4) lim

|𝑥|→0
(∇𝑊(𝑡, 𝑥)/|𝑥|) = 0 uniformly for 𝑡 ∈ 𝑅.

(W5) There exist 𝜈 > 2 and 𝑐 > 0 such that

lim inf
|𝑥|→∞

(∇𝑊 (𝑡, 𝑥) , 𝑥)

|𝑥|

𝜈
≥ 𝑐 > 0 (5)

uniformly for 𝑡 ∈ 𝑅.
(W6) 𝑠−1(∇𝑊(𝑡, 𝑠𝑥), 𝑥) is an increasing function of 𝑠 ∈ (0, 1],

for all (𝑡, 𝑥) ∈ 𝑅 × 𝑅

𝑁.
(W7) 𝑊(𝑡, −𝑥) = 𝑊(𝑡, 𝑥), for all (𝑡, 𝑥) ∈ 𝑅 × 𝑅

𝑁.

Then system (1) has infinitely many homoclinic solutions 𝑢
𝑘

satisfying

1

2

∫

𝑅









�̇�

𝑘 (
𝑡)









2
+ (𝐿 (𝑡) 𝑢𝑘 (

𝑡) , 𝑢𝑘 (
𝑡)) 𝑑𝑡

− ∫

𝑅

𝑊(𝑡, 𝑢

𝑘 (
𝑡)) 𝑑𝑡 → +∞

(6)

as 𝑘 → ∞.

In the present paper, based on the FountainTheorem, we
can prove the same result under more generic conditions,
which generalizes Theorem A. Our first result can be stated
as follows.

Theorem 1. Assume that 𝐿 satisfies (𝐿) and (𝐿) and 𝑊

satisfies (W1), (W4), (W7), (W8), and (W9).

(W8) For any 𝑇 > 0,

lim
|𝑥|→∞

𝑊(𝑡, 𝑥)

|𝑥|

2
= +∞, (7)

uniformly in 𝑡 ∈ [−𝑇, 𝑇].
(W9) there exists 𝜃 ≥ 1, such that

𝜃𝐹 (𝑡, 𝑥) ≥ 𝐹 (𝑡, 𝑠𝑥) (8)

for all (𝑡, 𝑥) ∈ 𝑅 × 𝑅

𝑁 and 𝑠 ∈ [0, 1], where 𝐹(𝑡, 𝑥) =
(∇𝑊(𝑡, 𝑥), 𝑥) − 2𝑊(𝑡, 𝑥).

Then problem (1) has infinitelymany homoclinic orbits {𝑢
𝑘
}

satisfying

1

2

∫

𝑅









�̇�

𝑘 (
𝑡)









2
+ (𝐿 (𝑡) 𝑢𝑘 (

𝑡) , 𝑢𝑘 (
𝑡)) 𝑑𝑡

− ∫

𝑅

𝑊(𝑡, 𝑢

𝑘 (
𝑡)) 𝑑𝑡 → +∞

(9)

as 𝑘 → ∞.

Remark 2. Theorem 1 generalizes and improves Theorem A.
Firstly, in Theorem 1 we remove the positiveness condition
(W2) and the growth condition (W3), which are indis-
pensable in Theorem A. Now we compare conditions (W5)
and (W8), (W6), and (W9). Our condition (W8) is a local
superquadratic condition and is really weaker than condition
(W5). Under condition (W6), for all 𝑠 ∈ [0, 1] we have

𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑠𝑥)

= (∇𝑊 (𝑡, 𝑥) , 𝑥) − (∇𝑊 (𝑡, 𝑠𝑥) , 𝑠𝑥)

− 2 [𝑊 (𝑡, 𝑥) − 𝑊 (𝑡, 𝑠𝑥)]

= 2 [∫

1

0

(∇𝑊 (𝑡, 𝑥) , 𝜏𝑥) 𝑑𝜏 − ∫

𝑠

0

(𝑠

−1
∇𝑊(𝑡, 𝑠𝑥) , 𝜏𝑥) 𝑑𝜏]

− 2∫

1

𝑠

(∇𝑊 (𝑡, 𝜏𝑥) , 𝑥) 𝑑𝜏

= 2∫

1

𝑠

(∇𝑊 (𝑡, 𝑥) − 𝜏

−1
∇𝑊(𝑡, 𝜏𝑥) , 𝜏𝑥) 𝑑𝜏

+ 2∫

𝑠

0

(∇𝑊 (𝑡, 𝑥) − 𝑠

−1
∇𝑊(𝑡, 𝑠𝑥) , 𝜏𝑥) 𝑑𝜏

≥ 0

(10)

for all (𝑡, 𝑥) ∈ 𝑅 × 𝑅

𝑁, which means that (W9) holds in the
case that 𝜃 = 1. We consider the multiplicity of homoclinic
orbits for problem (1) by using the FountainTheorem in [27]
which is simpler than the variant FountainTheorem [26].

Moreover, under all conditions ofTheorem 1 except (W7)
we obtain an existence result.
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Theorem 3. Assume that 𝐿 satisfies (𝐿) and (𝐿) and 𝑊

satisfies (W1), (W4), (W8) and (W9). Then problem (1)
possesses a nontrivial homoclinic orbit.

Remark 4. In Theorem 3, we consider the existence of hom-
oclinic orbits for problem (1) under a class of local sup-
erquadratic conditions without the (AR) condition and any
periodicity assumptions on both 𝐿 and 𝑊. There are func-
tions 𝐿 and 𝑊 which satisfy Theorem 3, but do not satisfy
the corresponding results in [2–10, 14–16, 18–21, 23, 24]. For
example,

𝐿 (𝑡) = (𝑡

2
+ 1) 𝐼

𝑁
, 𝑊 (𝑡, 𝑥) = 2𝑎 (𝑡) |𝑥|

2 ln (1 + |𝑥|

2
) ,

(11)

where 𝐼
𝑁
is the unit matrix of order𝑁, 𝑎(𝑡) = 1/(1 + 𝑡

2
).

2. Preliminary Results

In order to establish our results via critical point theory, we
firstly describe some properties of the space 𝐸 on which the
variational functional associated with problem (1) is defined.
Let

𝐸 = {𝑢 ∈ 𝐻

1
(𝑅, 𝑅

𝑁
) : ∫

𝑅

[|�̇� (𝑡)|

2

+ (𝐿 (𝑡) 𝑢 (𝑡) , 𝑢 (𝑡))] 𝑑𝑡 < +∞} .

(12)

Then the space 𝐸 is a Hilbert space with the inner product

(𝑢, 𝑣) = ∫

𝑅

[(�̇� (𝑡) , �̇� (𝑡)) + (𝐿 (𝑡) 𝑢 (𝑡) , 𝑣 (𝑡))] 𝑑𝑡 (13)

and the corresponding norm

‖𝑢‖

2
= (𝑢, 𝑢) .

(14)

Note that 𝐸 ⊂ 𝐻

1
(𝑅, 𝑅

𝑁
) ⊂ 𝐿

𝑝
(𝑅, 𝑅

𝑁
) for all 𝑝 ∈ [2, +∞]

with the embedding being continuous. In particular, for𝑝 = 2

and 𝑝 = +∞, there exist constants 𝐶
2
and 𝐶

∞
such that

‖𝑢‖𝐿
2 ≤ 𝐶

2 ‖
𝑢‖ , ∀𝑢 ∈ 𝐸, (15)

‖𝑢‖𝐿
∞ ≤ 𝐶

∞ ‖𝑢‖ , ∀𝑢 ∈ 𝐸. (16)

Here 𝐿𝑝(𝑅, 𝑅𝑁) (2 ≤ 𝑝 ≤ +∞) and 𝐻

1
(𝑅, 𝑅

𝑁
) denote the

Banach spaces of functions on 𝑅 with values in 𝑅

𝑁 under the
norms

‖𝑢‖𝐿
𝑝 = (∫

𝑅

|𝑢 (𝑡)|

𝑝
𝑑𝑡)

1/𝑝

,
(17)

‖𝑢‖𝐻
1 = (‖𝑢‖

2

𝐿
2 + ‖�̇�‖

2

𝐿
2)

1/2

,

(18)

respectively. 𝐿∞(𝑅, 𝑅

𝑁
) is the Banach space of essentially

bounded functions from 𝑅 into 𝑅𝑁 equipped with the norm

‖𝑢‖∞
= ess sup {



𝑞 (𝑡)









: 𝑡 ∈ 𝑅} . (19)

Lemma 5 (see [18]). Suppose that assumption (𝐿) holds. Then
the embedding of 𝐸 into 𝐿

𝑝
(𝑅, 𝑅

𝑁
) is compact for all 𝑝 ∈

[2, +∞].

Denote by 𝐴 the self-adjoint extension of the operator
−(𝑑

2
/𝑑𝑡

2
) + 𝐿(𝑡) with the domain𝐷(𝐴) ⊂ 𝐿

2
≡ 𝐿

2
(𝑅, 𝑅

𝑁
).

Lemma 6 (see [18]). If L satisfies (𝐿) and (𝐿


), then 𝐷(𝐴) is

continuously embedded in 𝐻

2
(𝑅, 𝑅

𝑁
), and, consequently, one

has

𝑢 (𝑡) → 0, �̇� (𝑡) → 0 (20)

as |𝑡| → ∞, for all 𝑢 ∈ 𝐷(𝐴).

Lemma 7. Suppose that assumptions (W1), (W4) and (W9)
hold. Then𝑊(𝑡, 𝑥) ≥ 0 for all 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑅

𝑁.

Proof. Given 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑅

𝑁, let

𝑓 (𝑠) :=

𝑊 (𝑡, 𝑠𝑥)

𝑠

2
(21)

for 𝑠 > 0; then

𝑓


(𝑠) =

(∇𝑊 (𝑡, 𝑠𝑥) , 𝑠𝑥) − 2𝑊 (𝑡, 𝑠𝑥)

𝑠

3
.

(22)

By (W1) and (W9), we have

(∇𝑊 (𝑡, 𝑥) , 𝑥) − 2𝑊 (𝑡, 𝑥) ≥ 0 (23)

for all 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑅

𝑁. Hence,

𝑓


(𝑠) ≥ 0 (24)

for all 𝑠 > 0, which shows that 𝑓(𝑠) is nondecreasing in
(0, +∞). It is clear that

lim
𝑠→0

𝑓 (𝑠) = lim
𝑠→0

𝑊(𝑡, 𝑠𝑥)

𝑠

2

= lim
𝑠→0

(∇𝑊 (𝑡, 𝑠𝑥) , 𝑥)

2𝑠

.

(25)

On the other hand, by (W4) one has

lim
𝑠→0

















(∇𝑊 (𝑡, 𝑠𝑥) , 𝑥)

2𝑠

















≤ lim
𝑠→0

|∇𝑊 (𝑡, 𝑠𝑥)|

2 |𝑠𝑥|

|𝑥|

2
→ 0. (26)

Therefore

lim
𝑠→0

𝑓 (𝑠) = 0. (27)

Now we get 𝑓(𝑠) ≥ 0 for all 𝑠 > 0, which implies that

𝑊(𝑡, 𝑥) = 𝑓 (1) ≥ 0 (28)

for all 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑅

𝑁.

Lemma 8. Assume that assumptions (𝐿) and (W4) hold and
𝑢

𝑛
⇀ 𝑢 (weakly) in 𝐸. Then ∇𝑊(𝑡, 𝑢

𝑛
) → ∇𝑊(𝑡, 𝑢) in

𝐿

2
(𝑅, 𝑅

𝑁
).
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Proof. Assume that 𝑢
𝑛
⇀ 𝑢 in 𝐸. Then there exists a constant

𝑑 > 0 such that

sup
𝑛∈𝑁









𝑢

𝑛







𝐿
∞ ≤ 𝑑, ‖𝑢‖𝐿

∞ ≤ 𝑑. (29)

By (W4), for every 𝜀 > 0, there exists 𝛿 > 0 such that

|∇𝑊 (𝑡, 𝑥)| < 𝜀 |𝑥| (30)

for all 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑅

𝑁 with |𝑥| < 𝛿. Now we claim that
given 𝑑 > 0, for any 𝛿 > 0, there exists 𝑇

0
> 0 such that

|𝑢 (𝑡)| < 𝛿 (31)

for all |𝑡| > 𝑇

0
and all 𝑢 ∈ 𝐸 with ‖𝑢‖ ≤ 𝑑. If not, there exists

𝛿

0
> 0, for all 𝑛 ∈ 𝑁, and there exists 𝑢

𝑛
∈ 𝐸 with ‖𝑢

𝑛
‖ ≤ 𝑑

and 𝑡

𝑛
> 𝑛 such that









𝑢

𝑛
(𝑡

𝑛
)









≥ 𝛿

0
. (32)

On the other hand, by Lemma 5

𝑢

𝑛
→ 𝑢 (33)

as 𝑛 → ∞ in 𝐿

∞. In view of (32) and (33), we have








𝑢 (𝑡

𝑛
)









≥









𝑢

𝑛
(𝑡

𝑛
)









−









𝑢

𝑛
− 𝑢







𝐿
∞

≥ 𝛿

0
−









𝑢

𝑛
− 𝑢







𝐿
∞

≥

1

2

𝛿

0

(34)

when 𝑛 is large enough, which is a contradiction to the fact
that

lim
|𝑡|→∞

|𝑢 (𝑡)| = 0. (35)

Hence, (31) holds. It follows from (29), (30), and (31) that








∇𝑊 (𝑡, 𝑢

𝑛 (
𝑡))









≤ 𝜀









𝑢

𝑛 (
𝑡)









,

|∇𝑊 (𝑡, 𝑢 (𝑡))| ≤ 𝜀 |𝑢 (𝑡)|

(36)

for all 𝑛 ∈ 𝑁 and |𝑡| > 𝑇

0
. By Lemma 5, 𝑢

𝑛
→ 𝑢 in 𝐿2(𝑅, 𝑅𝑁),

and 𝑢

𝑛
(𝑡) → 𝑢(𝑡) for almost every 𝑡 ∈ 𝑅 and passing to a

subsequence if necessary:

∞

∑

𝑛=1









𝑢

𝑛
− 𝑢







𝐿
2 < ∞, (37)

which implies

𝑣

𝑘 (
𝑡) :=

𝑘

∑

𝑛=1









𝑢

𝑛 (
𝑡) − 𝑢 (𝑡)









∈ 𝐿

2
(𝑅, 𝑅)

(38)

for 𝑘 ∈ 𝑁

+ and











𝑣

𝑘
1

− 𝑣

𝑘
2









𝐿
2
≤

𝑘
2

∑

𝑛=𝑘
1









𝑢

𝑛
− 𝑢







𝐿
2 (39)

for 𝑘

2
> 𝑘

1
∈ 𝑁

+. Since {𝑢

𝑛
} is a Cauchy sequence in

𝐿

2
(𝑅, 𝑅

𝑁
), so by (39) we know that {𝑣

𝑘
} is also a Cauchy

sequence in 𝐿

2
(𝑅, 𝑅), which together with (38) and the

completeness of 𝐿2(𝑅, 𝑅) shows that

𝜈 (𝑡) :=

∞

∑

𝑛=1









𝑢

𝑛 (
𝑡) − 𝑢 (𝑡)









(40)

is well defined and

𝜈 ∈ 𝐿

2
(𝑅, 𝑅) .

(41)

In consequence,








∇𝑊 (𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊 (𝑡, 𝑢 (𝑡))









≤ 𝜀 (









𝑢

𝑛 (
𝑡)









+ |𝑢 (𝑡)|)

≤ 𝜀 (









𝑢

𝑛 (
𝑡) − 𝑢 (𝑡)









+ 2 |𝑢 (𝑡)|)

≤ 𝜀 (𝜈 (𝑡) + 2 |𝑢 (𝑡)|)

(42)

for all 𝑛 ∈ 𝑁 and |𝑡| > 𝑇

0
. Consequently,

∫

𝑅









∇𝑊 (𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊 (𝑡, 𝑢 (𝑡))









2
𝑑𝑡

= ∫

|𝑡|≤𝑇0









∇𝑊 (𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊(𝑡, 𝑢 (𝑡))









2
𝑑𝑡

+ ∫

|𝑡|>𝑇0









∇𝑊 (𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊 (𝑡, 𝑢 (𝑡))









2
𝑑𝑡

≤ ∫

|𝑡|≤𝑇0

(









∇𝑊 (𝑡, 𝑢

𝑛 (
𝑡))









+ |∇𝑊 (𝑡, 𝑢 (𝑡))|)

2
𝑑𝑡

+ ∫

|𝑡|>𝑇0

𝜀

2
(|𝜈(𝑡)|

2
+ 4 |𝜈 (𝑡)| |𝑢 (𝑡)| + 4|𝑢 (𝑡)|

2
) 𝑑𝑡

≤ ∫

|𝑡|≤𝑇0

(max
|𝑥|≤𝑑

|∇𝑊 (𝑡, 𝑥)| +max
|𝑥|≤𝑑

|∇𝑊 (𝑡, 𝑥)|)

2

𝑑𝑡

+ 𝜀

2
(‖𝜈‖

2

𝐿
2 + 4‖𝜈‖𝐿

2‖𝑢‖𝐿
2 + 4‖𝑢‖

2

𝐿
2)

< ∞

(43)

for all 𝑛 ∈ 𝑁. Then using Lebesgue’s convergence theorem,
the lemma is proved.

In our paperwewill also use the following lemmawhich is
a special case of Lemma 1.1 in [28], due to Arioli and Szulkin
[29].

Lemma 9 (see [28, 29]). Let {𝑢
𝑛
} be a bounded sequence in

𝐿

𝑠
(𝑅, 𝑅

𝑁
), 1 ≤ 𝑠 < ∞ such that {�̇�

𝑛
} is bounded in 𝐿

𝑞
(𝑅, 𝑅

𝑁
),

1 ≤ 𝑞 < ∞. If, in addition, there exists 𝑙 > 0 such that

sup
𝑦∈𝑅

∫

𝑦+𝑙

𝑦−𝑙









𝑢

𝑛 (
𝑡)









𝑠
𝑑𝑡 → 0 (44)

as 𝑛 → ∞, then

𝑢

𝑛
→ 0 (45)

in 𝐿

𝑝
(𝑅, 𝑅

𝑁
) for all 𝑝 ∈ (𝑠,∞).
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Now we introduce some notations and some necessary
definitions which will be used later. Let 𝐵 be a real Banach
space, 𝐼 ∈ 𝐶

1
(𝐵, 𝑅), which means that 𝐼 is continuously

Frechet-differentiable functional defined on B. Recall that 𝐼 ∈
𝐶

1
(𝐵, 𝑅) is said to satisfy the (PS) condition if any sequence

{𝑢

𝑛
}

𝑛∈𝑁
⊂ 𝐵, for which {𝐼(𝑢

𝑛
)} is bounded and 𝐼


(𝑢

𝑛
) → 0

as 𝑛 → +∞ possesses a convergent subsequence in 𝐵.
Moreover, let 𝐵

𝑟
be the open ball in 𝐵 with the radius 𝑟

and centered at 0, and 𝜕𝐵

𝑟
denotes its boundary; we obtain

the existence of homoclinic orbits of problem (1) by the use
of the following well-known Mountain Pass Theorem [30].

Lemma 10 (see [30]). Let 𝐵 be a real Banach space and let 𝐼 ∈
𝐶

1
(𝐵, 𝑅) satisfying the (PS) condition. Suppose that 𝐼(0) = 0

and that

(A1) there are constants 𝜌, 𝛼 > 0 such that 𝐼|
𝜕𝐵
𝜌

≥ 𝛼,

(A2) there is an 𝑒 ∈ 𝐵 \ 𝐵

𝜌
such that 𝐼(𝑒) < 0.

Then 𝐼 possesses a critical value 𝑐 ≥ 𝛼. Moreover 𝑐 can be
characterized as

𝑐 = inf
𝑓∈Γ

max
𝑡∈[0,1]

𝐼 (𝑔 (𝑡)) , (46)

where

Γ = {𝑓 ∈ 𝐶 ([0, 1] , 𝐵) : 𝑓 (0) = 0, 𝑓 (1) = 𝑒} . (47)

As shown in [31], a deformation lemma can be proved with the
(𝐶)

𝑐
condition replacing the usual (PS) condition, and it turns

out that Lemma 10 holds true under the (𝐶)
𝑐
condition.

In order to prove themultiplicity of homoclinic orbits, we
will use the Fountain Theorem. Since 𝐸 is a Hilbert space,
then there exists a basis {𝑣

𝑛
} ⊂ 𝑋 such that 𝑋 = ⊕

𝑗≥1
𝑋

𝑗
,

where 𝑋
𝑗
= span {𝑣

𝑗
}. Letting 𝑌

𝑘
= ⊕

𝑘

𝑗=1
𝑋

𝑗
, 𝑍

𝑘
= ⊕

𝑗≥𝑘
𝑋

𝑗
,

now we show the following FountainTheorem.

Lemma 11 (see [27]). If 𝐼 ∈ 𝐶

1
(𝑋, 𝑅) satisfies the (𝐶)

𝑐

condition, 𝐼(−𝑢) = 𝐼(𝑢), and for every 𝑘 ∈ 𝑁, there exists
𝜌

𝑘
> 𝑟

𝑘
> 0 such that

(i) 𝑏
𝑘
:= inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝑟

𝑘

𝐼(𝑢) → +∞, as 𝑘 → +∞;

(ii) 𝑎
𝑘
:= max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝜌

𝑘

𝐼(𝑢) ≤ 0.

Then 𝐼 has a sequence of critical points {𝑢
𝑘
} such that 𝐼(𝑢

𝑘
) →

+∞ as 𝑘 → ∞.

In the proof of Theorem 1, the following lemma will also
be used. A similar result with respect to elliptic problem has
been proved in [27].

Lemma 12. Suppose that 2 ≤ 𝑝 ≤ +∞; then one has

𝛽

𝑘
(𝑝) := sup

𝑢∈𝑍
𝑘
,‖𝑢‖=1

‖𝑢‖𝐿
𝑝 → 0 (48)

as 𝑘 → ∞.

Proof. It is clear that 0 < 𝛽

𝑘+1
(𝑝) ≤ 𝛽

𝑘
(𝑝), so there exists 𝛽(𝑝)

such that

𝛽

𝑘
(𝑝) → 𝛽 (𝑝) ≥ 0 (49)

as 𝑘 → ∞ for every 2 ≤ 𝑝 ≤ +∞. By the definition of 𝛽
𝑘
(𝑝),

there exists 𝑢
𝑘
(𝑝) ∈ 𝑍

𝑘
with ‖𝑢

𝑘
(𝑝)‖ = 1 such that









𝑢

𝑘
(𝑝)







𝐿
𝑝 >

𝛽

𝑘
(𝑝)

2

(50)

for every 2 ≤ 𝑝 ≤ +∞ and 𝑘 ∈ 𝑁

+. Since {𝑢

𝑘
(𝑝)}

𝑘∈𝑁
is

bounded, then there exists 𝑢(𝑝) ∈ 𝐸 such that

𝑢

𝑘
(𝑝) ⇀ 𝑢 (𝑝) (51)

as 𝑘 → ∞. Now since {𝑣
𝑗
} is a basis of 𝐸, it follows that for

all 𝑗 ∈ 𝑁

0 = (𝑢

𝑘
(𝑝) , 𝑣

𝑗
) ∀𝑘 > 𝑗

→ (𝑢 (𝑝) , 𝑣

𝑗
)

(52)

as 𝑘 → ∞, which shows that 𝑢(𝑝) = 0. By Lemma 5 we have

𝑢

𝑘
(𝑝) → 0 (53)

in 𝐿

𝑝 for all 2 ≤ 𝑝 ≤ +∞, which together with (49) and (50)
implies that 𝛽(𝑝) = 0.

3. Proof of Theorems

Define the functional 𝐼 : 𝐸 → 𝑅 by

𝐼 (𝑢) = ∫

𝑅

[

1

2

|�̇� (𝑡)|

2
+

1

2

(𝐿 (𝑡) 𝑢 (𝑡) , 𝑢 (𝑡)) − 𝑊 (𝑡, 𝑢 (𝑡))] 𝑑𝑡

=

1

2

‖𝑢‖

2
− ∫

𝑅

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡.

(54)

Lemma 13. Under the conditions (𝐿), (𝐿), and (W4), 𝐼 ∈

𝐶

1
(𝐸, 𝑅), and for all 𝑢, 𝑣 ∈ 𝐸 one has

⟨𝐼


(𝑢) , 𝑣⟩ = ∫

𝑅

[(�̇� (𝑡) , �̇� (𝑡)) + (𝐿 (𝑡) 𝑢 (𝑡) , 𝑣 (𝑡))

− (∇𝑊 (𝑡, 𝑢 (𝑡)) , 𝑣 (𝑡))] 𝑑𝑡.

(55)

Moreover, any critical point of 𝐼 on 𝐸 is a solution of problem
(1) with 𝑢(±∞) = 0 and �̇�(±∞) = 0.

Proof. We firstly show that 𝐼 is well defined. It follows from
(30) that for any 𝜀 > 0, there exists 𝛿 > 0 such that

0 ≤ 𝑊 (𝑡, 𝑥) ≤

1

2

𝜀|𝑥|

2 (56)

for all 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑅

𝑁 with |𝑥| < 𝛿. Letting 𝑢 ∈ 𝐸, then
𝑢 ∈ 𝐶

0
(𝑅, 𝑅

𝑁
), the space of continuous function 𝑢 on 𝑅, such
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that 𝑢(𝑡) → 0 as |𝑡| → ∞. Therefore there exists 𝑇
1
> 0

such that

|𝑢 (𝑡)| < 𝛿 (57)

for all |𝑡| > 𝑇

1
. Hence, one has

∫

𝑅

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡 ≤∫

𝑇
1

−𝑇
1

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡 +

1

2

𝜀∫

|𝑡|>𝑇1

|𝑢 (𝑡)|

2
𝑑𝑡

≤ ∫

𝑇
1

−𝑇
1

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡 +

1

2

𝜀‖𝑢‖

2

𝐿
2

< ∞,

(58)

so 𝐼 is well defined.
Next we prove that 𝐼 ∈ 𝐶

1
(𝐸, 𝑅). Rewrite 𝐼 as follows

𝐼 = 𝐼

1
− 𝐼

2
, (59)

where

𝐼

1
= ∫

𝑅

[

1

2

|�̇�(𝑡)|

2
+

1

2

(𝐿 (𝑡) 𝑢 (𝑡) , 𝑢 (𝑡))] 𝑑𝑡,

𝐼

2
= ∫

𝑅

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡.

(60)

It is easy to check that 𝐼
1
∈ 𝐶

1
(𝐸, 𝑅) and

⟨𝐼



1
(𝑢) , 𝑣⟩ = ∫

𝑅

[(�̇� (𝑡) , �̇� (𝑡)) + (𝐿 (𝑡) 𝑢 (𝑡) , 𝑣 (𝑡))] 𝑑𝑡. (61)

It remains to show that 𝐼
2
∈ 𝐶

1
(𝐸, 𝑅). By the mean value

theorem, for any 𝑢, 𝑣 ∈ 𝐸 and ℎ ∈ [0, 1] we have

𝑊(𝑡, 𝑢 (𝑡) + ℎ𝑣 (𝑡)) − 𝑊 (𝑡, 𝑢 (𝑡))

= (∇𝑊 (𝑡, 𝑢 (𝑡) + ℎ𝜃 (𝑡) 𝑣 (𝑡)), 𝑣 (𝑡)) ,

(62)

where 𝜃(𝑡) ∈ (0, 1). For any 𝑢, 𝑣 ∈ 𝐸, there exists 𝑇
2
> 0 such

that

|𝑢 (𝑡)| + |𝑣 (𝑡)| < 𝛿 (63)

for all |𝑡| > 𝑇

2
, so that

|𝑢 (𝑡) + ℎ𝜃 (𝑡) 𝑣 (𝑡)| < 𝛿 (64)

for all |𝑡| > 𝑇

2
, which together with (15) and (30) implies

∫

𝑅

max
ℎ∈[0,1]

|(∇𝑊 (𝑡, 𝑢 (𝑡) + ℎ𝜃 (𝑡) 𝑣 (𝑡)) , 𝑣 (𝑡))| 𝑑𝑡

= ∫

|𝑡|≤𝑇2

max
ℎ∈[0,1]

|(∇𝑊 (𝑡, 𝑢 (𝑡) + ℎ𝜃 (𝑡) 𝑣 (𝑡)) , 𝑣 (𝑡))| 𝑑𝑡

+ ∫

|𝑡|>𝑇2

max
ℎ∈[0,1]

|(∇𝑊 (𝑡, 𝑢 (𝑡) + ℎ𝜃 (𝑡) 𝑣 (𝑡)) , 𝑣 (𝑡))| 𝑑𝑡

≤ ∫

|𝑡|≤𝑇2

max
|𝑥|≤‖𝑢‖

𝐿
∞+‖𝑣‖

𝐿
∞

|∇𝑊 (𝑡, 𝑥)| |𝑣 (𝑡)| 𝑑𝑡

+ ∫

|𝑡|>𝑇2

𝜀 [|𝑢 (𝑡)| |𝑣 (𝑡)| |𝑣 (𝑡)|

2
] 𝑑𝑡

≤ ∫

|𝑡|≤𝑇2

max
|𝑥|≤‖𝑢‖

𝐿
∞+‖𝑣‖

𝐿
∞

|∇𝑊 (𝑡, 𝑥)| |𝑣 (𝑡)| 𝑑𝑡

+ 𝜀 (‖𝑢‖𝐿
2‖𝑣‖𝐿

2 + ‖𝑣‖

2

𝐿
2)

< ∞.

(65)

Then by Lebesgue’s convergence theorem, we have

⟨𝐼



2
(𝑢) , 𝑣⟩

= lim
ℎ→0

+

𝐼

2 (
𝑢 + ℎ𝑣) − 𝐼

2 (
𝑢)

ℎ

= lim
ℎ→0

+

∫

𝑅

[𝑊 (𝑡, 𝑢 (𝑡) + ℎ𝑣 (𝑡)) − 𝑊 (𝑡, 𝑢 (𝑡))] 𝑑𝑡

= lim
ℎ→0

+

∫

𝑅

(∇𝑊 (𝑡, 𝑢 (𝑡) + ℎ𝜃 (𝑡) 𝑣 (𝑡)) , 𝑣 (𝑡)) 𝑑𝑡

= ∫

𝑅

(∇𝑊 (𝑡, 𝑢 (𝑡)) , 𝑣 (𝑡)) 𝑑𝑡.

(66)

Now we show that 𝐼
2
is continuous. Supposing that 𝑢

𝑛
→ 𝑢

in 𝐸, by an easy computation, one has

sup
‖𝑣‖=1











⟨𝐼



2
(𝑢

𝑛
) − 𝐼



2
(𝑢) , 𝑣⟩











= sup
‖𝑣‖=1

















∫

𝑅

(∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊 (𝑡, 𝑢 (𝑡)) , 𝑣 (𝑡)) 𝑑𝑡

















≤ sup
‖𝑣‖=1









∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊(𝑡, 𝑢 (𝑡))







𝐿
2‖𝑣‖𝐿

2

≤ 𝐶

2









∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊(𝑡, 𝑢 (𝑡))







𝐿
2 .

(67)

Hence by Lemma 8, we obtain

⟨𝐼



2
(𝑢

𝑛
) − 𝐼



2
(𝑢) , 𝑣⟩ → 0 (68)

as 𝑛 → ∞ uniformly with respect to 𝑣, which implies the
continuity of 𝐼

2
. Now we have proved

𝐼 ∈ 𝐶

1
(𝐸, 𝑅) .

(69)
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Finally, we show that any critical point 𝑢 of 𝐼 is a solution
of problem (1) satisfying 𝑢(±∞) = 0 and �̇�(±∞) = 0. If 𝑢 ∈ 𝐸

is a critical point of 𝐼, a standard argument shows that 𝑢 ∈

𝐶

2
(𝑅, 𝑅

𝑁
) satisfies (1). By Lemma 6, we only need to show

that 𝑢 is an element of 𝐷(𝐴). It follows from (30) and (57)
that

|∇𝑊 (𝑡, 𝑢 (𝑡))| < 𝜀 |𝑢 (𝑡)| (70)

for all |𝑡| > 𝑇

1
. Hence, one has

∫

𝑅

|∇𝑊 (𝑡, 𝑢 (𝑡))|

2
𝑑𝑡

≤ ∫

𝑇
1

−𝑇
1

|∇𝑊 (𝑡, 𝑢 (𝑡))|

2
𝑑𝑡 + 𝜀

2
∫

|𝑡|>𝑇1

|𝑢 (𝑡)|

2
𝑑𝑡

≤ ∫

𝑇
1

−𝑇
1

|∇𝑊 (𝑡, 𝑢 (𝑡))|

2
𝑑𝑡 + 𝜀

2
‖𝑢‖

2

𝐿
2

< ∞,

(71)

so∇𝑊(𝑡, 𝑢) ∈ 𝐿

2
(𝑅, 𝑅

𝑁
), which together with (1) implies that

𝐴𝑢 ∈ 𝐿

2
(𝑅, 𝑅

𝑁
). This means; 𝑢 ∈ 𝐷(𝐴), and the proof is

completed.

Lemma 14. Under conditions (𝐿), (W4), and (W9), 𝐼 satisfies
the (𝐶)

𝑐
condition.

Proof. 𝐼 satisfies the (𝐶)
𝑐
condition; that is, for every {𝑢

𝑛
} ⊂ 𝐸,

{𝑢

𝑛
} has a convergent subsequence if 𝐼(𝑢

𝑛
) is bounded and

(1 + ‖𝑢

𝑛
‖)‖𝐼


(𝑢

𝑛
)‖ → 0 as 𝑛 → ∞. Assume that {𝑢

𝑛
} ⊂ 𝐸 is

a sequence such that

𝐼 (𝑢

𝑛
) → 𝑐 (72)

is bounded and

(1 +









𝑢

𝑛









)











𝐼


(𝑢

𝑛
)











→ 0 (73)

as 𝑛 → ∞. Hence, we have

lim
𝑛→∞

∫

𝑅

[

1

2

(∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) , 𝑢𝑛 (

𝑡)) − 𝑊 (𝑡, 𝑢

𝑛 (
𝑡))] 𝑑𝑡

= lim
𝑛→∞

(𝐼 (𝑢

𝑛
) −

1

2

⟨𝐼


(𝑢

𝑛
) , 𝑢

𝑛
⟩) = 𝑐.

(74)

Firstly, we show that {𝑢
𝑛
} is bounded; if not, up to a

subsequence we have








𝑢

𝑛









→ ∞ (75)

as 𝑛 → ∞. Letting 𝑣
𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖, then {𝑣

𝑛
} is bounded in 𝐸.

By Lemma 5, we have

𝑣

𝑛
⇀ 𝑣 in 𝐸, 𝑣

𝑛
→ 𝑣 in 𝐿

2
(𝑅, 𝑅

𝑁
) (76)

as 𝑛 → ∞. We claim the following.

Claim 1. consider

lim
𝑛→∞

sup
𝑦∈𝑅

∫

𝑦+1

𝑦−1









𝑣

𝑛 (
𝑡)









2
𝑑𝑡 = 0. (77)

Otherwise, for some 𝜎 > 0, up to a subsequence we have

sup
𝑦∈𝑅

∫

𝑦+1

𝑦−1









𝑣

𝑛 (
𝑡)









2
𝑑𝑡 ≥ 𝜎 > 0. (78)

We can choose {𝑦
𝑛
} ⊂ 𝑅 such that

∫

𝑦
𝑛
+1

𝑦
𝑛
−1









𝑣

𝑛 (
𝑡)









2
𝑑𝑡 ≥

𝜎

2

. (79)

In view of 𝑣
𝑛
→ 𝑣 in 𝐿

2
(𝑅, 𝑅

𝑁
) and (79), we have

‖𝑣‖

2

𝐿
2 +

𝜎

4

≥ ∫

𝑅

|𝑣 (𝑡)|

2
𝑑𝑡 + ∫

𝑅









𝑣

𝑛 (
𝑡) − 𝑣 (𝑡)









2
𝑑𝑡

≥ ∫

𝑦
𝑛
+1

𝑦
𝑛
−1

|𝑣 (𝑡)|

2
𝑑𝑡 + ∫

𝑦
𝑛
+1

𝑦
𝑛
−1









𝑣

𝑛 (
𝑡) − 𝑣 (𝑡)









2
𝑑𝑡

≥ ∫

𝑦
𝑛
+1

𝑦
𝑛
−1









𝑣

𝑛 (
𝑡)









2
𝑑𝑡

≥

𝜎

2

(80)

when 𝑛 is large enough. By (80), there exists 𝜀
0
> 0, such that

the set Θ = {𝑡 ∈ 𝑅 : |𝑣(𝑡)| ≥ 𝜀

0
} has a positive Lebesgue

measure. Moreover similar to (57), there exists 𝑇
3
> 0 such

that |𝑣(𝑡)| < 𝜀

0
for all |𝑡| > 𝑇

3
, which implies that Θ ⊂

[−𝑇

3
, 𝑇

3
]. For all 𝑡 ∈ Θ, one has |𝑢

𝑛
(𝑡)| → ∞ as 𝑛 → ∞,

which together with (W8) shows

𝑊(𝑡, 𝑢

𝑛 (
𝑡))









𝑢

𝑛 (
𝑡)









2
=

𝑊(𝑡, 𝑢

𝑛 (
𝑡))









𝑢

𝑛
(𝑡)









2









𝑣

𝑛 (
𝑡)









2
→ +∞ (81)

as 𝑛 → ∞ uniformly for all 𝑡 ∈ Θ. Hence by Lemma 6 and
the fact that𝑊(𝑡, 𝑥) ≥ 0 for all 𝑡 ∈ 𝑅 and 𝑥 ∈ 𝑅

𝑁, we have

1

2

−

𝑐 + 𝑜 (1)









𝑢

𝑛









2
=

(1/2)









𝑢

𝑛









2
− 𝐼 (𝑢

𝑛
)









𝑢

𝑛









2

= ∫

𝑅

𝑊(𝑡, 𝑢

𝑛 (
𝑡))









𝑢

𝑛









2
𝑑𝑡

= ∫

𝑅

𝑊(𝑡, 𝑢

𝑛 (
𝑡))









𝑢

𝑛 (
𝑡)









2









𝑣

𝑛
(𝑡)









2
𝑑𝑡

≥ ∫

Θ

𝑊(𝑡, 𝑢

𝑛 (
𝑡))









𝑢

𝑛 (
𝑡)









2









𝑣

𝑛 (
𝑡)









2
𝑑𝑡

→ ∞

(82)

as 𝑛 → ∞, which is a contradiction. Therefore we have
proved Claim 1. Since ‖𝑣

𝑛
‖ is bounded, by Lemma 9, we have

𝑣

𝑛
→ 0 (83)

in 𝐿𝑞(𝑅, 𝑅𝑁) for all 𝑞>2. Next, we will derive a contradiction.
For any given 𝑟 > 0, ‖𝑟𝑣

𝑛
‖ = 𝑟. Similar to (31), for 𝛿 > 0

defined in (56), there exists 𝑇
4
> 0 such that









𝑟𝑣

𝑛 (
𝑡)









< 𝛿 (84)
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for all |𝑡| > 𝑇

4
and all 𝑛 ∈ 𝑁, which together with (56) shows

that

0 ≤ 𝑊(𝑡, 𝑟𝑣

𝑛 (
𝑡)) ≤

𝜀

2

𝑟

2






𝑣

𝑛 (
𝑡)









2 (85)

for all 𝑛 ∈ 𝑁 and |𝑡| > 𝑇

4
. In view of (83), 𝑣

𝑛
→ 0 in

𝐿

3
(𝑅, 𝑅

𝑁
), which implies that

∫

|𝑡|≤𝑇4









𝑣

𝑛 (
𝑡)









2
𝑑𝑡

= (∫

|𝑡|≤𝑇
4

1𝑑𝑡)

1/3

(∫

|𝑡|≤𝑇
4









𝑣

𝑛
(𝑡)









3
𝑑𝑡)

2/3

→ 0

(86)

as 𝑛 → ∞. We can derive from (W4) that

max
|𝑥|≤𝑟𝐶∞

|∇𝑊 (𝑡, 𝑥)|

|𝑥|

(87)

is bounded for all |𝑡| ≤ 𝑇

4
. Combining (86) and (87), we have

∫

|𝑡|≤𝑇4

max
|𝑥|≤𝑟𝐶∞

|∇𝑊 (𝑡, 𝑥)|

|𝑥|









𝑣

𝑛 (
𝑡)









2
𝑑𝑡 < 𝜀 (88)

when 𝑛 is large enough. It follows from (85) and (88) that

0 ≤ ∫

𝑅

𝑊(𝑡, 𝑟𝑣

𝑛 (
𝑡)) 𝑑𝑡

= ∫

|𝑡|>𝑇4

𝑊(𝑡, 𝑟𝑣

𝑛 (
𝑡)) 𝑑𝑡 + ∫

|𝑡|≤𝑇4

𝑊(𝑡, 𝑟𝑣

𝑛 (
𝑡)) 𝑑𝑡

= ∫

|𝑡|>𝑇4

𝜀

2

𝑟

2






𝑣

𝑛 (
𝑡)









2
𝑑𝑡

+ ∫

|𝑡|≤𝑇4

∫

1

0

(∇𝑊(𝑡, 𝑠𝑟𝑣

𝑛 (
𝑡)) , 𝑟𝑣𝑛 (

𝑡)) 𝑑𝑠 𝑑𝑡

= ∫

|𝑡|>𝑇4

𝜀

2

𝑟

2






𝑣

𝑛 (
𝑡)









2
𝑑𝑡

+ ∫

|𝑡|≤𝑇4

∫

1

0









∇𝑊 (𝑡, 𝑠𝑟𝑣

𝑛 (
𝑡))

















𝑠𝑟𝑣

𝑛 (
𝑡)

















𝑟𝑣

𝑛
(𝑡)









2
𝑠𝑑𝑠 𝑑𝑡

≤ ∫

𝑅

𝜀

2

𝑟

2






𝑣

𝑛
(𝑡)









2
𝑑𝑡

+ ∫

|𝑡|≤𝑇4

𝑟

2

2

max
|𝑥|≤𝑟𝐶∞

|∇𝑊 (𝑡, 𝑥)|

|𝑥|









𝑣

𝑛 (
𝑡)









2
𝑑𝑡

≤

𝜀

2

𝑟

2
𝐶

2

2
+

𝑟

2

2

𝜀

(89)

when 𝑛 is large enough, which implies that

lim
𝑛→∞

∫

𝑅

𝑊(𝑡, 𝑟𝑣

𝑛 (
𝑡)) 𝑑𝑡 = 0 (90)

for any given 𝑟 > 0. Choose a sequence {𝑟
𝑛
} ⊂ [0, 1], such that

𝐼 (𝑟

𝑛
𝑢

𝑛
) = max

𝑟∈[0,1]

𝐼 (𝑟𝑢

𝑛
) . (91)

Given𝑀 > 0, since 𝑛 is large enough, we have 2√𝑀‖𝑢

𝑛
‖

−1
∈

[0, 1]; using (90) with 𝑟 = 2

√

𝑀, we obtain

𝐼 (𝑟

𝑛
𝑢

𝑛
) ≥ 𝐼(

2

√

𝑀









𝑢

𝑛









𝑢

𝑛
)

= 𝐼 (2

√

𝑀𝑣

𝑛
)

= 2𝑀 − ∫

𝑅

𝑊(𝑡, 2

√

𝑀𝑣

𝑛
) 𝑑𝑡

≥ 𝑀

(92)

for 𝑛 large enough, which together with the arbitrary of 𝑀
implies that

𝐼 (𝑟

𝑛
𝑢

𝑛
) → +∞ (93)

as 𝑛 → ∞. In view of (91) and the fact that 𝑟
𝑛
∈ (0, 1), we

have

∫

𝑅

[









𝑟

𝑛
�̇�

𝑛









2
+ (𝐿 (𝑡) 𝑟𝑛

𝑢

𝑛
, 𝑟

𝑛
𝑢

𝑛
) − (∇𝑊(𝑡, 𝑟

𝑛
𝑢

𝑛
) , 𝑟

𝑛
𝑢

𝑛
)] 𝑑𝑡

= ⟨𝐼


(𝑟

𝑛
𝑢

𝑛
) , 𝑟

𝑛
𝑢

𝑛
⟩

= 𝑟

𝑛

𝑑

𝑑𝑡















𝑟=𝑟
𝑛

𝐼 (𝑟𝑢

𝑛
)

= 0.

(94)

By (W9), we get

∫

𝑅

𝐹 (𝑡, 𝑢

𝑛
) 𝑑𝑡 ≥

1

𝜃

∫

𝑅

𝐹 (𝑡, 𝑟

𝑛
𝑢

𝑛
) 𝑑𝑡 (95)

for all 𝑡 ∈ 𝑅 and 𝑛 ∈ 𝑁. It follows from (93) and (94) that

∫

𝑅

[

1

2

(∇𝑊(𝑡, 𝑢

𝑛
) , 𝑢

𝑛
) − 𝑊(𝑡, 𝑢

𝑛
)] 𝑑𝑡

≥

1

𝜃

∫

𝑅

[

1

2

(∇𝑊(𝑡, 𝑟

𝑛
𝑢

𝑛
) , 𝑟

𝑛
𝑢

𝑛
) − 𝑊(𝑡, 𝑟

𝑛
𝑢

𝑛
)] 𝑑𝑡

=

1

𝜃

∫

𝑅

[

1

2

(









𝑟

𝑛
�̇�

𝑛









2
+ (𝐿 (𝑡) 𝑟𝑛

𝑢

𝑛
, 𝑟

𝑛
𝑢

𝑛
))

−𝑊(𝑡, 𝑟

𝑛
𝑢

𝑛
)] 𝑑𝑡

=

1

𝜃

𝐼 (𝑟

𝑛
𝑢

𝑛
)

→ +∞

(96)

as 𝑛 → ∞, which contradicts (74).Therefore we have proved
that {𝑢

𝑛
} is bounded.

By Lemma 5 and the fact that {𝑢
𝑛
} is bounded in 𝐸, there

exist 𝑢 ∈ 𝐸, 𝑑 > 0, and a subsequence of {𝑢
𝑛
} again denoted

by {𝑢
𝑛
} such that

sup
𝑛∈𝑁









𝑢

𝑛







𝐿
∞ ≤ 𝑑 ‖𝑢‖ ≤ 𝑑, (97)

𝑢

𝑛
⇀ 𝑢 in 𝐸, 𝑢

𝑛
→ 𝑢 in 𝐿

2
(𝑅, 𝑅

𝑁
) (98)
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as 𝑛 → ∞. Arguing as in Lemma 8, we can also define

𝜈 (𝑡) :=

∞

∑

𝑛=1









𝑢

𝑛 (
𝑡) − 𝑢 (𝑡)









(99)

and 𝜈 ∈ 𝐿

2
(𝑅, 𝑅). It is obvious that

⟨𝐼


(𝑢

𝑛
) − 𝐼


(𝑢) , 𝑢⟩ → 0 (100)

as 𝑛 → ∞. By (𝐿), (97), and Lemma 8 one has
















∫

𝑅

(∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊(𝑡, 𝑢 (𝑡)) , 𝑢𝑛 (

𝑡)) 𝑑𝑡

















≤









∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊(𝑡, 𝑢 (𝑡))







𝐿
2









𝑢

𝑛 (
𝑡)







𝐿
2

≤ 𝐶

2









∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊 (𝑡, 𝑢 (𝑡))







𝐿
2









𝑢

𝑛









≤ 𝐶

2
𝑑









∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊(𝑡, 𝑢 (𝑡))







𝐿
2

→ 0

(101)

as 𝑛 → ∞, which implies that

⟨𝐼


(𝑢

𝑛
) − 𝐼


(𝑢) , 𝑢𝑛

⟩ → 0 (102)

as 𝑛 → ∞. Summing up (100) and (102), we have

⟨𝐼


(𝑢

𝑛
) − 𝐼


(𝑢) , 𝑢𝑛

− 𝑢⟩ → 0 (103)

as 𝑛 → ∞. On the other hand, by Lemma 7 and (97) we get
















∫

𝑅

(∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊(𝑡, 𝑢 (𝑡)) , 𝑢𝑛 (

𝑡) − 𝑢 (𝑡)) 𝑑𝑡

















≤









(∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊(𝑡, 𝑢 (𝑡))







𝐿
2

×









(𝑢

𝑛 (
𝑡) − 𝑢 (𝑡))







𝐿
2

≤ 𝐶

2









∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊 (𝑡, 𝑢 (𝑡))







𝐿
2









𝑢

𝑛
− 𝑢









≤ 2𝐶

2
𝑑









∇𝑊(𝑡, 𝑢

𝑛 (
𝑡)) − ∇𝑊 (𝑡, 𝑢 (𝑡))







𝐿
2

→ 0

(104)

as 𝑛 → ∞. An easy computation shows that

⟨𝐼


(𝑢

𝑛
) − 𝐼


(𝑢) , 𝑢𝑛

− 𝑢⟩

=









𝑢

𝑛
− 𝑢









2

− ∫

𝑅

(∇𝑊(𝑡, 𝑢

𝑛 (
𝑡) − ∇𝑊(𝑡, 𝑢 (𝑡)) ,

𝑢

𝑛 (
𝑡) − 𝑢 (𝑡))) 𝑑𝑡.

(105)

Consequently, ‖𝑢
𝑛
− 𝑢‖ → 0 as 𝑛 → ∞.

Proof of Theorem 1. By Lemma 13 and Lemma 14, 𝐼 ∈ 𝐶

1

(𝐸, 𝑅) satisfies the (𝐶)
𝑐
condition and 𝐼(𝑢) = 𝐼(−𝑢); hence to

proveTheorem 1 we should just show that 𝐼 has the geometric
properties (i) and (ii) of Lemma 11.

(i) By Lemma 12

𝛽

𝑘
(𝑝) = sup

𝑢∈𝑍
𝑘
,‖𝑢‖=1

‖𝑢‖𝐿
𝑝 → 0 (106)

as 𝑘 → ∞ for 𝑝 ∈ [2, +∞]. We choose 𝑟
𝑘
= min{1/𝛽

𝑘
(∞),

1/𝛽

𝑘
(4)}; then 𝑟

𝑘
→ ∞ as 𝑘 → ∞, and for every 𝑢 ∈ 𝑍

𝑘

with ‖𝑢‖ = 𝑟

𝑘
, we have

‖𝑢‖𝐿
∞ ≤ 𝛽

𝑘 (
∞) 𝑟𝑘

< 1, ‖𝑢‖𝐿
4 ≤ 𝛽

𝑘 (
4) 𝑟𝑘

< 1. (107)

Similar to (31), there exists 𝑇
5
> 0 such that

|𝑢 (𝑡)| < 𝛿 (108)

for all |𝑡| > 𝑇

5
and all 𝑢 ∈ 𝑍

𝑘
with ‖𝑢‖ = 𝑟

𝑘
, where 𝛿 is defined

in (56). Consequently, by (56), for any 𝜀 > 0

0 ≤ 𝑊 (𝑡, 𝑢 (𝑡)) ≤

1

2

𝜀|𝑢 (𝑡)|

2 (109)

for all |𝑡| > 𝑇

5
and all 𝑢 ∈ 𝑍

𝑘
with ‖𝑢‖ = 𝑟

𝑘
. Hence, we have

for all 𝑢 ∈ 𝑍

𝑘
with ‖𝑢‖ = 𝑟

𝑘

𝐼 (𝑢) =

1

2

‖𝑢‖

2
− ∫

|𝑡|>𝑇5

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡 − ∫

|𝑡|≤𝑇5

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥

1

2

‖𝑢‖

2
− ∫

|𝑡|>𝑇5

1

2

𝜀|𝑢 (𝑡)|

2
𝑑𝑡 − ∫

|𝑡|≤𝑇5

max
|𝑥|≤1

𝑊(𝑡, 𝑥) 𝑑𝑡

≥

1

2

‖𝑢‖

2
−

1

2

𝜀(𝛽

𝑘 (
2))

2

‖𝑢‖

2
− ∫

|𝑡|≤𝑇5

max
|𝑥|≤1

𝑊(𝑡, 𝑥) 𝑑𝑡

≥

1

4

‖𝑢‖

2
− ∫

|𝑡|≤𝑇5

max
|𝑥|≤1

𝑊(𝑡, 𝑥) 𝑑𝑡

(110)

when 𝜀 is small enough. Therefore, one has

𝑏

𝑘
= inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝑟𝑘

𝐼 (𝑢)

≥ inf
𝑢∈𝑍
𝑘
,‖𝑢‖=𝑟𝑘

(

1

4

‖𝑢‖

2
− ∫

|𝑡|≤𝑇5

max
|𝑥|≤1

𝑊(𝑡, 𝑥) 𝑑𝑡)

=

1

4

𝑟

2

𝑘
− ∫

|𝑡|≤𝑇5

max
|𝑥|≤1

𝑊(𝑡, 𝑥) 𝑑𝑡

→ ∞

(111)

as 𝑘 → ∞.
(ii) Firstly, we claim that there exists a constant 𝜀 > 0 such

that

meas {𝑡 ∈ 𝑅 : |𝑢 (𝑡)| ≥ 𝜀 ‖𝑢‖} ≥ 𝜀 (112)

for all 𝑢 ∈ 𝑌

𝑘
\ {0}. Otherwise, for every 𝑛 ∈ 𝑁, there exists

𝑢

𝑛
∈ 𝑌

𝑘
\ {0} such that

meas {𝑡 ∈ 𝑅 :









𝑢

𝑛 (
𝑡)









≥

1

𝑛









𝑢

𝑛









} <

1

𝑛

. (113)

Without loss of generality, we suppose that ‖𝑢
𝑛
‖ = 1; then

there is

meas {𝑡 ∈ 𝑅 :









𝑢

𝑛 (
𝑡)









≥

1

𝑛

} <

1

𝑛

. (114)
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In view of the compactness of the unit sphere of 𝑌
𝑘
, there

exists a subsequence which is still denoted by {𝑢
𝑛
} such that

𝑢

𝑛
converges to some 𝑢

0
∈ 𝑌

𝑘
as 𝑛 → ∞. It is clear that

‖𝑢

0
‖ = 1. Since all the norms in 𝑌

𝑘
are equivalent, we have

𝑢

𝑛
→ 𝑢

0
in 𝐿

2 as 𝑛 → ∞; that is,

∫

𝑅









𝑢

𝑛 (
𝑡) − 𝑢

0 (
𝑡)









2
𝑑𝑡 → 0 (115)

as 𝑛 → ∞. Thus there exist constants 𝜏
1
and 𝜏

2
such that

meas {𝑡 ∈ 𝑅 :









𝑢

0 (
𝑡)









≥ 𝜏

1
} ≥ 𝜏

2
. (116)

If not, we have

meas {𝑡 ∈ 𝑅 :









𝑢

0 (
𝑡)









≥

1

𝑛

} = 0 (117)

for all 𝑛 ∈ 𝑁, which implies that

0 ≤ ∫

𝑅









𝑢

0 (
𝑡)









4
𝑑𝑡 ≤









𝑢

0









2

𝐿
∞









𝑢

0









2

𝐿
2

<

1

𝑛

2
𝐶

2

2









𝑢

0









2
=

1

𝑛

2
𝐶

2

2
→ 0

(118)

as 𝑛 → ∞. Hence 𝑢

0
= 0, which contradicts ‖𝑢

0
‖ = 1.

Therefore (116) holds. Let Ω
0

= {𝑡 ∈ 𝑅 : |𝑢

0
(𝑡)| ≥ 𝜏

1
},

Ω

𝑛
= {𝑡 ∈ 𝑅 : |𝑢

𝑛
(𝑡)| < 1/𝑛}, and Ω

𝑐

𝑛
= 𝑅 \ Ω

𝑛
. It follows

from (114) and (116) that

meas (Ω
𝑛
\ Ω

0
)

= meas (Ω
0
\ (Ω

𝑐

𝑛
∩ Ω

0
))

≥ meas (Ω
0
) − meas (Ω𝑐

𝑛
∩ Ω

0
)

= 𝜏

2
−

1

𝑛

.

(119)

We can choose 𝑛 large enough, such that

𝜏

1
−

1

𝑛

≥

1

2

𝜏

1
, 𝜏

2
−

1

𝑛

≥

1

2

𝜏

2
. (120)

Then we have








𝑢

𝑛 (
𝑡) − 𝑢

0 (
𝑡)









2
≥

















𝑢

𝑛 (
𝑡)









−









𝑢

0 (
𝑡)

















2

≥ (𝜏

1
−

1

𝑛

)

2

≥

1

4

𝜏

2

1

(121)

for all 𝑡 ∈ Ω

𝑛
∩ Ω

0
. In consequence,

∫

𝑅









𝑢

𝑛 (
𝑡) − 𝑢

0 (
𝑡)









2
𝑑𝑡

≥ ∫

Ω
𝑛
∩Ω
0









𝑢

𝑛 (
𝑡) − 𝑢

0 (
𝑡)









2
𝑑𝑡

≥

1

4

𝜏

2

1
⋅ meas (Ω

𝑛
∩ Ω

0
)

≥

1

4

𝜏

2

1
(𝜏

2
−

1

𝑛

)

≥

1

8

𝜏

2

1
𝜏

2

> 0

(122)

for all 𝑛 being large enough, which is a contradiction to (115).
Hence (112) holds.

Similar to (31), for any 𝜀 > 0 there exists 𝑇
6
> 0 such that

|𝑣 (𝑡)| < 𝜀 (123)

for all |𝑡| > 𝑇

6
and all 𝑣 ∈ 𝑌

𝑘
with ‖𝑣‖ ≤ 1. Consequently, for

all 𝑢 ∈ 𝑌

𝑘
,

|𝑢 (𝑡)|

‖𝑢‖

< 𝜀 (124)

for all |𝑡| > 𝑇

6
, which implies that Ω

𝑢
:= {𝑡 ∈ 𝑅 : |𝑢(𝑡)| ≥

𝜀‖𝑢‖} ⊂ [−𝑇

6
, 𝑇

6
] for all 𝑢 ∈ 𝑌

𝑘
. By (W8), there exists 𝐺 > 0

such that

𝑊(𝑡, 𝑥) ≥

1

𝜀

3
|𝑥|

2 (125)

for all 𝑥 ∈ 𝑅

𝑁 with |𝑥| ≥ 𝐺 and |𝑡| < 𝑇

6
. Hence we have

𝑊(𝑡, 𝑢 (𝑡)) ≥

1

𝜀

3
|𝑢 (𝑡)|

2
≥

1

𝜀

‖𝑢‖

2 (126)

for all 𝑡 ∈ Ω

𝑢
and 𝑢 ∈ 𝑌

𝑘
with ‖𝑢‖ ≥ 𝐺/𝜀, which together with

Lemma 7 implies that

𝐼 (𝑢)

‖𝑢‖

2
=

1

2

− ∫

𝑅

𝑊(𝑡, 𝑢 (𝑡))

‖𝑢‖

2
𝑑𝑡

≤

1

2

− ∫

Ω
𝑢

𝑊(𝑡, 𝑢 (𝑡))

‖𝑢‖

2
𝑑𝑡

=

1

2

−

1

𝜀

⋅ meas (Ω
𝑢
)

≤

1

2

− 1 < 0

(127)

for all 𝑢 ∈ 𝑌

𝑘
and ‖𝑢‖ ≥ 𝐺/𝜀. So we can choose 𝜌

𝑘
>

max{𝐺/𝜀, 𝑟
𝑘
}; then

𝑎

𝑘
= max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝜌𝑘

𝐼 (𝑢) ≤ 0. (128)

Hence by Lemma 11, we obtain that problem (1) has
infinitely many homoclinic solutions {𝑢

𝑘
} satisfying

1

2

∫

𝑅









�̇�

𝑘 (
𝑡)









2
+ (𝐿 (𝑡) 𝑢𝑘 (

𝑡) , 𝑢𝑘 (
𝑡)) 𝑑𝑡

− ∫

𝑅

𝑊(𝑡, 𝑢

𝑘 (
𝑡)) 𝑑𝑡 → +∞

(129)

as 𝑘 → ∞.

Proof of Theorem 3. We divide the proof of Theorem 3 into
the following three steps.
Step 1. It is clear that 𝐼(0) = 0, and we have proved that
𝐼 ∈ 𝐶

1
(𝐸, 𝑅) satisfies the (𝐶)

𝑐
condition in Lemma 13 and

Lemma 14.
Step 2. Letting 𝜌 = 𝛿/𝐶

∞
and ‖𝑢‖ = 𝜌, we have ‖𝑢‖

𝐿
∞ ≤

𝛿, where 𝐶
∞

> 0 is defined in (16) and 𝛿 is defined in (56).
Hence, by (56), for any 𝜀 > 0

0 ≤ 𝑊 (𝑡, 𝑢 (𝑡)) ≤

1

2

𝜀|𝑢 (𝑡)|

2 (130)
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for all 𝑡 ∈ 𝑅 and 𝑢 ∈ 𝐸 with ‖𝑢‖ = 𝜌. In consequence, com-
bining this with (54), we obtain

𝐼 (𝑢) =

1

2

‖𝑢‖

2
− ∫

𝑅

𝑊(𝑡, 𝑢) 𝑑𝑡

≥

1

2

‖𝑢‖

2
−

𝜀

2

‖𝑢‖

2

𝐿
2

≥ (

1

2

−

𝜀

2

𝐶

2

2
) ‖𝑢‖

2

(131)

for all 𝑡 ∈ 𝑅 and 𝑢 ∈ 𝐸 with ‖𝑢‖ = 𝜌. Setting 𝜀 = 1/2𝐶

2

2
, the

inequality (131) implies that

𝐼|𝜕𝐵
𝜌

≥

𝜌

2

4

:= 𝛼 > 0.

(132)

Step 3. It remains to prove that there exists an 𝑒 ∈ 𝐸 such that
‖𝑒‖ > 𝜌 and 𝐼(𝑒) ≤ 0, where 𝜌 is defined in Step 2. By (W8),
for any 𝑇,𝑀 > 0, there exists 𝐺 > 0 such that

𝑊(𝑡, 𝑥)

|𝑥|

2
≥ 𝑀 (133)

for all |𝑥| > 𝐺 and 𝑡 ∈ [−𝑇, 𝑇]. Letting 𝑢
0
(𝑡) = 𝑒

−𝑡
2

𝑒

1
, where

𝑒

1
= (1, 0, . . . , 0), hence |𝑢

0
(𝑡)| > 𝑒

−4 for all 𝑡 ∈ [1, 2]. It is
clear that when 𝑟 > 𝐺𝑒

4,








𝑟𝑢

0 (
𝑡)









> 𝐺 (134)

for all 𝑡 ∈ [1, 2], which together with (133) shows that when
𝑟 > 𝐺𝑒

4

𝑊(𝑡, 𝑟𝑢

0 (
𝑡))









𝑟𝑢

0 (
𝑡)









2
≥ 𝑀 (135)

for all 𝑡 ∈ [1, 2]. Combining (135), Lemma 7, and the fact that
∫

2

1
|𝑢

0
(𝑡)|

2
𝑑𝑡 > 0, we have

𝐼 (𝑟𝑢

0
)

𝑟

2
=

1

2









𝑢

0









2
− ∫

𝑅

𝑊(𝑡, 𝑟𝑢

0 (
𝑡))









𝑟𝑢

0 (
𝑡)









2









𝑢

0 (
𝑡)









2
𝑑𝑡

=

1

2









𝑢

0









2
− ∫

2

1

𝑊(𝑡, 𝑟𝑢

0 (
𝑡))









𝑟𝑢

0 (
𝑡)









2









𝑢

0 (
𝑡)









2
𝑑𝑡

− ∫

𝑅\[1,2]

𝑊(𝑡, 𝑟𝑢

0 (
𝑡))









𝑟𝑢

0 (
𝑡)









2









𝑢

0 (
𝑡)









2
𝑑𝑡

≤

1

2









𝑢

0









2
− ∫

2

1

𝑊(𝑡, 𝑟𝑢

0 (
𝑡))









𝑟𝑢

0 (
𝑡)









2









𝑢

0 (
𝑡)









2
𝑑𝑡

≤

1

2









𝑢

0









2
−𝑀∫

2

1









𝑢

0 (
𝑡)









2
𝑑𝑡

< 0,

(136)

when 𝑟 and𝑀 are both large enough.
By Lemma 10, 𝐼 possesses a critical value 𝑐 ≥ 𝛼 > 0 given

by

𝑐 = inf
𝑓∈Γ

max
𝑡∈[0,1]

𝐼 (𝑓 (𝑡)) , (137)

where

Γ = {𝑓 ∈ 𝐶 ([0, 1] , 𝐵) : 𝑓 (0) = 0, 𝑓 (1) = 𝑒} . (138)

Hence there is a 𝑢 ∈ 𝐸 such that

𝐼 (𝑢) = 𝑐, 𝐼


(𝑢) = 0. (139)

Therefore 𝑢 is a nontrivial homoclinic orbit of problem (1).
Theorem 3 is proved now.
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