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We prove that the double inequalities 𝐼𝛼1 (𝑎, 𝑏)𝑄1−𝛼1 (𝑎, 𝑏) < 𝑀(𝑎, 𝑏) < 𝐼
𝛽1 (𝑎, 𝑏)𝑄

1−𝛽1 (𝑎, 𝑏), 𝐼
𝛼2 (𝑎, 𝑏)𝐶

1−𝛼2 (𝑎, 𝑏) < 𝑀(𝑎, 𝑏) <

𝐼
𝛽2 (𝑎, 𝑏)𝐶

1−𝛽2 (𝑎, 𝑏) hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
1
≥ 1/2, 𝛽

1
≤ log[√2 log(1 + √2)]/(1 − log√2), 𝛼

2
≥ 5/7, and

𝛽
2
≤ log[2 log(1+√2)], where 𝐼(𝑎, 𝑏),𝑀(𝑎, 𝑏),𝑄(𝑎, 𝑏), and𝐶(𝑎, 𝑏) are the identric, Neuman-Sándor, quadratic, and contraharmonic

means of 𝑎 and 𝑏, respectively.

1. Introduction

For 𝑝 ∈ R and 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, the identric mean 𝐼(𝑎, 𝑏),
Neuman-Sándor mean 𝑀(𝑎, 𝑏) [1], quadratic mean 𝑄(𝑎, 𝑏),
contraharmonicmean𝐶(𝑎, 𝑏), and 𝑝th power mean𝑀

𝑝
(𝑎, 𝑏)

are defined by

𝐼 (𝑎, 𝑏) =
1

𝑒
(
𝑏
𝑏

𝑎𝑎
)

1/(𝑏−𝑎)

,

𝑀 (𝑎, 𝑏) =
𝑎 − 𝑏

2sinh−1 [(𝑎 − 𝑏) / (𝑎 + 𝑏)]
,

𝑄 (𝑎, 𝑏) = √
𝑎
2

+ 𝑏
2

2
, 𝐶 (𝑎, 𝑏) =

𝑎
2

+ 𝑏
2

𝑎 + 𝑏
,

𝑀
𝑝
(𝑎, 𝑏) =

{{{

{{{

{

(
𝑎
𝑝

+ 𝑏
𝑝

2
)

1/𝑝

, 𝑝 ̸= 0,

√𝑎𝑏, 𝑝 = 0,

(1)

respectively, where sinh−1(𝑥) = log(𝑥+√1 + 𝑥2) is the inverse
hyperbolic sine function.

Recently, the identric, Neuman-Sándor, quadratic, and
contraharmonic means have attracted the interest of numer-
ous eminent mathematicians. In particular, many remarkable
inequalities for these means can be found in the literature [1–
18].

Let 𝐻(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏), 𝐺(𝑎, 𝑏) = √𝑎𝑏, 𝐿(𝑎, 𝑏) =

(𝑏 − 𝑎)/(log 𝑏 − log 𝑎), 𝑃(𝑎, 𝑏) = (𝑎 − 𝑏)/(4 arctan√𝑎/𝑏 − 𝜋),
𝐴(𝑎, 𝑏) = (𝑎+𝑏)/2, and𝑇(𝑎, 𝑏) = (𝑎−𝑏)/[2 arctan((𝑎−𝑏)/(𝑎+
𝑏))] be the harmonic, geometric, logarithmic, first Seiffert,
arithmetic, and second Seiffert means of two distinct positive
numbers 𝑎 and 𝑏, respectively. Then it is well known that the
inequalities

𝐻(𝑎, 𝑏) = 𝑀
−1
(𝑎, 𝑏) < 𝐺 (𝑎, 𝑏) = 𝑀

0
(𝑎, 𝑏) < 𝐿 (𝑎, 𝑏)

< 𝑃 (𝑎, 𝑏) < 𝐼 (𝑎, 𝑏) < 𝐴 (𝑎, 𝑏) < 𝑀
1
(𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝑄 (𝑎, 𝑏) = 𝑀
2
(𝑎, 𝑏)

< 𝐶 (𝑎, 𝑏)

(2)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
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Neuman and Sándor [1, 8] established that

𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) <
𝐴 (𝑎, 𝑏)

log (1 + √2)
,

𝜋

4
𝑇 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) ,

𝑀 (𝑎, 𝑏) <
𝐴
2

(𝑎, 𝑏)

𝑃 (𝑎, 𝑏)
,

√𝐴 (𝑎, 𝑏) 𝑇 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< √
𝐴
2

(𝑎, 𝑏) + 𝑇
2

(𝑎, 𝑏)

2
,

𝑀 (𝑎, 𝑏) <
2𝐴 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

3

(3)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Let 0 < 𝑎, 𝑏 ≤ 1/2 with 𝑎 ̸= 𝑏, 𝑎 = 1 − 𝑎, and 𝑏 = 1 − 𝑏.

Then the Ky Fan inequalities
𝐺 (𝑎, 𝑏)

𝐺 (𝑎, 𝑏)
<

𝐿 (𝑎, 𝑏)

𝐿 (𝑎, 𝑏)
<

𝑃 (𝑎, 𝑏)

𝑃 (𝑎, 𝑏)
<

𝐴 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)

<
𝑀 (𝑎, 𝑏)

𝑀 (𝑎, 𝑏)
<

𝑇 (𝑎, 𝑏)

𝑇 (𝑎, 𝑏)

(4)

were presented in [1].
Li et al. [19] found the best possible bounds for the

Neuman-Sándor mean in terms of the generalized logarith-
mic mean 𝐿

𝑟
(𝑎, 𝑏). Neuman [20] and Zhao et al. [21] proved

that the inequalities
𝛼𝑄 (𝑎, 𝑏) + (1 − 𝛼)𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽𝑄 (𝑎, 𝑏) + (1 − 𝛽)𝐴 (𝑎, 𝑏) ,

𝜆𝐶 (𝑎, 𝑏) + (1 − 𝜆)𝐴 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝜇𝐶 (𝑎, 𝑏) + (1 − 𝜇)𝐴 (𝑎, 𝑏) ,

𝛼
1
𝐻(𝑎, 𝑏) + (1 − 𝛼

1
) 𝑄 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽
1
𝐻(𝑎, 𝑏) + (1 − 𝛽

1
) 𝑄 (𝑎, 𝑏) ,

𝛼
2
𝐶 (𝑎, 𝑏) + (1 − 𝛼

2
) 𝑄 (𝑎, 𝑏)

< 𝑀 (𝑎, 𝑏) < 𝛽
2
𝐶 (𝑎, 𝑏) + (1 − 𝛽

2
) 𝑄 (𝑎, 𝑏)

(5)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ [1 − log(1 +
√2)]/[(√2 − 1) log(1 + √2)], 𝛽 ≥ 1/3, 𝜆 ≤ [1 − log(1 +
√2)]/ log(1 + √2), 𝜇 ≥ 1/6, 𝛼

1
≥ 2/9, 𝛽

1
≤ 1 − 1/[√2 log(1 +

√2)], 𝛼
2
≥ 1/3, and 𝛽

2
≤ 1 − 1/[√2 log(1 + √2)].

In [22], Chu and Long gave the best possible constants
𝑝, 𝑞, 𝛼, and 𝛽 such that the double inequalities 𝑀

𝑝
(𝑎, 𝑏) <

𝑀(𝑎, 𝑏) < 𝑀
𝑞
(𝑎, 𝑏) and 𝛼𝐼(𝑎, 𝑏) < 𝑀(𝑎, 𝑏) < 𝛽𝐼(𝑎, 𝑏) hold

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
The ratio of identric means leads to the weighted geomet-

ric mean
𝐼 (𝑎
2

, 𝑏
2

)

𝐼 (𝑎, 𝑏)
= (𝑎
𝑎

𝑏
𝑏

)
1/(𝑎+𝑏)

, (6)

which has been investigated in [23–25]. Alzer [26] proved that
the inequalities

√𝐴 (𝑎, 𝑏) 𝐺 (𝑎, 𝑏) < √𝐼 (𝑎, 𝑏) 𝐿 (𝑎, 𝑏)

<
𝐼 (𝑎, 𝑏) + 𝐿 (𝑎, 𝑏)

2
<
𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

2

(7)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
The following sharp bounds for 𝐼, (𝐼𝐿)1/2, and (𝐼 + 𝐿)/2

in terms of the power mean and the convex combination of
arithmetic and geometric means are given in [27] as

𝑀
2/3

(𝑎, 𝑏) < 𝐼 (𝑎, 𝑏) < 𝑀log 2 (𝑎, 𝑏) ,

𝑀
0
(𝑎, 𝑏) < √𝐼 (𝑎, 𝑏) 𝐿 (𝑎, 𝑏) < 𝑀

1/2
(𝑎, 𝑏) ,

𝑀log 2/(1+log 2) (𝑎, 𝑏)

<
𝐼 (𝑎, 𝑏) + 𝐿 (𝑎, 𝑏)

2
< 𝑀
1/2

(𝑎, 𝑏) ,

2

3
𝐴 (𝑎, 𝑏) +

1

3
𝐺 (𝑎, 𝑏)

< 𝐼 (𝑎, 𝑏) <
2

𝑒
𝐴 (𝑎, 𝑏) + (1 −

2

𝑒
)𝐺 (𝑎, 𝑏)

(8)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Chu et al. [28] presented the optimal constants 𝛼

1
, 𝛽
1
, 𝛼
2
,

and 𝛽
2
such that the double inequalities

𝛼
1
𝑄 (𝑎, 𝑏) + (1 − 𝛼

1
) 𝐴 (𝑎, 𝑏)

<
2

𝜋
∫

𝜋/2

0

√𝑎2cos2𝜃 + 𝑏2sin2𝜃𝑑𝜃

< 𝛽
1
𝑄 (𝑎, 𝑏) + (1 − 𝛽

1
) 𝐴 (𝑎, 𝑏) ,

𝑄
𝛼
2
(𝑎, 𝑏) 𝐴

1−𝛼
2
(𝑎, 𝑏)

<
2

𝜋
∫

𝜋/2

0

√𝑎2cos2𝜃 + 𝑏2sin2𝜃𝑑𝜃

< 𝑄
𝛽
2
(𝑎, 𝑏) 𝐴

1−𝛽
2
(𝑎, 𝑏)

(9)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
The aim of this paper is to find the best possible constants

𝛼
1
, 𝛽
1
, 𝛼
2
and 𝛽

2
such that the double inequalities

𝐼
𝛼
1
(𝑎, 𝑏) 𝑄

1−𝛼
1
(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝐼

𝛽
1
(𝑎, 𝑏) 𝑄

1−𝛽
1
(𝑎, 𝑏) ,

𝐼
𝛼
2
(𝑎, 𝑏) 𝐶

1−𝛼
2
(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝐼

𝛽
2
(𝑎, 𝑏) 𝐶

1−𝛽
2
(𝑎, 𝑏)

(10)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. All numerical computations
are carried out using mathematica software.

2. Lemmas

In order to prove our main results, we need several lemmas,
which we present in this section.



Abstract and Applied Analysis 3

Lemma 1. The double inequality

𝑥 +
𝑥
3

3
−
2𝑥
5

15
< √1 + 𝑥2sinh−1 (𝑥) < 𝑥 + 𝑥

3

3
−
2𝑥
5

15
+
8𝑥
7

105

(11)

holds for 𝑥 ∈ (0, 1).

Proof. To prove Lemma 1, it suffices to prove that

𝜂
1
(𝑥) = √1 + 𝑥

2sinh−1 (𝑥) − (𝑥 + 𝑥
3

3
−
2𝑥
5

15
) > 0, (12)

𝜂
2
(𝑥) = √1 + 𝑥

2sinh−1 (𝑥) − (𝑥 + 𝑥
3

3
−
2𝑥
5

15
+
8𝑥
7

105
) < 0

(13)

for 𝑥 ∈ (0, 1).
From the expressions of 𝜂

1
(𝑥) and 𝜂

2
(𝑥), we get

𝜂
1
(0) = 𝜂

2
(0) = 0,

𝜂


1
(𝑥) =

𝑥𝜂
∗

1
(𝑥)

√1 + 𝑥2
, 𝜂



2
(𝑥) =

𝑥𝜂
∗

2
(𝑥)

√1 + 𝑥2
,

(14)

where

𝜂
∗

1
(𝑥) = sinh−1 (𝑥) − (𝑥 − 2𝑥

3

3
)√1 + 𝑥2,

𝜂
∗

2
(𝑥) = sinh−1 (𝑥) − (𝑥 − 2𝑥

3

3
+
8𝑥
5

15
)√1 + 𝑥2,

𝜂
∗

1
(0) = 𝜂

∗

2
(0) = 0,

(15)

𝜂
∗

1



(𝑥) =
8𝑥
4

3√1 + 𝑥2
> 0, (16)

𝜂
∗

2



(𝑥) = −
16𝑥
6

5√1 + 𝑥2
< 0, (17)

for 𝑥 ∈ (0, 1).
Therefore, inequality (12) follows from (14)–(16), and

inequality (13) follows from (14)–(17).

Lemma 2. Let

𝐿 (𝑥) = log[(1 + 𝑥)
1+𝑥

(1 − 𝑥)
1−𝑥

] − 2𝑥 − 𝑥 log (1 − 𝑥2) . (18)

Then

𝐿 (𝑥) >
2𝑥
3

3
+
2𝑥
5

5
+
2𝑥
7

7

(19)

for 𝑥 ∈ (0, 1), and

𝐿 (𝑥) <
2𝑥
3

3
+
2𝑥
5

5
+
2𝑥
7

7
+ 𝑥
9 (20)

for 𝑥 ∈ (0, 3/4).

Proof. To prove inequalities (19) and (20), it suffices to show
that

𝜄
1
(𝑥)

:= log[(1 + 𝑥)
1+𝑥

(1 − 𝑥)
1−𝑥

] − 2𝑥 − 𝑥 log (1 − 𝑥2)

− (
2𝑥
3

3
+
2𝑥
5

5
+
2𝑥
7

7
) > 0

(21)

for 𝑥 ∈ (0, 1), and
𝜄
2
(𝑥)

:= log[(1 + 𝑥)
1+𝑥

(1 − 𝑥)
1−𝑥

] − 2𝑥 − 𝑥 log (1 − 𝑥2)

− (
2𝑥
3

3
+
2𝑥
5

5
+
2𝑥
7

7
+ 𝑥
9

) < 0

(22)

for 𝑥 ∈ (0, 3/4).
From (21) and (22), one has

𝜄
1
(0
+

) = 𝜄
2
(0
+

) = 0, (23)

𝜄


1
(𝑥) =

2𝑥
8

1 − 𝑥2
> 0 (24)

for 𝑥 ∈ (0, 1), and

𝜄


2
(𝑥) = −

9𝑥
8

1 − 𝑥2
(
7

9
− 𝑥
2

) < 0 (25)

for 𝑥 ∈ (0, 3/4).
Therefore, inequality (21) follows from (23) and (24), and

inequality (22) follows from (23) and (25).

Lemma 3. Let
Φ
1
(𝑥) =

1

√1 + 𝑥2sinh−1 (𝑥)
−

1

𝑥 (1 + 𝑥2)
. (26)

Then the double inequality

2𝑥

3
−
34𝑥
3

45
+
𝑥
5

2
< Φ
1
(𝑥) <

2𝑥

3
−
34𝑥
3

45
+
4𝑥
5

5

(27)

holds for 𝑥 ∈ (0, 0.7).

Proof. To prove inequality (27), it suffices to show that

𝜙
1
(𝑥) = 𝑥√1 + 𝑥2 − sinh−1 (𝑥)

− 𝑥 (1 + 𝑥
2

) sinh−1 (𝑥) (2𝑥
3
−
34𝑥
3

45
+
𝑥
5

2
)

> 0,

(28)

𝜙
2
(𝑥) = 𝑥√1 + 𝑥2 − sinh−1 (𝑥)

− 𝑥 (1 + 𝑥
2

) sinh−1 (𝑥) (2𝑥
3
−
34𝑥
3

45
+
4𝑥
5

5
)

< 0

(29)

for 𝑥 ∈ (0, 0.7).
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First, we prove inequality (28). From the expression of
𝜙
1
(𝑥), we have

𝜙
1
(0) = 0, 𝜙

1
(0.7) = 0.0033 ⋅ ⋅ ⋅ , (30)

𝜙


1
(𝑥) =

𝑥𝜙
∗

1
(𝑥)

90√1 + 𝑥2
, (31)

where

𝜙
∗

1
(𝑥) = 120𝑥 + 8𝑥

3

+ 23𝑥
5

− 45𝑥
7

− 2 (60 − 16𝑥
2

− 69𝑥
4

+ 180𝑥
6

)

× √1 + 𝑥2sinh−1 (𝑥) .

(32)

Equation (32) leads to

𝜙
∗

1
(0.6) = 3.017 ⋅ ⋅ ⋅ , 𝜙

∗

1
(0.7) = −3.551 ⋅ ⋅ ⋅ ,

𝜙
∗

1



(𝑥) = −
𝑥𝜙
∗∗

1
(𝑥)

1 + 𝑥2
,

(33)

where

𝜙
∗∗

1
(𝑥) = − 56𝑥 − 309𝑥

3

+ 422𝑥
5

+ 675𝑥
7

+ 2 (28 − 324𝑥
2

+ 735𝑥
4

+ 1260𝑥
6

)

× √1 + 𝑥2sinh−1 (𝑥) .

(34)

Note that

60 − 16𝑥
2

− 69𝑥
4

+ 180𝑥
6

> 0 (35)

for 𝑥 ∈ (0, 0.6], and

28 − 324𝑥
2

+ 735𝑥
4

+ 1260𝑥
6

> 0 (36)

for 𝑥 ∈ [0.6, 0.7).
It follows from (32) and (34)–(36) together with Lemma 1

that

𝜙
∗

1
(𝑥) > 120𝑥 + 8𝑥

3

+ 23𝑥
5

− 45𝑥
7

− 2 (60 − 16𝑥
2

− 69𝑥
4

+ 180𝑥
6

)(𝑥 +
𝑥
3

3
)

=
𝑥
5

3
(515 − 1077𝑥

2

− 360𝑥
4

)

≥
𝑥
5

3
[515 − 1077 ×

9

25
− 360 ×

81

625
]

=
10078𝑥

5

375
> 0

(37)

for 𝑥 ∈ (0, 0.6], and

𝜙
∗∗

1
(𝑥) > − 56𝑥 − 309𝑥

3

+ 422𝑥
5

+ 675𝑥
7

+ 2 (28 − 324𝑥
2

+ 735𝑥
4

+ 1260𝑥
6

)

× (𝑥 +
𝑥
3

3
−
2𝑥
5

15
) =

𝑥
3

15

×(−14075+25028𝑥
2

+56571𝑥
4

+ 9660𝑥
6

−5040𝑥
8

)

>
𝑥
3

15
[−14075 + 25028 × (0.6)

2

+ 56571 × (0.6)
4

]

=
1416676𝑥

3

9375
> 0

(38)

for 𝑥 ∈ [0.6, 0.7).
From (33), (37), and (38), we clearly see that there exists

𝑥
1
∈ (0.6, 0.7) such that 𝜙∗

1
(𝑥) > 0 for 𝑥 ∈ (0, 𝑥

1
) and 𝜙∗

1
(𝑥) <

0 for 𝑥 ∈ (𝑥
1
, 0.7). Then (31) leads to the conclusion that

𝜙
1
(𝑥) is strictly increasing on (0, 𝑥

1
] and strictly decreasing

on [𝑥
1
, 0.7).

Therefore, inequality (28) follows from (30) and the
piecewise monotonicity of 𝜙

1
(𝑥).

Next, we prove inequality (29). From the expression of
𝜙
2
(𝑥), we get

𝜙
2
(0) = 0,

𝜙


2
(𝑥) = −

2𝑥𝜙
∗

2
(𝑥)

45√1 + 𝑥2
,

(39)

where

𝜙
∗

2
(𝑥) = 𝑥 (18𝑥

6

+ 𝑥
4

− 2𝑥
2

− 30)

+ 2 (15 − 4𝑥
2

+ 3𝑥
4

+ 72𝑥
6

)

× √1 + 𝑥2sinh−1 (𝑥) .

(40)

It follows from Lemma 1 and (40) that

𝜙
∗

2
(𝑥) > 𝑥 (18𝑥

6

+ 𝑥
4

− 2𝑥
2

− 30)

+ 2 (15 − 4𝑥
2

+ 3𝑥
4

+ 72𝑥
6

)(𝑥 +
𝑥
3

3
−
2𝑥
5

15
)

=
𝑥
5

15
(5 + 2476𝑥

2

+ 708𝑥
4

− 288𝑥
6

) > 0

(41)

for 𝑥 ∈ (0, 0.7).
Therefore, inequality (29) follows from (39) together with

(41).

Lemma 4. Let

Φ
2
(𝑥) =

1

√1 + 𝑥2sinh−1 (𝑥)
−

1 − 𝑥
2

𝑥 (1 + 𝑥2)
. (42)
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Then the double inequality

5𝑥

3
−
79𝑥
3

45
+
11𝑥
5

10
< Φ
2
(𝑥) <

5𝑥

3
−
79𝑥
3

45
+
9𝑥
5

5

(43)

holds for 𝑥 ∈ (0, 3/4).

Proof. To prove Lemma 4, it suffices to prove that

𝜑
1
(𝑥) := 𝑥√1 + 𝑥2 − (1 − 𝑥

2

) sinh−1 (𝑥)

− 𝑥 (1 + 𝑥
2

) sinh−1 (𝑥) (5𝑥
3
−
79𝑥
3

45
+
11𝑥
5

10
) > 0,

(44)

𝜑
2
(𝑥) := 𝑥√1 + 𝑥2 − (1 − 𝑥

2

) sinh−1 (𝑥)

− 𝑥 (1 + 𝑥
2

) sinh−1 (𝑥) (5𝑥
3
−
79𝑥
3

45
+
9𝑥
5

5
) < 0

(45)

for 𝑥 ∈ (0, 3/4).
We first prove inequality (44). From the expression of

𝜑
1
(𝑥), we obtain

𝜑
1
(0) = 0, 𝜑

1
(
3

4
) = 0.008457 ⋅ ⋅ ⋅ > 0, (46)

𝜑


1
(𝑥) =

𝑥𝜑
∗

1
(𝑥)

90√1 + 𝑥2
, (47)

where

𝜑
∗

1
(𝑥) = 120𝑥 + 8𝑥

3

+ 59𝑥
5

− 99𝑥
7

− 2

× (60 − 16𝑥
2

− 177𝑥
4

+ 396𝑥
6

)√1 + 𝑥2sinh−1 (𝑥) .
(48)

Equation (48) leads to

𝜑
∗

1
(0.66) = 6.02 ⋅ ⋅ ⋅ > 0, 𝜑

∗

1
(
3

4
) = −19.299 ⋅ ⋅ ⋅ < 0,

(49)

𝜑
∗

1



(𝑥) = −
𝑥𝜙
∗∗

1
(𝑥)

1 + 𝑥2
, (50)

where

𝜑
∗∗

1
(𝑥) = − 56𝑥 − 705𝑥

3

+ 836𝑥
5

+ 1485𝑥
7

+ 14 (4 − 108𝑥
2

+ 213𝑥
4

+ 396𝑥
6

)

× √1 + 𝑥2sinh−1 (𝑥) .

(51)

Note that

60 − 16𝑥
2

− 177𝑥
4

+ 396𝑥
6

> 60 − 16 × (0.66)
2

− 177 × (0.66)
4

= 19.4451 > 0

(52)

for 𝑥 ∈ (0, 0.66), and

4 − 108𝑥
2

+ 213𝑥
4

+ 396𝑥
6

> 4 − 108 × (
3

4
)

2

+ 213 × (0.66)
4

+ 396 × (0.66)
6

= 16.3972 > 0

(53)

for 𝑥 ∈ [0.66, 3/4).
It follows from Lemma 1, (48), and (51)–(53) that

𝜑
∗

1
(𝑥)

> 120𝑥 + 8𝑥
3

+ 59𝑥
5

− 99𝑥
7

− 2 (60 − 16𝑥
2

− 177𝑥
4

+ 396𝑥
6

)

× (𝑥 +
𝑥
3

3
−
2𝑥
5

15
+
8𝑥
7

105
)

=
𝑥
5

105
[46165 − 82573𝑥

2

− 32420𝑥
4

+7584𝑥
6

+ 6336𝑥
6

(1 − 𝑥
2

)]

>
𝑥
5

105
[46165 − 82573 × (0.66)

2

− 32420 × (0.66)
4

]

=
𝑥
5

105
× 4044.5917 ⋅ ⋅ ⋅ > 0

(54)

for 𝑥 ∈ (0, 0.66), and

𝜑
∗∗

1
(𝑥) > −56𝑥 − 705𝑥

3

+ 836𝑥
5

+ 1485𝑥
7

+ 14 (4 − 108𝑥
2

+ 213𝑥
4

+ 396𝑥
6

)(𝑥+
𝑥
3

3
−
2𝑥
5

15
)

=
𝑥
3

15
[−32975 + 49598𝑥

2

+ 123369𝑥
4

+10668𝑥
6

+ 11088𝑥
6

(1 − 𝑥
2

)]

>
𝑥
3

15
[−32975 + 49598 ×(0.66)

2

+123369 × (0.66)
4

]

=
𝑥
3

15
× 12038.83 ⋅ ⋅ ⋅ > 0

(55)

for 𝑥 ∈ [0.66, 3/4).
From (50) and (55), we know that 𝜑

∗

1
(𝑥) is

strictly decreasing on [0.66, 3/4), and this in con-
junction with (49) and (54) leads to the conclusion that
there exists 𝑥

1
∈ (0.66, 3/4) such that 𝜑∗

1
(𝑥) > 0 for

𝑥 ∈ (0, 𝑥
1
) and 𝜑

∗

1
(𝑥) < 0 for 𝑥 ∈ (𝑥

1
, 3/4). Then (47)

implies that 𝜑
1
(𝑥) is strictly increasing on (0, 𝑥

1
] and strictly

decreasing on [𝑥
1
, 3/4). Therefore, inequality (44) follows

from (46) and the piecewise monotonicity of 𝜑
1
(𝑥).
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Next, we prove inequality (45). From the expression of
𝜑
2
(𝑥) one has

𝜑
2
(0) = 0,

𝜙


2
(𝑥) = −

𝑥𝜙
∗

2
(𝑥)

45√1 + 𝑥2
,

(56)

where

𝜙
∗

2
(𝑥) = − 60𝑥 − 4𝑥

3

+ 2𝑥
5

+ 81𝑥
7

+ 4 (15 − 4𝑥
2

+ 3𝑥
4

+ 162𝑥
6

)

× √1 + 𝑥2sinh−1 (𝑥) .

(57)

It follows from Lemma 1 and (52) that

𝜙
∗

2
(𝑥) > −60𝑥 − 4𝑥

3

+ 2𝑥
5

+ 81𝑥
7

+ 4 (15 − 4𝑥
2

+ 3𝑥
4

+ 162𝑥
6

)(𝑥 +
𝑥
3

3
−
2𝑥
5

15
)

=
𝑥
5

15
(10 + 11027𝑥

2

+ 3216𝑥
4

− 1296𝑥
6

) > 0

(58)

for 𝑥 ∈ (0, 3/4).
Therefore, inequality (45) follows from (56) together with

(58).

Lemma 5. Let 𝐿(𝑥) be defined as in Lemma 2 and

Υ
1
(𝑥) =

𝐿 (𝑥)

2𝑥2
+

𝑥

1 + 𝑥2
. (59)

Then the double inequality

4𝑥

3
−
4𝑥
3

5
+
4𝑥
5

5
< Υ
1
(𝑥) <

4𝑥

3
−
4𝑥
3

5
+
8𝑥
5

7

(60)

holds for 𝑥 ∈ (0, 0.7).

Proof. From Lemma 2, one has

Υ
1
(𝑥) − (

4𝑥

3
−
4𝑥
3

5
+
4𝑥
5

5
)

>
1

2𝑥2
(
2𝑥
3

3
+
2𝑥
5

5
+
2𝑥
7

7
) +

𝑥

1 + 𝑥2

− (
4𝑥

3
−
4𝑥
3

5
+
4𝑥
5

5
)

=
23𝑥
5

35 (1 + 𝑥2)
(
12

23
− 𝑥
2

) > 0,

Υ
1
(𝑥) − (

4𝑥

3
−
4𝑥
3

5
+
8𝑥
5

7
)

<
1

2𝑥2
(
2𝑥
3

3
+
2𝑥
5

5
+
2𝑥
7

7
+ 𝑥
9

)

+
𝑥

1 + 𝑥2
− (

4𝑥

3
−
4𝑥
3

5
+
8𝑥
5

7
)

= −

𝑥
7

(1 − 𝑥
2

)

2 (1 + 𝑥2)
< 0

(61)

for 𝑥 ∈ (0, 0.7).
Therefore, Lemma 5 follows easily from (61).

Lemma 6. Let 𝐿(𝑥) be defined as in Lemma 2 and

Υ
2
(𝑥) =

𝐿 (𝑥)

2𝑥2
+

2𝑥

1 + 𝑥2
. (62)

Then the double inequality

7𝑥

3
−
9𝑥
3

5
+
7𝑥
5

5
< Υ
2
(𝑥) <

7𝑥

3
−
9𝑥
3

5
+
15𝑥
5

7

(63)

holds for 𝑥 ∈ (0, 3/4).

Proof. It follows from Lemma 2 that

Υ
2
(𝑥) − (

7𝑥

3
−
9𝑥
3

5
+
7𝑥
5

5
)

>
1

2𝑥2
(
2𝑥
3

3
+
2𝑥
5

5
+
2𝑥
7

7
)

+
2𝑥

1 + 𝑥2
− (

7𝑥

3
−
9𝑥
3

5
+
7𝑥
5

5
)

=
44𝑥
5

35 (1 + 𝑥2)
(
13

22
− 𝑥
2

) > 0,

Υ
2
(𝑥) − (

7𝑥

3
−
9𝑥
3

5
+
15𝑥
5

7
)

<
1

2𝑥2
(
2𝑥
3

3
+
2𝑥
5

5
+
2𝑥
7

7
+ 𝑥
9

)

+
2𝑥

1 + 𝑥2
− (

7𝑥

3
−
9𝑥
3

5
+
15𝑥
5

7
)

= −

𝑥
7

(3 − 𝑥
2

)

2 (1 + 𝑥2)
< 0

(64)

for 𝑥 ∈ (0, 3/4).
Therefore, Lemma 6 follows from (64).
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Lemma 7. The inequality

𝑥
3

√1 + 𝑥2
> [sinh−1 (𝑥)]

3 (65)

holds for 𝑥 ∈ (0, 1).

Proof. Let

𝜁 (𝑥) =
𝑥
3

√1 + 𝑥2
− [sinh−1 (𝑥)]

3

. (66)

Then

𝜁 (0) = 0,

𝜁


(𝑥) =
𝜁
1
(𝑥)

(1 + 𝑥2)
3/2

,

(67)

where

𝜁
1
(𝑥) = 𝑥

2

(3 + 2𝑥
2

) − 3[√1 + 𝑥2sinh−1 (𝑥)]
2

. (68)

It follows from Lemma 1 and (68) that

𝜁
1
(𝑥)

> 𝑥
2

(3 + 2𝑥
2

) − 3(𝑥 +
𝑥
3

3
−
2𝑥
5

15
+
8𝑥
7

105
)

2

= 𝑥
6

[
37

525
+ (

208

525
+
36𝑥
2

175
+
64𝑥
6

3675
)

× (1 − 𝑥
2

) +
32𝑥
6

735
] > 0

(69)

for 𝑥 ∈ (0, 1).
Therefore, Lemma 7 follows from (67) together with (69).

Lemma 8. Let

𝜇
1
(𝑥) =

1 + 3𝑥
2

(𝑥 + 𝑥3)
2
−

1

(1 + 𝑥2) [sinh−1 (𝑥)]
2

−
𝑥

(1 + 𝑥2)
3/2sinh−1 (𝑥)

.

(70)

Then 𝜇
1
(𝑥) < 0.2 for 𝑥 ∈ [0.7, 1).

Proof. Let

𝜔
1
(𝑥) =

1

𝑥2
−

1

[sinh−1 (𝑥)]
2
,

𝜔
2
(𝑥) =

2

√1 + 𝑥2
−

𝑥

sinh−1 (𝑥)
.

(71)

Then

𝜇
1
(𝑥) =

𝜔
1
(𝑥)

1 + 𝑥2
+

𝜔
2
(𝑥)

(1 + 𝑥2)
3/2

. (72)

Lemma 7 and 𝑥 > sinh−1(𝑥) give 𝜔
1
(𝑥) < 0 and

𝜔


1
(𝑥) =

2

𝑥3[sinh−1 (𝑥)]
3
[

𝑥
3

√1 + 𝑥2
− (sinh−1 (𝑥))

3

] > 0

(73)

for 𝑥 ∈ (0, 1). This in turn implies that

[
𝜔
1
(𝑥)

1 + 𝑥2
]



=

𝜔


1
(𝑥) (1 + 𝑥

2

) − 2𝑥𝜔
1
(𝑥)

(1 + 𝑥2)
2

> 0 (74)

for 𝑥 ∈ (0, 1).
On the other hand, from the expression of 𝜔

2
(𝑥), we get

𝜔
2
(1) = 0.2796 ⋅ ⋅ ⋅ > 0,

𝜔


2
(𝑥) = −

2𝑥

(1 + 𝑥2)
3/2

+
𝜔
∗

2
(𝑥)

[sinh−1 (𝑥)]
2
,

(75)

where

𝜔
∗

2
(𝑥) =

𝑥

√1 + 𝑥2
− sinh−1 (𝑥) ,

𝜔
∗

2
(0) = 0,

𝜔
∗

2
(𝑥) = −

𝑥
2

(1 + 𝑥2)
3/2

< 0

(76)

for 𝑥 ∈ (0, 1).
From (75)–(76), we clearly see that𝜔

2
(𝑥) < 0 and𝜔

2
(𝑥) >

0 for 𝑥 ∈ (0, 1). This in turn implies that

[
𝜔
2
(𝑥)

(1 + 𝑥2)
3/2

]



=

𝜔


2
(𝑥) (1 + 𝑥

2

)
3/2

− 3𝑥√1 + 𝑥2𝜔
2
(𝑥)

(1 + 𝑥2)
3

< 0

(77)

for 𝑥 ∈ (0, 1).
Equation (72) togetherwith inequalities (74) and (77) lead

to the conclusion that
𝜇
1
(𝑥)

≤
𝜔
1
(1)

2
+

𝜔
2
(0.7)

[1 + (0.7)
2

]
3/2

= 0.167 ⋅ ⋅ ⋅ < 0.2

(78)

for 𝑥 ∈ [0.7, 1).

Lemma 9. Let

𝜇
2
(𝑥) =

1 + 4𝑥
2

− 𝑥
4

(𝑥 + 𝑥3)
2

−
1

(1 + 𝑥2) [sinh−1 (𝑥)]
2

−
𝑥

(1 + 𝑥2)
3/2sinh−1 (𝑥)

.

(79)

Then 𝜇
2
(𝑥) < 0.51 for 𝑥 ∈ [0.65, 1).



8 Abstract and Applied Analysis

Proof. Let

𝜏
1
(𝑥) =

1

𝑥2
−

1

[sinh−1 (𝑥)]
2
= 𝜇
1
(𝑥) ,

𝜏
2
(𝑥) =

3 − 𝑥
2

√1 + 𝑥2
−

𝑥

sinh−1 (𝑥)
,

(80)

then

𝜇
2
(𝑥) =

𝜏
1
(𝑥)

1 + 𝑥2
+

𝜏
2
(𝑥)

(1 + 𝑥2)
3/2

. (81)

From (74), we clearly see that

[
𝜏
1
(𝑥)

1 + 𝑥2
]



= [
𝜔
1
(𝑥)

1 + 𝑥2
]



> 0 (82)

for 𝑥 ∈ (0, 1).
On the other hand, from the expression of 𝜏

2
(𝑥) together

with Lemma 1, we get

𝜏
2
(1) = 0.2796 ⋅ ⋅ ⋅ > 0,

𝜏


2
(𝑥) = −

1

sinh−1 (𝑥)
−

𝑥𝜏
∗

2
(𝑥)

(1 + 𝑥2)
3/2

[sinh−1 (𝑥)]
2
,

𝜏
∗

2
(𝑥) = (5 + 𝑥

2

) [sinh−1 (𝑥)]
2

− (1 + 𝑥
2

) ,

𝜏
∗

2
(0.65) = 0.6033 ⋅ ⋅ ⋅ ,

𝜏
∗

2
(𝑥) = 2𝑥[sinh−1 (𝑥)]

2

+ 2 [
5 + 𝑥
2

1 + 𝑥2
√1 + 𝑥2sinh−1 (𝑥) − 𝑥] > 0

(83)

for 𝑥 ∈ (0, 1).
From (83), we clearly see that 𝜏

2
(𝑥) < 0 and 𝜏

2
(𝑥) > 0 for

𝑥 ∈ [0.65, 1). This in turn implies that

[
𝜏
2
(𝑥)

(1 + 𝑥2)
3/2

]



=

𝜏


2
(𝑥) (1 + 𝑥

2

)
3/2

− 3𝑥√1 + 𝑥2𝜏
2
(𝑥)

(1 + 𝑥2)
3

< 0

(84)

for 𝑥 ∈ [0.65, 1).
Equation (81) togetherwith inequalities (82) and (84) lead

to the conclusion that

𝜇
2
(𝑥) ≤

𝜏
1
(1)

2
+

𝜏
2
(0.65)

[1 + (0.65)
2

]
3/2

= 0.503 ⋅ ⋅ ⋅ < 0.51 (85)

for 𝑥 ∈ [0.65, 1).

Lemma 10. Let 𝐿(𝑥) be defined as in Lemma 2 and

]
1
(𝑥) =

2 (1 + 𝑥
4

)

(1 − 𝑥2) (1 + 𝑥2)
2
−
𝐿 (𝑥)

𝑥3
. (86)

Then ]
1
(𝑥) > 1.2 for x ∈ [0.7, 1).

Proof. Differentiating ]
1
(𝑥) yields

]


1
(𝑥) =

3𝐿 (𝑥)

𝑥4
−
2 + 8𝑥

2

− 20𝑥
4

− 6𝑥
8

𝑥(1 − 𝑥2)
2

(1 + 𝑥2)
3
. (87)

It follows from (19) and (87) that

]


1
(𝑥)

>
1

𝑥
[3(

2

3
+
2𝑥
2

5
+
2𝑥
4

7
) −

2 + 8𝑥
2
− 20𝑥

4
− 6𝑥
8

(1 − 𝑥2)
2

(1 + 𝑥2)
3
]

=

2𝑥 (−84 + 316𝑥
2
− 97𝑥

4
+ 68𝑥

6
+ 26𝑥

8
+ 36𝑥

10
+ 15𝑥

12
)

35(1 − 𝑥2)
2

(1 + 𝑥2)
3

>
2𝑥

35(1 − 𝑥2)
2

(1 + 𝑥2)
3
[−84 + 316 × (0.7)

2
−
349

5

+68𝑥
4
(𝑥
2
−
2

5
)]

>
2𝑥

35(1 − 𝑥2)
2

(1 + 𝑥2)
3
> 0

(88)

for 𝑥 ∈ [0.7, 1).
Therefore, ]

1
(𝑥) ≥ ]

1
(0.7) = 1.214 ⋅ ⋅ ⋅ > 1.2 for 𝑥 ∈

[0.7, 1) follows from (88).

Lemma 11. Let 𝐿(𝑥) be defined as in Lemma 2 and

]
2
(𝑥) =

3 − 2𝑥
2

+ 3𝑥
4

(1 − 𝑥2) (1 + 𝑥2)
2
−
𝐿 (𝑥)

𝑥3
. (89)

Then ]
2
(𝑥) > 1.38 for 𝑥 ∈ [0.65, 1).

Proof. Differentiating ]
2
(𝑥) yields

]


2
(𝑥) =

3𝐿 (𝑥)

𝑥4
−

2 (1 + 7𝑥
2

− 17𝑥
4

+ 5𝑥
6

− 4𝑥
8

)

𝑥(1 − 𝑥2)
2

(1 + 𝑥2)
3

. (90)

It follows from (19) and (90) together with the mono-
tonicity of the function 561𝑥2 − 272𝑥4 on [0.65, 1) that

]


2
(𝑥)

>

1

𝑥

[3(

2

3

+

2𝑥
2

5

+

2𝑥
4

7

) −

2 (1 + 7𝑥
2

− 17𝑥
4

+ 5𝑥
6

− 4𝑥
8

)

(1 − 𝑥
2
)
2

(1 + 𝑥
2
)
3
]

=

2𝑥 (−189 + 561𝑥
2

− 272𝑥
4

+ 103𝑥
6

+ 26𝑥
8

+ 36𝑥
10

+ 15𝑥
12

)

35(1 − 𝑥
2
)
2

(1 + 𝑥
2
)
3

>

2𝑥 [−189 + 561 × (0.65)
2

− 272 × (0.65)
4

+ 103 × (0.65)
6

]

35(1 − 𝑥
2
)
2

(1 + 𝑥
2
)
3

=

2𝑥 × 7.23 ⋅ ⋅ ⋅

35(1 − 𝑥
2
)
2

(1 + 𝑥
2
)
3
> 0

(91)

for 𝑥 ∈ [0.65, 1).
Equation (91) leads to the conclusion that ]

2
(𝑥) ≥

]
2
(0.65) = 1.389 ⋅ ⋅ ⋅ > 1.38 for 𝑥 ∈ [0.65, 1).
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Lemma 12. Let Φ
1
(𝑥) and Υ

1
(𝑥) be defined, respectively, as

in Lemmas 3 and 5, and Θ
1
(𝑥; 𝑝) = Φ

1
(𝑥) − 𝑝Υ

1
(𝑥). Then

Θ
1
(𝑥; 𝑝) is strictly decreasing on [0.7, 1) if 𝑝 > 1/6.

Proof. Differentiating Θ
1
(𝑥; 𝑝) with respect to 𝑥 and making

use of Lemmas 8 and 10, we get

𝑑Θ
1
(𝑥; 𝑝)

𝑑𝑥
= Φ


1
(𝑥) − 𝑝Υ



1
(𝑥) = 𝜇

1
(𝑥) − 𝑝]

1
(𝑥)

< 0.2 −
1

6
× 1.2 = 0

(92)

for 𝑥 ∈ [0.7, 1) and𝑝 > 1/6.This in turn implies thatΘ
1
(𝑥; 𝑝)

is strictly decreasing on [0.7, 1) if 𝑝 > 1/6.

Lemma 13. Let Φ
2
(𝑥) and Υ

2
(𝑥) be defined, respectively, as

in Lemmas 4 and 6, and Θ
2
(𝑥; 𝑞) = Φ

2
(𝑥) − 𝑞Υ

2
(𝑥). Then

Θ
2
(𝑥; 𝑞) is strictly decreasing on [0.65, 1) if 𝑞 > 2/5.

Proof. Differentiating Θ
2
(𝑥; 𝑞) with respect to 𝑥 and making

use of Lemmas 9 and 11, we have

𝑑Θ
1
(𝑥; 𝑞)

𝑑𝑥
= Φ


2
(𝑥) − 𝑞Υ



2
(𝑥) = 𝜇

2
(𝑥) − 𝑞]

2
(𝑥)

< 0.51 −
2

5
× 1.38 = −0.042 < 0

(93)

for 𝑥 ∈ [0.65, 1) and 𝑞 > 2/5. This in turn implies that
Θ
2
(𝑥; 𝑞) is strictly decreasing on [0.65, 1) if 𝑞 > 2/5.

3. Main Results

Theorem 14. The double inequality

𝐼
𝛼
1
(𝑎, 𝑏) 𝑄

1−𝛼
1
(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝐼

𝛽
1
(𝑎, 𝑏) 𝑄

1−𝛽
1
(𝑎, 𝑏)

(94)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛽
1

≤

log[√2 log(1 + √2)]/(1 − log√2) = 0.337 ⋅ ⋅ ⋅ and 𝛼
1
≥ 1/2.

Proof. Since 𝐼(𝑎, 𝑏), 𝑀(𝑎, 𝑏), and 𝑄(𝑎, 𝑏) are symmetric and
homogeneous of degree one, then without loss of generality,

we assume that 𝑎 > 𝑏. Let 𝑝 ∈ (0, 1), 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏), and
𝜆
1
= log[√2 log(1 + √2)]/(1 − log√2). Then 𝑥 ∈ (0, 1), and

𝐼 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
=
1

𝑒
[
(1 + 𝑥)

1+𝑥

(1 − 𝑥)
1−𝑥

]

1/2𝑥

,

𝑀 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
=

𝑥

sinh−1 (𝑥)
,

𝑄 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
= √1 + 𝑥2,

(95)

log [𝑄 (𝑎, 𝑏)] − log [𝑀 (𝑎, 𝑏)]

log [𝑄 (𝑎, 𝑏)] − log [𝐼 (𝑎, 𝑏)]

=

log√1 + 𝑥2 − log𝑥 + log [sinh−1 (𝑥)]

log√1 + 𝑥2 − log [(1 + 𝑥)1+𝑥/(1 − 𝑥)1−𝑥] / (2𝑥) + 1

,

(96)

lim
𝑥→0

+

log√1 + 𝑥2 − log𝑥 + log [sinh−1 (𝑥)]

log√1 + 𝑥2 − log [(1 + 𝑥)1+𝑥/(1 − 𝑥)1−𝑥] / (2𝑥) + 1

=
1

2
,

(97)

lim
𝑥→1

−

log√1 + 𝑥2 − log𝑥 + log [sinh−1 (𝑥)]

log√1 + 𝑥2 − log [(1 + 𝑥)1+𝑥/(1 − 𝑥)1−𝑥] / (2𝑥) + 1

= 𝜆
1
.

(98)

The difference between the convex combination of
log[𝐼(𝑎, 𝑏)], log[𝑄(𝑎, 𝑏)] and log[𝑀(𝑎, 𝑏)] is as follows:

𝑝 log [𝐼 (𝑎, 𝑏)] + (1 − 𝑝) log [𝑄 (𝑎, 𝑏)] − log [𝑀 (𝑎, 𝑏)]

=
𝑝

2𝑥
log[(1 + 𝑥)

1+𝑥

(1 − 𝑥)
1−𝑥

] − 𝑝

+ (1 − 𝑝) log√1 + 𝑥2 − log[ 𝑥

sinh−1 (𝑥)
] := 𝐷

𝑝
(𝑥) .

(99)

Equation (99) leads to

𝐷
𝑝
(0
+

) = 0,

𝐷
𝑝
(1
−

) = log [√2 log (1 + √2)] − 𝑝 (1 − log√2) ,

𝐷
𝜆
1

(1
−

) = 0,

(100)

𝐷


𝑝
(𝑥) = −

1 + 𝑝𝑥
2

𝑥 + 𝑥3
+

1

√1 + 𝑥2sinh−1 (𝑥)
−
𝐿 (𝑥)

2𝑥2

= Φ
1
(𝑥) − 𝑝Υ

1
(𝑥) = Θ

1
(𝑥; 𝑝) ,

(101)

where 𝐿(𝑥), Φ
1
(𝑥), Υ
1
(𝑥), and Θ

1
(𝑥; 𝑝) are defined as in

Lemmas 2, 3, 5, and 12, respectively.
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It follows from (101) together with Lemmas 3 and 5 that

𝐷


1/2
(𝑥)

<
2𝑥

3
−
34𝑥
3

45
+
4𝑥
5

5
−
1

2
(
4𝑥

3
−
4𝑥
3

5
+
4𝑥
5

5
)

= −
2𝑥
2

5
(
8

9
− 𝑥
2

) < 0

(102)

for 𝑥 ∈ (0, 0.7). Moreover, we see clearly, from Lemma 12,
that𝐷

1/2
(𝑥) is strictly decreasing on [0.7, 1) and so𝐷

1/2
(𝑥) <

𝐷


1/2
(0.7) = −0.109 ⋅ ⋅ ⋅ < 0 for 𝑥 ∈ [0.7, 1). This in

conjunction with (100) and (102) implies that

𝐷
1/2

(𝑥) < 0 (103)

for 𝑥 ∈ (0, 1).
On the other hand, (101) and Lemmas 3 and 5 together

with the monotonicity of the function −2(17 − 18𝜆
1
)𝑥
2

/45 +

(7 − 16𝜆
1
)𝑥
4

/14 on (0, 0.7) lead to

𝐷


𝜆
1

(𝑥)

>
2𝑥

3
−
34𝑥
3

45
+
𝑥
5

2
− 𝜆
1
(
4𝑥

3
−
4𝑥
3

5
+
8𝑥
5

7
)

= 𝑥[
2 (1 − 2𝜆

1
)

3
−
2 (17 − 18𝜆

1
)

45
𝑥
2

+
7 − 16𝜆

1

14
𝑥
4

]

> 𝑥[
2 (1 − 2𝜆

1
)

3
−
2 (17 − 18𝜆

1
)

45
× (0.7)

2

+
7 − 16𝜆

1

14
× (0.7)

4

]

=
(74969 − 218832𝜆

1
) 𝑥

180000
> 0

(104)

for 𝑥 ∈ (0, 0.7).
It follows from Lemma 12 that 𝐷

𝜆
1

(𝑥) is strictly decreas-
ing on [0.7, 1). Note that

𝐷


𝜆
1

(0.7) = 0.0229 ⋅ ⋅ ⋅ > 0, 𝐷


𝜆
1

(1
−

) = −∞. (105)

From (104) and (105) together with the monotonicity of
𝐷


𝜆
1

(𝑥) on [0.7, 1), we clearly see that there exists 𝑐
1
∈ (0.7, 1)

such that 𝐷
𝜆
1

(𝑥) is strictly increasing on (0, 𝑐
1
] and strictly

decreasing on [𝑐
1
, 1). This in conjunction with (100) implies

that
𝐷
𝜆
1
(𝑥) > 0 (106)

for 𝑥 ∈ (0, 1).
Equation (99) together with inequalities (103) and (106)

gives rise to

𝑀(𝑎, 𝑏) > 𝐼
1/2

(𝑎, 𝑏) 𝑄
1/2

(𝑎, 𝑏) ,

𝑀 (𝑎, 𝑏) < 𝐼
𝜆
1
(𝑎, 𝑏) 𝑄

1−𝜆
1
(𝑎, 𝑏) .

(107)

Therefore, Theorem 14 follows from (107) together with
the following statements.

(i) If 𝛼
1
< 1/2, then (96) and (97) imply that there exists

𝛿
1
∈ (0, 1) such that𝑀(𝑎, 𝑏) < 𝐼

𝛼
1(𝑎, 𝑏)𝑄

1−𝛼
1(𝑎, 𝑏) for

all 𝑎, 𝑏 > 0 with (𝑎 − 𝑏)/(𝑎 + 𝑏) ∈ (0, 𝛿
1
).

(ii) If 𝛽
1
> 𝜆
1
, then (96) and (98) imply that there exists

𝛿
2
∈ (0, 1) such that𝑀(𝑎, 𝑏) > 𝐼

𝛽
1(𝑎, 𝑏)𝑄

1−𝛽
1(𝑎, 𝑏) for

all 𝑎, 𝑏 > 0 with (𝑎 − b)/(𝑎 + 𝑏) ∈ (1 − 𝛿
2
, 1).

Theorem 15. The double inequality

𝐼
𝛼
2
(𝑎, 𝑏) 𝐶

1−𝛼
2
(𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝐼

𝛽
2
(𝑎, 𝑏) 𝐶

1−𝛽
2
(𝑎, 𝑏)

(108)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼
2
≥ 5/7 and

𝛽
2
≤ log[2 log(1 + √2)] = 0.566 ⋅ ⋅ ⋅.

Proof. We will follow the same idea in the proof of
Theorem 14. Since 𝐼(𝑎, 𝑏),𝑀(𝑎, 𝑏), and𝐶(𝑎, 𝑏) are symmetric
and homogeneous of degree one. Without loss of generality,
we assume that 𝑎 > 𝑏. Let 𝑞 ∈ (0, 1), 𝜆

2
= log[2 log(1 + √2)],

and 𝑥 = (𝑎 − 𝑏)/(𝑎 + 𝑏). Then 𝑥 ∈ (0, 1).
Making use of (95) together with𝐶(𝑎, 𝑏)/𝐴(𝑎, 𝑏) = 1+𝑥2

gives

log [𝐶 (𝑎, 𝑏)] − log [𝑀 (𝑎, 𝑏)]

log [𝐶 (𝑎, 𝑏)] − log [𝐼 (𝑎, 𝑏)]

=

log (1 + 𝑥2) − log𝑥 + log [sinh−1 (𝑥)]

log (1 + 𝑥2) − log [(1 + 𝑥)1+𝑥/(1 − 𝑥)1−𝑥] / (2𝑥) + 1
,

(109)

lim
𝑥→0

+

log (1 + 𝑥2) − log𝑥 + log [sinh−1 (𝑥)]

log (1 + 𝑥2) − log [(1 + 𝑥)1+𝑥/(1 − 𝑥)1−𝑥] / (2𝑥) + 1

=
5

7
,

(110)

lim
𝑥→1

−

log (1 + 𝑥2) − log𝑥 + log [sinh−1 (𝑥)]

log (1 + 𝑥2) − log [(1 + 𝑥)1+𝑥/(1 − 𝑥)1−𝑥] / (2𝑥) + 1

= 𝜆
2
.

(111)

The difference between the convex combination of
log[𝐼(𝑎, 𝑏)], log[𝐶(𝑎, 𝑏)] and log[𝑀(𝑎, 𝑏)] is as follows:

𝑞 log [𝐼 (𝑎, 𝑏)] + (1 − 𝑞) log [𝐶 (𝑎, 𝑏)] − log [𝑀 (𝑎, 𝑏)]

=
𝑞

2𝑥
log[(1 + 𝑥)

1+𝑥

(1 − 𝑥)
1−𝑥

] − 𝑞 + (1 − 𝑞) log (1 + 𝑥2)

− log[ 𝑥

sinh−1 (𝑥)
] := 𝐸

𝑞
(𝑥) .

(112)
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Equation (112) leads to

𝐸
𝑞
(0
+

) = 0, 𝐸
𝑞
(1
−

) = log [2 log (1 + √2)] − 𝑞,

𝐸
𝜆
2

(1
−

) = 0,

(113)

𝐸


𝑞
(𝑥)

= −
1 − 𝑥
2

+ 2𝑞𝑥
2

𝑥 + 𝑥3
+

1

√1 + 𝑥2sinh−1 (𝑥)
−
𝐿 (𝑥)

2𝑥2

= Φ
2
(𝑥) − 𝑞Υ

2
(𝑥) = Θ

2
(𝑥; 𝑞) ,

(114)

where 𝐿(𝑥), Φ
2
(𝑥), Υ
2
(𝑥), and Θ

2
(𝑥; 𝑞) are defined as in

Lemmas 2, 4, 6, and 13, respectively.
It follows from Lemmas 4, 6, and 13 together with (114)

that

𝐸


5/7
(𝑥)

< (
5𝑥

3
−
79𝑥
3

45
+
9𝑥
5

5
) −

5

7
(
7𝑥

3
−
9𝑥
3

5
+
7𝑥
5

5
)

= −
4𝑥
2

5
(
37

63
− 𝑥
2

) < 0

(115)

for 𝑥 ∈ (0, 0.65) and 𝐸
5/7
(𝑥) is strictly decreasing on [0.65, 1).

Thus, we have 𝐸
5/7
(𝑥) < 𝐸



5/7
(0.65) = −0.117 ⋅ ⋅ ⋅ for 𝑥 ∈

[0.65, 1). This in conjunction with (113) and (115) implies that

𝐸
5/7

(𝑥) < 0 (116)

for 𝑥 ∈ (0, 1).
On the other hand, Lemmas 4, 6, and 13 together with

(114) lead to

𝐸


𝜆
2

(𝑥)

> (
5𝑥

3
−
79𝑥
3

45
+
11𝑥
5

10
) − 𝜆

2
(
7𝑥

3
−
9𝑥
3

5
+
15𝑥
5

7
)

= 𝑥 [
5 − 7𝜆

2

3
−
79 − 81𝜆

2

45
𝑥
2

−
150𝜆
2
− 77

70
𝑥
4

]

> 𝑥 [
5 − 7𝜆

2

3
−
79 − 81𝜆

2

45
× (0.65)

2

−
150𝜆
2
− 77

70
× (0.65)

4

]

=
113027173 − 197098950𝜆

2

100800000
𝑥 > 0

(117)

for 𝑥 ∈ (0, 0.65) and 𝐸
𝜆
2

(𝑥) is strictly decreasing on [0.65, 1).
Note that

𝐸


𝜆
2

(0.65) = 0.0609 ⋅ ⋅ ⋅ , 𝐸


𝜆
2

(1
−

) = −∞. (118)

From (117) and (118) together with themonotonicity of𝐸
𝜆
2

(𝑥)

on [0.65, 1), we clearly see that there exists 𝑐
2
∈ (0.65, 1)

such that 𝐸
𝜆
2

(𝑥) is strictly increasing on (0, 𝑐
2
] and strictly

decreasing on [𝑐
2
, 1). This in conjunction with (113) implies

that

𝐸
𝜆
2
(𝑥) > 0 (119)

for 𝑥 ∈ (0, 1).
Equation (112) together with inequalities (116) and (119)

lead to the conclusion that

𝑀(𝑎, 𝑏) > 𝐼
5/7

(𝑎, 𝑏) 𝐶
2/7

(𝑎, 𝑏) ,

𝑀 (𝑎, 𝑏) < 𝐼
𝜆
2
(𝑎, 𝑏) 𝐶

1−𝜆
2
(𝑎, 𝑏) .

(120)

Therefore, Theorem 15 follows from (120) together with
the following statements.

(i) If𝛼
2
< 5/7, then (109) and (110) imply that there exists

𝛿
3
∈ (0, 1) such that𝑀(𝑎, 𝑏) < 𝐼

𝛼
2(𝑎, 𝑏)𝐶

1−𝛼
2(𝑎, 𝑏) for

all 𝑎, 𝑏 > 0 with (𝑎 − 𝑏)/(𝑎 + 𝑏) ∈ (0, 𝛿
3
).

(ii) If 𝛽
2
> 𝜆
2
, then (109) and (111) imply that there exists

𝛿
4
∈ (0, 1) such that𝑀(𝑎, 𝑏) > 𝐼

𝛽
2(𝑎, 𝑏)𝐶

1−𝛽
2(𝑎, 𝑏) for

all 𝑎, 𝑏 > 0 with (𝑎 − 𝑏)/(𝑎 + 𝑏) ∈ (1 − 𝛿
4
, 1).
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