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The first integral method introduced by Feng is adopted for solving some important nonlinear partial differential equations,
including the (2 + 1)-dimensional hyperbolic nonlinear Schrodinger (HNLS) equation, the generalized nonlinear Schrodinger
(GNLS) equation with a source, and the higher-order nonlinear Schrodinger equation in nonlinear optical fibers. This method
provides polynomial first integrals for autonomous planar systems. Through the established first integrals, exact traveling wave
solutions are formally derived in a concise manner.

1. Introduction

It is well known that nonlinear complex physical phenom-
ena are related to nonlinear partial differential equations
(NLPDEs) which are involved in many fields from physics to
biology, chemistry, mechanics, etc. As mathematical models
of the phenomena, the investigation of exact solutions of
NLPDEs will help us to understand these phenomena better.
Many effective methods for obtaining exact solutions of
NLPDEs have been established and developed, such as the
Lie point symmetries method [1], the exp-function method
[2, 3], the sine-cosine method [4, 5], the extended tanh-coth
method [6, 7], the projective Riccati equation method [8, 9],
and so on.

The first integral method was first proposed by Feng in
[10] in solving Burgers-KdV equation which is based on the
ring theory of commutative algebra. Recently, this useful
method has been widely used by many such as in [11–21] and
by the references therein. In Section 2, we have described this
method for finding exact travelling wave solutions of nonlin-
ear evolution equations. In Section 3, we have illustrated this
method in detail with the (2+1)-dimensional hyperbolic non-
linear Schrodinger (HNLS) equation, the generalized non-
linear Schrodinger (GNLS) equation with a source, and the

higher-order nonlinear Schrodinger equation in nonlinear
optical fibers. In Section 4, we have given some conclusions.

2. The First Integral Method

Consider a general nonlinear PDE in the form

𝑃 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑡
, 𝑢
𝑥𝑥𝑥

, . . .) = 0, (1)

where 𝑃 is a polynomial in its arguments.
Raslan in [22] has summarized the first integral method

in the following steps.

Step 1. Using a wave variable 𝜉 = 𝑥 − 𝑐𝑡 + 𝜀, where 𝜀 is
an arbitrary constant, (1) can be written in the following
nonlinear ordinary differential equation (ODE):

𝑄(𝑈,𝑈
󸀠
, 𝑈
󸀠󸀠
, 𝑈
󸀠󸀠󸀠
, . . .) = 0, (2)

where the prime denotes the derivation with respect to 𝜉.

Step 2. Assume that the solution of ODE (2) can be written
as

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉). (3)
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Step 3. We introduced new independent variables

𝑋 (𝜉) = 𝑢 (𝜉) , 𝑌 = 𝑢
𝜉
(𝜉) , (4)

which leads a system of nonlinear ODEs

𝑋
𝜉
(𝜉) = 𝑌 (𝜉) , (5a)

𝑌
𝜉
(𝜉) = 𝐹 (𝑋 (𝜉) , 𝑌 (𝜉)) . (5b)

Step 4. According to the qualitative theory of ODEs [23], if
we can find the integrals to (5a) and (5b) under the same
conditions, then the general solution to (5a) and (5b) can
be found directly. However, in general, it is really difficult
to realize this even for one first integral, because for a given
plane autonomous system, there is no systematic theory that
can tell us how to find its first integrals, nor is there a logical
way for telling us what these first integrals are.

We will apply the division theorem to obtain one first
integral to (5a) and (5b) which reduces (2) to a first-order
integrable ODE.

An exact solution to (1) is then obtained by solving this
equation.

Let us now recall the division theorem for two variables
in the complex domain 𝐶(𝑤, 𝑧).

Theorem 1 (division theorem). Suppose that 𝑃(𝑤, 𝑧) and
𝑄(𝑤, 𝑧) are polynomials in 𝐶(𝑤, 𝑧), and 𝑃(𝑤, 𝑧) is irreducible
in𝐶(𝑤, 𝑧). If𝑄(𝑤, 𝑧) vanishes at all zero points of𝑃(𝑤, 𝑧), then
there exists a polynomial 𝐺(𝑤, 𝑧) in 𝐶(𝑤, 𝑧) such that

𝑄 (𝑤, 𝑧) = 𝑃 (𝑤, 𝑧) 𝐺 (𝑤, 𝑧) . (6)

The division theorem follows immediately from the
Hilbert-Nullstellensatz Theorem [24].

Theorem 2 (Hilbert-Nullstellensatz theorem). Let 𝑘 be a field
and 𝐿 an algebraic closure of 𝑘.

(1) Every ideal 𝛾 of 𝑘[𝑋
1
, . . . , 𝑋

𝑛
] not containing 1 admits

at least one zero in 𝐿𝑛.
(2) Let 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
), 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
) be two elements

of 𝐿𝑛; for the set of polynomials of 𝑘[𝑋
1
, . . . , 𝑋

𝑛
] zero

at 𝑥 to be identical with the set of polynomials of
𝑘[𝑋
1
, . . . , 𝑋

𝑛
] zero at 𝑦 it is necessary and sufficient

that there exists a 𝑘-automorphism 𝑠 of 𝐿 such that
𝑦
𝑖
= 𝑠 (𝑥

𝑖
) for 1 ≤ 𝑖 ≤ 𝑛.

(3) For an ideal 𝛼 of 𝑘[𝑋
1
, . . . , 𝑋

𝑛
] to be maximal, it is

necessary and sufficient that there exists an 𝑥 in 𝐿𝑛 such
that 𝛼 is the set of polynomials of 𝑘[𝑋

1
, . . . , 𝑋

𝑛
] to be

zero at 𝑥.
(4) For a polynomial 𝑄 of 𝑘[𝑋

1
, . . . , 𝑋

𝑛
] to be zero on the

set of zeros in 𝐿𝑛 of an ideal 𝛾 of 𝑘[𝑋
1
, . . . , 𝑋

𝑛
], it is

necessary and sufficient that there exists an integer𝑚 ≻

0 such that 𝑄𝑚 ∈ 𝛾.

3. Applications

In this section, we have investigated three NPDEs using the
first integral method for the first time.

3.1. The (2+1)-Dimensional Hyperbolic Nonlinear Schrodinger
Equation. Let us consider the (2+1)-dimensional hyperbolic
nonlinear Schrodinger (HNLS) equation [25] which reads

𝑖𝑢
𝑡
+
1

2
𝑢
𝑥𝑥
−
1

2
𝑢
𝑦𝑦
+ |𝑢|
2
𝑢 = 0, (7)

where 𝑥 is dimensionless variable, 𝑦 is the propagation
coordinate, 𝑖 = √−1, and 𝑡 is the time. The above equation
can be derived from optics [26] and large-scale Rossby waves
[27]. Various types of NLS or HNLS equations describing
time and space evolutions of slowly varying envelopes have
wide applications in various branches of physics [28, 29].

By considering the transformations 𝑢(𝑥, 𝑦, 𝑡) =

𝜑(𝜉) exp(𝑖𝜂), and the wave variable 𝜉 = 𝑥 + 𝑎𝑦 − 𝑐𝑡 + 𝜍,
𝜂 = 𝑚𝑥 + 𝑛𝑦 +𝑤𝑡 + 𝜀, where, 𝜍, and 𝜀 are arbitrary constants,
(7) changes into a system of ordinary differential equations
as follows:

(𝑐
2
− 1) 𝜑

󸀠󸀠
(𝜉) = 2𝜑

3
(𝜉) + (𝑤

2
− 2𝑛 − (𝑎 + 𝑐𝑤)

2
) 𝜑 (𝜉) ,

(8)

where prime denotes the derivative with respect to the same
variable 𝜉.

Using (4) and (5a) and (5b), we can get

𝑋
󸀠
(𝜉) = 𝑌 (𝜉) , (9a)

𝑌
󸀠
(𝜉) = (

2

𝑐2 − 1
)𝑋
3
(𝜉) + (

𝑤
2
− 2𝑛 − (𝑎 + 𝑐𝑤)

2

𝑐2 − 1
)𝑋 (𝜉) .

(9b)

According to the first integral method, we suppose that
𝑋(𝜉) and 𝑌(𝜉) are nontrivial solutions of (9a) and (9b) and
𝑃(𝑋, 𝑌) = ∑

𝑚

𝑖=0
𝑎
𝑖
(𝑋)𝑌
𝑖 is an irreducible polynomial in the

complex domain 𝐶[𝑋, 𝑌] such that

𝑃 [𝑋 (𝜉) , 𝑌 (𝜉)] =

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋 (𝜉)) 𝑌

𝑖
(𝜉) = 0, (10)

where 𝑎
𝑖
(𝑋), (𝑖 = 0, 1, 2, . . . , 𝑚) are polynomials of 𝑋 and

𝑎
𝑚
(𝑋) ̸= 0.
Equation (10) is called the first integral to (9a) and (9b).

Due to the division theorem, there exists a polynomial ℎ(𝑋)+
𝑔(𝑋)𝑌 in the complex domain 𝐶[𝑋, 𝑌] such that

𝑑𝑃

𝑑𝜉
=
𝜕𝑃

𝜕𝑋

𝑑𝑋

𝑑𝜉
+
𝜕𝑃

𝜕𝑌

𝑑𝑌

𝑑𝜉

= [ℎ (𝑋) + 𝑔 (𝑋)𝑌]

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋) 𝑌

𝑖
.

(11)

Here, we have considered two different cases, assuming that
𝑚 = 1 and𝑚 = 2 in (10).
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Case 1. Suppose that 𝑚 = 1, by equating the coefficients of
𝑌
𝑖
(𝑖 = 2, 1, 0) on both sides of (11), we have

𝑎
󸀠

1
(𝑋) = 𝑔 (𝑋) 𝑎

1
(𝑋) , (12a)

𝑎
󸀠

0
(𝑋) = ℎ (𝑋) 𝑎

1
(𝑋) + 𝑔 (𝑋) 𝑎

0
(𝑋) , (12b)

𝑎
1
(𝑋)((

2

𝑐2 − 1
)𝑋
3
+ (

𝑤
2
− 2𝑛 − (𝑎 + 𝑐𝑤)

2

𝑐2 − 1
)𝑋)

= ℎ (𝑋) 𝑎
0
(𝑋) .

(12c)

Since 𝑎
𝑖
(𝑋)(𝑖 = 0, 1) are polynomials, then from (12a) we have

deduced that 𝑎
1
(𝑋) is constant and 𝑔(𝑋) = 0. For simplicity,

we have 𝑎
1
(𝑋) = 1.

Balancing the degrees of ℎ(𝑋) and 𝑎
0
(𝑋), we have

concluded that deg(ℎ(𝑋)) = 1 only. Suppose that ℎ(𝑋) =

𝐴𝑋 + 𝐵 and 𝐴 ̸= 0, we find 𝑎
0
(𝑋)

𝑎
0
(𝑋) =

𝐴

2
𝑋
2
+ 𝐵𝑋 + 𝐷, (13)

where𝐷 is an arbitrary integration constant.
Substituting 𝑎

0
(𝑋), 𝑎

1
(𝑋), and ℎ(𝑋) for (12c) and setting

all the coefficients of powers𝑋 to be zero, we have obtained a
system of nonlinear algebraic equations and by solving it, we
have obtained

𝐷 = ∓
1

2

√
1

−1 + 𝑐2
[2𝑛 + (𝑎 + (−1 + 𝑐)𝑤) (𝑎 + 𝑤 + 𝑐𝑤)] ,

𝐵 = 0, 𝐴 = ±√2√−
1

1 − 𝑐
−

1

1 + 𝑐
.

(14)
Using the conditions (14) in (10), we obtain

𝑌 (𝜉) = ∓
√2

2

√−
1

1 − 𝑐
−

1

1 + 𝑐
𝑋
2
(𝜉)

±
1

2

√
1

−1 + 𝑐2
[2𝑛 + (𝑎 + (−1 + 𝑐)𝑤)

× (𝑎 + 𝑤 + 𝑐𝑤)] ,

(15)

respectively.
Combining (15) with (9a), we have obtained the exact

solutions to (9a) ad (9b). The exact traveling wave solutions
to the (2+1)-dimensional hyperbolic nonlinear Schrodinger
equation (7) can be written as

𝑢
1,2
(𝑥, 𝑦, 𝑡) = −

1

√2

√−2𝑛 − (𝑎 + (−1 + 𝑐)𝑤) (𝑎 + 𝑤 + 𝑐𝑤)

× tan [√−2𝑛 − (𝑎 + (−1 + 𝑐)𝑤) (𝑎 + 𝑤 + 𝑐𝑤)

× (±√−1 + 𝑐 (𝑥 + 𝑎𝑦 − 𝑐𝑡 + 𝜍)

+2 (−1 + 𝑐)√−1 + 𝑐𝜉
0
)

×(√2 (−1 + 𝑐)√−1 + 𝑐)
−1

]

× exp [𝑖 (𝑚𝑥 + 𝑛𝑦 + 𝑤𝑡 + 𝜀)] ,
(16)

respectively, where 𝜉
0
is an arbitrary integration constant.

Case 2. Assume that 𝑚 = 2, by equating the coefficients of
𝑌
𝑖
( 𝑖 = 3, 2, 1, 0 ) on both sides of (11), we have

𝑎
󸀠

2
(𝑋) = 𝑔 (𝑋) 𝑎

2
(𝑋) , (17a)

𝑎
󸀠

1
(𝑋) = ℎ (𝑋) 𝑎

2
(𝑋) + 𝑔 (𝑋) 𝑎

1
(𝑋) , (17b)

𝑎
󸀠

0
(𝑋)+2𝑎

2
(𝑋) [(

2

𝑐2−1
)𝑋
3
+(

𝑤
2
−2𝑛−(𝑎+𝑐𝑤)

2

𝑐2−1
)𝑋]

= ℎ (𝑋) 𝑎
1
(𝑋) + 𝑔 (𝑋) 𝑎

0
(𝑋) ,

(17c)

𝑎
1
(𝑋) [(

2

𝑐2 − 1
)𝑋
3
+ (

𝑤
2
− 2𝑛 − (𝑎 + 𝑐𝑤)

2

𝑐2 − 1
)𝑋]

= ℎ (𝑋) 𝑎
0
(𝑋) .

(17d)

Since, 𝑎
𝑖
(𝑋) (𝑖 = 0, 1, 2) are polynomials, then from (17a)

it can be deduced that 𝑎
2
(𝑋) is a constant and 𝑔(𝑋) = 0.

For simplicity, let us suppose that 𝑎
2
(𝑋) = 1. Balancing

the degrees of ℎ(𝑋) and 𝑎
0
(𝑋) it can be concluded that

deg(ℎ(𝑋)) = 1 only.
In this case, let us assume that ℎ(𝑋) = 𝐴𝑋 + 𝐵 and 𝐴 ̸= 0,

then we find 𝑎
1
(𝑋) and 𝑎

0
(𝑋) as follows:

𝑎
1
(𝑋) = (

𝐴

2
)𝑋
2
+ 𝐵𝑋 + 𝐷, (18a)

𝑎
0
(𝑋) = (

𝐴
2

8
−

1

𝑐2 − 1
)𝑋
4
+
1

2
(𝐴𝐵)𝑋

3

+ (
𝐴𝐷 + 𝐵

2

2
−
𝑤
2
− 2𝑛 − (𝑎 + 𝑐𝑤)

2

𝑐2 − 1
)𝑋
2

+ 𝐵𝐷𝑋 + 𝐹,

(18b)

where 𝐴, 𝐵,𝐷, and 𝐹 are arbitrary integration constants.

Substituting 𝑎
0
(𝑋), 𝑎

1
(𝑋), 𝑎

2
(𝑋), and ℎ(𝑋) for (17d) and

setting all the coefficients of powers 𝑋 to be zero, then we
have obtained a system of nonlinear algebraic equations and
by solving it, we get

𝐹 = 0, 𝐷 = 0, 𝐵 = 0,

𝑤 =
−𝑎𝑐 − √𝑎2 + 2𝑛 − 2𝑐2𝑛

−1 + 𝑐2
,

𝐴 = ∓2√2√−
1

1 − 𝑐
−

1

1 + 𝑐
,

(19a)

𝐹 = 0, 𝐷 = 0, 𝐵 = 0,

𝑤 =
−𝑎𝑐 + √𝑎2 + 2𝑛 − 2𝑐2𝑛

−1 + 𝑐2
,

𝐴 = ∓2√2√−
1

1 − 𝑐
−

1

1 + 𝑐
.

(19b)

Using the conditions (19a) and (19b) in (10), we have obtained

𝑌 (𝜉) = ±
1

√−1 + 𝑐2
𝑋
2
(𝜉) . (20)
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Combining (20) with (9a) we have obtained the exact solu-
tions to (9a) and (9b) and hence the exact traveling wave
solutions to the (2+1)-dimensional hyperbolic nonlinear
Schrodinger equation (7) can be written as

𝑢
3,4
(𝑥, 𝑦, 𝑡)

=
√−1 + 𝑐√1 + 𝑐

∓ (𝑥 + 𝑎𝑦 − 𝑐𝑡 + 𝜍) − √−1 + 𝑐√1 + 𝑐

× exp[𝑖 (𝑚𝑥 + 𝑛𝑦 + −𝑎𝑐 − √𝑎2 + 2𝑛 − 2𝑐2𝑛

−1 + 𝑐2
𝑡 + 𝜀)] ,

(21)

𝑢
5,6
(𝑥, 𝑦, 𝑡)

=
√−1 + 𝑐√1 + 𝑐

∓ (𝑥 + 𝑎𝑦 − 𝑐𝑡 + 𝜍) − √−1 + 𝑐√1 + 𝑐

× exp[𝑖 (𝑚𝑥 + 𝑛𝑦 + −𝑎𝑐 + √𝑎2 + 2𝑛 − 2𝑐2𝑛

−1 + 𝑐2
𝑡 + 𝜀)] .

(22)

Comparing these results with the results obtained in [1], it can
be seen that the solutions here are new.

3.2. The Generalized Nonlinear Schrodinger (GNLS) Equation
with a Source. Let us Consider the generalized nonlinear
Schrodinger (GNLS) equation with a source [30, 31], in the
form

𝑖𝑢
𝑡
+ 𝑎𝑢
𝑥𝑥
+ 𝑏𝑢|𝑢|

2
+ 𝑖𝑐𝑢
𝑥𝑥𝑥

+ 𝑖𝑑(𝑢|𝑢|
2
)
𝑥

= 𝑘𝑒
𝑖[𝜒(𝜉)−𝑤𝑡]

,

(23)

where 𝜉 = 𝛼(𝑥 − 𝑣𝑡) is a real function and 𝑎, 𝑏, 𝑐, 𝑑, 𝑘, 𝛼, 𝑣,
and 𝑤 are all real.

The GNLS equation (23) plays an important role in many
nonlinear sciences. It arises as an asymptotic limit for a slowly
varying dispersive wave envelope in a nonlinear medium.
For example, its significant application in optical soliton
communication plasma physics has been proved.

Furthermore, the GNLS equation enjoys many remark-
able properties (e.g., bright and dark soliton solutions, Lax
pair, Liouvile integrability, inverse scattering transformation,
conservation laws, Backlund transformation, etc.).

We have considered a plane wave transformation in the
form

𝑢 (𝑥, 𝑡) = 𝜓 (𝜉) 𝑒
𝑖[𝜒(𝜉)−𝑤𝑡]

, (24)

where𝜓(𝜉) is a real function. For convenience, let 𝜒 = 𝛽𝜉+𝑥
0

where 𝛽 and 𝑥
0
are real constants and 𝜉 = 𝛼(𝑥 − 𝑣𝑡) + 𝜍. Then

by replacing (23) and its appropriate derivatives in (22) and

separating the real and imaginary parts of the result, we have
obtained the following two ordinary differential equations:

𝑐𝛼
3
𝜓
󸀠󸀠󸀠
+ (−𝛼𝑣 + 2𝑎𝛽𝛼

2
− 3𝑐𝛼

3
𝛽
2
) 𝜓
󸀠

+ 3𝑑𝛼𝜓
2
𝜓
󸀠
= 0,

(25)

(𝑎𝛼
2
− 3𝑐𝜓

3
𝛽)𝜓
󸀠󸀠
+ (𝛼𝛽𝑣 + 𝑤 − 𝑎𝛼

2
𝛽
2
+ 𝑐𝛼
3
𝛽
3
) 𝜓

+ (𝑏 − 𝑑𝛼𝛽)𝜓
3
− 𝑘 = 0.

(26)

Integrating (25) once, with respect to 𝜉, we have

𝑐𝛼
2
𝜓
󸀠󸀠
(𝜉) + (−𝑣 + 2𝑎𝛼𝛽 − 3𝑐𝛼

2
𝛽
2
) 𝜓 (𝜉) − 𝑀 = 0, (27)

where𝑀 is an arbitrary integration constant. Since the same
function 𝜓(𝜉) satisfies (26) and (27), we have obtained the
following constraint condition:

𝑎𝛼
2
− 3𝑐𝜓

3
𝛽

𝑐𝛼2
=
𝛼𝛽𝑣 + 𝑤 − 𝑎𝛼

2
𝛽
2
+ 𝑐𝛼
3
𝛽
3

−𝑣 + 2𝑎𝛼𝛽 − 3𝑐𝛼2𝛽2

=
𝑏 − 𝑑𝛼𝛽

𝑑
=

𝑘

𝑀
.

(28)

Using (4) and (5a) and (5b), we can get

𝑋
󸀠
(𝜉) = 𝑌 (𝜉) , (29a)

𝑌
󸀠
(𝜉) = (−

𝑑

𝑐𝛼2
)𝑋
3
(𝜉)

+ (
𝑣

𝑐𝛼2
−
2𝑎𝛽

𝑐𝛼
+ 3𝛽
2
)𝑋 (𝜉)

+
𝑀

𝑐𝛼2
.

(29b)

According to the first integral method, we suppose that𝑋(𝜉)
and 𝑌(𝜉) are nontrivial solutions of (29a) and (29b) and
𝑃(𝑋, 𝑌) = ∑

𝑚

𝑖=0
𝑎
𝑖
(𝑋)𝑌
𝑖 is an irreducible polynomial in the

complex domain 𝐶[𝑋, 𝑌] such that

𝑃 [𝑋 (𝜉) , 𝑌 (𝜉)] =

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋 (𝜉)) 𝑌(𝜉)

𝑖
= 0, (30)

where 𝑎
𝑖
(𝑋), (𝑖 = 0, 1, 2, . . . , 𝑚) are polynomials of 𝑋 and

𝑎
𝑚
(𝑋) ̸= 0.
Equation (30) is called the first integral to (29a) and (29b).

Due to the division theorem, there exists a polynomial ℎ(𝑋)+
𝑔(𝑋)𝑌 in the complex domain 𝐶[𝑋, 𝑌] such that

𝑑𝑃

𝑑𝜉
=
𝜕𝑃

𝜕𝑋

𝑑𝑋

𝑑𝜉
+
𝜕𝑃

𝜕𝑌

𝑑𝑃

𝑑𝜉
,

= [ℎ (𝑋) + 𝑔 (𝑋)𝑌]

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋) 𝑌

𝑖
.

(31)

In this example, we have taken two different cases, assuming
that𝑚 = 1 and𝑚 = 2 in (30).
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Case 3. Suppose that 𝑚 = 1, by equating the coefficients of
𝑌
𝑖
(𝑖 = 2, 1, 0) on both sides of (31), we have

𝑎
󸀠

1
(𝑋) = 𝑔 (𝑋) 𝑎

1
(𝑋) , (32a)

𝑎
󸀠

0
(𝑋) = ℎ (𝑋) 𝑎

1
(𝑋) + 𝑔 (𝑋) 𝑎

0
(𝑋) , (32b)

𝑎
1
(𝑋) [[−

𝑑

𝑐𝛼2
]𝑋
3
+ [

𝑣

𝑐𝛼2
−
2𝑎𝛽

𝑐𝛼
+ 3𝛽
2
]𝑋 +

𝑀

𝑐𝛼2
]

= ℎ (𝑋) 𝑎
0
(𝑋) .

(32c)

Since 𝑎
𝑖
(𝑋) (𝑖 = 0, 1) are polynomials, then from (32a) it

can be deduced that 𝑎
1
(𝑋) is constant and 𝑔(𝑋) = 0. For

simplicity, it was taken 𝑎
1
(𝑋) = 1.

Balancing the degrees of ℎ(𝑋) and 𝑎
0
(𝑋), it can be

concluded that deg(ℎ(𝑋)) = 1 only. Suppose that ℎ(𝑋) =

𝐴𝑋 + 𝐵, and 𝐴 ̸= 0, then we find

𝑎
0
(𝑋) =

𝐴

2
𝑋
2
+ 𝐵𝑋 + 𝐷, (33)

where𝐷 is an arbitrary integration constant.
Substituting 𝑎

0
(𝑋), 𝑎

1
(𝑋), and ℎ(𝑋) in (32c) and setting

all the coefficients of powers𝑋 to be zero, we have obtained a
system of nonlinear algebraic equations and by solving it, we
obtain

𝑣 = −𝑖√2√𝑐√𝑑𝐷𝛼 + 2𝑎𝛼𝛽 − 3𝑐𝛼
2
𝛽
2
,

𝑀 = 0, 𝐴 = −
𝑖√2√𝑑

√𝑐𝛼
, 𝐵 = 0,

(34a)

𝑣 = 𝑖√2√𝑐√𝑑𝐷𝛼 + 2𝑎𝛼𝛽 − 3𝑐𝛼
2
𝛽
2
,

𝑀 = 0, 𝐴 =
𝑖√2√𝑑

√𝑐𝛼
, 𝐵 = 0.

(34b)

Using the conditions (34a) and (34b) in (30), we obtain

𝑌 (𝜉) = (±
𝑖√2√𝑑

√𝑐𝛼
)𝑋
2
(𝜉) − 𝐷, (35)

respectively.
Combining (35) with (29a), the exact solutions to (29a)

and (29b) were obtained and then the exact traveling wave
solutions to the generalized nonlinear Schrodinger (GNLS)
equation with a source (23) can be written as

𝑢
1
(𝑥, 𝑡) = 𝑖(−2)

1/4
𝑐
1/4√𝐷√𝛼

× tanh [ (1 + 𝑖) 𝑑1/4√𝐷(𝛼𝑥−𝛼𝑣𝑡+𝜍−2√𝑐𝛼𝜉
0
)

×(2
3/4
𝑐
1/4
√𝛼)
−1

] × (𝑑
1/4
)
−1

× exp [𝑖 (𝛽 {𝛼𝑥 − 𝛼𝑣𝑡 + 𝜍} − 𝑤𝑡)] ,

𝑣 = −𝑖√2√𝑐√𝑑𝐷𝛼 + 2𝑎𝛼𝛽 − 3𝑐𝛼
2
𝛽
2
,

(36)

𝑢
2
(𝑥, 𝑡) = 𝑖(−2)

1/4
𝑐
1/4√𝐷√𝛼

× tan [ (1 + 𝑖) 𝑑1/4√𝐷(𝛼𝑥 − 𝛼𝑣𝑡 + 𝜍 − 2√𝑐𝛼𝜉
0
)

× (2
3/4
𝑐
1/4
√𝛼)
−1

] × (𝑑
1/4
)
−1

× exp [𝑖 (𝛽 {𝛼𝑥 − 𝛼𝑣𝑡 + 𝜍} − 𝑤𝑡)] ,

𝑣 = 𝑖√2√𝑐√𝑑𝐷𝛼 + 2𝑎𝛼𝛽 − 3𝑐𝛼
2
𝛽
2
,

(37)

where 𝜉
0
is an arbitrary integration constant.

Case 4. Suppose that 𝑚 = 2, by equating the coefficients of
𝑌
𝑖
(𝑖 = 3, 2, 1, 0) on both sides of (31), we have

𝑎
󸀠

2
(𝑋) = 𝑔 (𝑋) 𝑎

2
(𝑋) , (38a)

𝑎
󸀠

1
(𝑋) = ℎ (𝑋) 𝑎

2
(𝑋) + 𝑔 (𝑋) 𝑎

1
(𝑋) , (38b)

𝑎
󸀠

0
(𝑋)+2𝑎

2
(𝑋)[[−

𝑑

𝑐𝛼2
]𝑋
3
+[

𝑣

𝑐𝛼2
−
2𝑎𝛽

𝑐𝛼
+3𝛽
2
]𝑋+

𝑀

𝑐𝛼2
]

= ℎ (𝑋) 𝑎
1
(𝑋) + 𝑔 (𝑋) 𝑎

0
(𝑋) ,

(38c)

𝑎
1
(𝑋) [[−

𝑑

𝑐𝛼2
]𝑋
3
+ [

𝑣

𝑐𝛼2
−
2𝑎𝛽

𝑐𝛼
+ 3𝛽
2
]𝑋 +

𝑀

𝑐𝛼2
]

= ℎ (𝑋) 𝑎
0
(𝑋) .

(38d)

Since 𝑎
𝑖
(𝑋) (𝑖 = 0, 1, 2) are polynomials, then from (38a) it

can be deduced that 𝑎
2
(𝑋) is a constant and 𝑔(𝑋) = 0. For

simplicity, we have taken 𝑎
2
(𝑋) = 1. Balancing the degrees of

ℎ(𝑋) and 𝑎
0
(𝑋) we have concluded that deg(ℎ(𝑋)) = 1 only.

In this case, it was assumed that ℎ(𝑋) = 𝐴𝑋+𝐵 and𝐴 ̸= 0;
then we find 𝑎

1
(𝑋) and 𝑎

0
(𝑋) as follows:

𝑎
1
(𝑋) = (

𝐴

2
)𝑋
2
+ 𝐵𝑋 + 𝐷, (39a)

𝑎
0
(𝑋) = (

𝐴
2

8
+

𝑑

2𝑐𝛼2
)𝑋
4
+
1

2
(𝐴𝐵)𝑋

3

+ (
𝐴𝐷 + 𝐵

2

2
− 𝑐𝛼
2
+
2𝑎𝛽

𝑐𝛼
− 3𝛽
2
)𝑋
2

+ (𝐵𝐷 −
2𝑀

𝑐𝛼2
)𝑋 + 𝐹,

(39b)

where 𝐴, 𝐵,𝐷, and 𝐹 are arbitrary integration constants.
Substituting 𝑎

0
(𝑋), 𝑎

1
(𝑋), 𝑎

2
(𝑋), and ℎ(𝑋) for (38d) and

setting all the coefficients of powers𝑋 to be zero, a system of
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nonlinear algebraic equations was obtained and by solving it,
we got

𝑀 = 0, 𝑣 =
1

2
[−𝑖√2√𝑐√𝑑𝐷𝛼 + 4𝑎𝛼𝛽 − 6𝑐𝛼

2
𝛽
2
] ,

𝐹 =
𝐷
2

4
, 𝐴 = −

2𝑖√2√𝑑

√𝑐𝛼
, 𝐵 = 0,

(40a)

𝑀 = 0, 𝑣 =
1

2
[𝑖√2√𝑐√𝑑𝐷𝛼 + 4𝑎𝛼𝛽 − 6𝑐𝛼

2
𝛽
2
] ,

𝐹 =
𝐷
2

4
, 𝐴 =

2𝑖√2√𝑑

√𝑐𝛼
, 𝐵 = 0.

(40b)

Using the conditions (40a) and (40b) in (30), we obtain

𝑌 (𝜉) =
±𝑖√2√𝑑𝑋

2
(𝜉) − √𝑐𝐷𝛼

2√𝑐𝛼
, (41)

respectively. Combining (41) with (29a) we have obtained the
exact solutions to (29a) and (29b) and thus the exact traveling
wave solutions to the generalized nonlinear Schrodinger
(GNLS) equation with a source (23) can be written as

𝑢
3
(𝑥, 𝑡) = (−1)

3/4
𝑐
1/4√𝐷√𝛼

× tanh [(1
2
+
𝑖

2
) 𝑑
1/4√𝐷

× (𝛼𝑥 − 𝛼𝑣𝑡 + 𝜍 − 2√𝑐𝛼𝜉
0
)

× (2
1/4
𝑐
1/4
√𝛼)
−1

] × (2
1/4
𝑑
1/4
)
−1

× exp [𝑖 (𝛽 {𝛼𝑥 − 𝛼𝑣𝑡 + 𝜍} − 𝑤𝑡)] ,

𝑣 = −
1

2
𝑖√2√𝑐√𝑑𝐷𝛼 + 2𝑎𝛼𝛽 − 3𝑐𝛼

2
𝛽
2
,

(42)

𝑢
4
(𝑥, 𝑡) = − (−1)

3/4
𝑐
1/4√𝐷√𝛼

× tan [(−1)1/4𝑑1/4

× √𝐷 (−𝛼𝑥 + 𝛼𝑣𝑡 + 𝜍 + 2√𝑐𝛼𝜉
0
)

×(2
3/4
𝑐
1/4
√𝛼)
−1

] × (2
1/4
𝑑
1/4
)
−1

× exp [𝑖 (𝛽 {𝛼𝑥 − 𝛼𝑣𝑡 + 𝜍} − 𝑤𝑡)]

𝑣 =
1

2
𝑖√2√𝑐√𝑑𝐷𝛼 + 2𝑎𝛼𝛽 − 3𝑐𝛼

2
𝛽
2
,

(43)

respectively, where 𝜉
0
is an arbitrary integration constant.

Equations (36)-(37) and (42)-(43) are new types of
exact traveling wave solutions to the generalized nonlinear
Schrodinger (GNLS) equation with a source (23). It could not
be obtained by the methods presented in [32].

3.3. The Higher-Order Nonlinear Schrodinger Equation in
Nonlinear Optical Fibers. The higher-order nonlinear Schro-
dinger equation describing propagation of ultrashort pulses
in nonlinear optical fibers [33–39] reads

𝜓
𝑧
= 𝑖𝛼
1
𝜓
𝑡𝑡
+ 𝑖𝛼
2
𝜓
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

+ 𝛼
3
𝜓
𝑡𝑡𝑡

+ 𝛼
4
(𝜓
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

)
𝑡
+ 𝛼
5
𝜓(
󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2

)
𝑡
,

(44)

where 𝜓 is slowly varying envelope of the electric field,
the subscripts 𝑧 and 𝑡 are the spatial and temporal partial
derivative in retard time coordinates, and 𝛼

1
, 𝛼
2
, 𝛼
3
, 𝛼
4
,

𝛼
5
are the real parameters related to the group velocity

dispersion (GVD), self-phasemodulation (SPM), third-order
dispersion (TOD), and self-steepening and self-frequency
shift arising from simulated Raman scattering, respectively.
Some properties of the equation, as well asmany versions of it
have been studied [33–39].Up to now, the bright, dark and the
combined bright and dark solitary waves and periodic waves
were found of (43) and its special case.

To seek traveling wave solutions of (44), we make the
gauge transformation

𝜓 (𝑧, 𝑡) = 𝜑 (𝜉) exp [𝑖 (𝑘𝑧 − 𝜔𝑡)] ,

𝜉 = 𝛽𝑡 − 𝜆𝑧 + 𝜀,

(45)

where 𝛽, 𝑘, 𝜔, 𝜆, 𝜀 are constants. Substituting (45) into (44)
yields a complex ODE of 𝜑(𝜉), the real and imaginary parts
of which, respectively,

(𝛽
2
𝛼
1
− 3𝛽
2
𝛼
3
𝜔)𝜑
󸀠󸀠
+ (𝛼
3
𝜔
3
− 𝛼
1
𝜔
2
− 𝑘) 𝜑

+ (𝛼
2
− 𝛼
4
𝜔) 𝜑
3
= 0,

𝛽
3
𝛼
3
𝜑
󸀠󸀠󸀠
+ (2𝛽𝛼

1
𝜔 − 3𝛽𝛼

3
𝜔
2
+ 𝜆) 𝜑

󸀠

+ (3𝛽𝛼
4
+ 2𝛽𝛼

5
) 𝜑
2
𝜑
󸀠
= 0.

(46)

It is easy to see that (46) becomes an equation

𝜑
󸀠󸀠
+
2𝛽𝛼
1
𝜔 − 3𝛽𝛼

3
𝜔
2
+ 𝜆

𝛽3𝛼
3

𝜑 +
3𝛼
4
+ 2𝛼
5

3𝛽2𝛼
3

𝜑
3
= 0, (47)

under the constraint conditions

𝜔 =
3𝛼
1
𝛼
4
+ 2𝛼
1
𝛼
5
− 3𝛼
2
𝛼
3

6𝛼
3
(𝛼
4
+ 𝛼
5
)

,

𝑘 =
1

𝛼
3

[
1

𝛽
(3𝛼
3
𝜔 − 𝛼
1
) 𝜆 − 2𝜔(𝛼

1
− 2𝛼
3
𝜔)
2

]

=
(3𝛼
2
𝛼
3
− 3𝛼
1
𝛼
4
− 2𝛼
1
𝛼
5
) (3𝛼
2
𝛼
3
+ 𝛼
!
𝛼
5
)
2

27𝛼
2

3
(𝛼
4
+ 𝛼
5
)
3

+
(𝛼
1
𝛼
4
− 3𝛼
2
𝛼
3
) 𝜆

2𝛽𝛼
3
(𝛼
4
+ 𝛼
5
)
.

(48)
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Using (4) and (5a) and (5b), we can get

𝑋
󸀠
= 𝑌, (49a)

𝑌
󸀠
= − (

3𝛼
4
+ 2𝛼
5

3𝛽2𝛼
3

)𝑋
3

− (
2𝛽𝛼
1
𝜔 − 3𝛽𝛼

3
𝜔
2
+ 𝜆

𝛽3𝛼
3

)𝑋.

(49b)

According to the first integral method, we suppose that𝑋(𝜉)
and 𝑌(𝜉) are nontrivial solutions of (49a) and (49b) and
𝑃(𝑋, 𝑌) = ∑

𝑚

𝑖=0
𝑎
𝑖
(𝑋)𝑌
𝑖 is an irreducible polynomial in the

complex domain 𝐶[𝑋, 𝑌] such that

𝑃 [𝑋 (𝜉) , 𝑌 (𝜉)] =

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋 (𝜉)) 𝑌(𝜉)

𝑖
= 0, (50)

where 𝑎
𝑖
(𝑋), (𝑖 = 0, 1, 2, . . . , 𝑚) are polynomials of 𝑋 and

𝑎
𝑚
(𝑋) ̸= 0.
Equation (50) is called the first integral to (49a) and (49b)

due to the division theorem, there exists a polynomial ℎ(𝑋)+
𝑔(𝑋)𝑌 in the complex domain 𝐶[𝑋, 𝑌] such that

𝑑𝑃

𝑑𝜉
=
𝜕𝑃

𝜕𝑋

𝑑𝑋

𝑑𝜉
+
𝜕𝑃

𝜕𝑌

𝑑𝑃

𝑑𝜉

= [ℎ (𝑋) + 𝑔 (𝑋)𝑌]

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋) 𝑌

𝑖
.

(51)

In this example, we take two different cases, assuming that
𝑚 = 1 and𝑚 = 2 in (50).

Case 5. Suppose that 𝑚 = 1, by equating the coefficients of
𝑌
𝑖
(𝑖 = 2, 1, 0) on both sides of (51), we have

𝑎
󸀠

1
(𝑋) = 𝑔 (𝑋) 𝑎

1
(𝑋) , (52a)

𝑎
󸀠

0
(𝑋) = ℎ (𝑋) 𝑎

1
(𝑋) + 𝑔 (𝑋) 𝑎

0
(𝑋) , (52b)

𝑎
1
(𝑋) [−(

3𝛼
4
+ 2𝛼
5

3𝛽2𝛼
3

)𝑋
3
− (

2𝛽𝛼
1
𝜔 − 3𝛽𝛼

3
𝜔
2
+ 𝜆

𝛽3𝛼
3

)𝑋]

= ℎ (𝑋) 𝑎
0
(𝑋) .

(52c)

Since 𝑎
𝑖
(𝑋) (𝑖 = 0, 1) are polynomials, then from (52a) it was

deduced that 𝑎
1
(𝑋) is constant and 𝑔(𝑋) = 0. For simplicity,

take 𝑎
1
(𝑋) = 1.

Balancing the degrees of ℎ(𝑋) and 𝑎
0
(𝑋), it was con-

cluded that deg(ℎ(𝑋)) = 1 only. Suppose that ℎ(𝑋) = 𝐴𝑋+𝐵

and 𝐴 ̸= 0, then we find

𝑎
0
(𝑋) =

𝐴

2
𝑋
2
+ 𝐵𝑋 + 𝐷, (53)

where𝐷 is an arbitrary integration constant.
Substituting 𝑎

0
(𝑋), 𝑎

1
(𝑋), and ℎ(𝑋) in (52c) and setting

all the coefficients of powers 𝑋 to be zero, then we have

obtained a system of nonlinear algebraic equations and by
solving it, we obtain

𝐷 = ±
√3/2 (𝜆 + 𝛽𝜔 (2𝛼

1
− 3𝜔𝛼

3
))

𝛽2√𝛼3√−3𝛼4 − 2𝛼5

,

𝐵 = 0,

𝐴 = ∓
√2/3√−3𝛼

4
− 2𝛼
5

𝛽√𝛼3

.

(54)

Using the conditions (54) in (50), we obtain

𝑌 (𝜉) = (±
√2/3√−3𝛼

4
− 2𝛼
5

𝛽√𝛼3

)𝑋
2
(𝜉)

∓
√3/2 (𝜆 + 𝛽𝜔 (2𝛼

1
− 3𝜔𝛼

3
))

𝛽2√𝛼3√−3𝛼4 − 2𝛼5

,

(55)

respectively.
Combining (55) with (49a), the exact solutions to (49a)

and (49b) were obtained and then the exact traveling wave
solutions to the higher-order nonlinear Schrodinger equation
in nonlinear optical fibers can be written as

𝜓
1,2
(𝑧, 𝑡)

= ±
1

√𝛽𝑝

√3𝑞

× tan [𝑞 ((𝛽𝑡 − 𝜆𝑧 + 𝜀) 𝑟 ± 2√3𝛽2𝜉
0√𝛼3𝑝

2
)

×(2𝛽
3/2
√𝛼3𝑝)

−1

] × exp [𝑖 (𝑘𝑧 − 𝜔𝑡)] ,

(56)

respectively, where

𝑝 = √3𝛼
4
+ 2𝛼
5
, 𝑞 = √𝜆 + 𝛽𝑤 (2𝛼

1
− 3𝑤𝛼

3
),

𝑟 = √−6𝛼
4
− 4𝛼
5
, 𝑝

2
= 3𝛼
4
+ 2𝛼
5
,

(57)

and 𝜉
0
is an arbitrary integration constant.

Case 6. Suppose that 𝑚 = 2, by equating the coefficients of
𝑌
𝑖
(𝑖 = 3, 2, 1, 0) on both sides of (51), we have

𝑎
󸀠

2
(𝑋) = 𝑔 (𝑋) 𝑎

2
(𝑋) , (58a)

𝑎
󸀠

1
(𝑋) = ℎ (𝑋) 𝑎

2
(𝑋) + 𝑔 (𝑋) 𝑎

1
(𝑋) , (58b)

𝑎
󸀠

0
(𝑋)+2𝑎

2
(𝑋) [[−

𝑑

𝑐𝛼2
]𝑋
3
+[

𝑣

𝛼2
−
2𝑎𝛽

𝑐𝛼
+3𝛽
2
]𝑋+

𝑀

𝑐𝛼2
]

= ℎ (𝑋) 𝑎
1
(𝑋) + 𝑔 (𝑋) 𝑎

0
(𝑋) ,

(58c)

𝑎
1
(𝑋) [−(

2𝛽𝛼
1
𝜔 − 3𝛽𝛼

3
𝜔
2
+ 𝜆

𝛽3𝛼
3

)𝑋 − (
3𝛼
4
+ 2𝛼
5

3𝛽2𝛼
3

)𝑋
3
]

= ℎ (𝑋) 𝑎
0
(𝑋) .

(58d)
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Since 𝑎
𝑖
(𝑋) (𝑖 = 0, 1, 2) are polynomials, then from (58a) it

was deduced that 𝑎
2
(𝑋) is a constant and 𝑔(𝑋) = 0. For

simplicity, we have taken 𝑎
2
(𝑋) = 1. Balancing the degrees

of ℎ(𝑋) and 𝑎
0
(𝑋) we conclude that deg(ℎ(𝑋)) = 1 only.

In this case, it was assumed that ℎ(𝑋) = 𝐴𝑋+𝐵 and𝐴 ̸= 0;
then we find 𝑎

1
(𝑋) and 𝑎

0
(𝑋) as follows:

𝑎
1
(𝑋) = (

𝐴

2
)𝑋
2
+ 𝐵𝑋 + 𝐷, (59a)

𝑎
0
(𝑋) = (

𝐴
2

8
+
3𝛼
4
+ 2𝛼
5

6𝛽2𝛼
3

)𝑋
4
+
1

2
(𝐴𝐵)𝑋

3

+ (
𝐴𝐷 + 𝐵

2

2
+
2𝛽𝛼
1
𝜔 − 3𝛽𝛼

3
𝜔
2
+ 𝜆

𝛽3𝛼
3

)𝑋
2

+ 𝐵𝐷𝑋 + 𝐹,

(59b)

where 𝐴, 𝐵,𝐷, and 𝐹 are arbitrary integration constants.
Substituting 𝑎

0
(𝑋), 𝑎

1
(𝑋), 𝑎

2
(𝑋), and ℎ(𝑋) into (58d) and

setting all the coefficients of powers𝑋 to be zero, a system of
nonlinear algebraic equations was obtained and by solving it,
we get

𝜆 = −2𝛽𝜔𝛼
1
+ 3𝛽𝜔

2
𝛼
3
, 𝐹 = 0, 𝐵 = 0, 𝐷 = 0,

𝐴 = ∓
2√2/3√−3𝛼

4
− 2𝛼
5

𝛽√𝛼3

,

(60a)

𝜆 = −2𝛽𝜔𝛼
1
+ 3𝛽𝜔

2
𝛼
3
±
𝐷𝛽
2

√𝛼3√−3𝛼4 − 2𝛼5

√6

,

𝐹 =
𝐷
2

4
, 𝐵 = 0, 𝐴 = ∓

2√2/3√−3𝛼
4
− 2𝛼
5

𝛽√𝛼3

.

(60b)

Using the conditions (60a) in (50), we obtain

𝑌 (𝜉) = ±
√−3𝛼

4
− 2𝛼
5

√6𝛽√𝛼3

𝑋
2
(𝜉) , (61)

respectively. Combining (61) with (49a), the exact solutions
to (49a) and (49b) were obtained and thus the exact traveling
wave solutions to the higher-order nonlinear Schrodinger
equation in nonlinear optical fibers (44) can be written as

𝜓
3,4
(𝑧, 𝑡)

= 6𝛽√𝛼3

× (− 6𝛽𝑐
1√𝛼3

∓√6 (𝛽𝑡 − (−2𝛽𝜔𝛼
1
+ 3𝛽𝜔

2
𝛼
3
) 𝑧 + 𝜀) 𝑖𝑝)

−1

× exp [𝑖 (𝑘𝑧 − 𝜔𝑡)] ,

(62)

respectively.

Similarly, in the case of (60b), from (50), we get

𝑌 (𝜉) = −
𝐷

2
±
√−3𝛼

4
− 2𝛼
5

√6𝛽√𝛼3

𝑋
2
(𝜉) , (63)

respectively. Combining (63) with (49a), the exact solutions
to (49a) and (49b) were obtained and thus the exact traveling
wave solutions to the higher-order nonlinear Schrodinger
equation in nonlinear optical fibers (44) can be written as

𝜓
5
(𝑧, 𝑡) = (3/2)

1/4√𝐷√𝛽𝛼
3

1/4
𝑝

× tan [√𝐷 ((𝛽𝑡 − 𝜆𝑧 + 𝜀) − 6𝛽𝜉
0√𝛼3) 𝑝

× (2
3/4
3
1/4
√𝛽𝛼
3

1/4
(−1)
1/4
𝑝
1/2
)

−1

]

× ((−1)
3/4
𝑝
3/2
)
−1

× exp [𝑖 (𝑘𝑧 − 𝜔𝑡)] ,

𝜆 = −2𝛽𝜔𝛼
1
+ 3𝛽𝜔

2
𝛼
3
+
𝐷𝛽
2

√𝛼3√−3𝛼4 − 2𝛼5

√6

,

(64)

𝜓
6
(𝑧, 𝑡) = (3/2)

1/4√𝐷√𝛽𝛼
3

1/4

× 𝑝 tanh [√𝐷 ((𝛽𝑡 − 𝜆𝑧 + 𝜀) − 6𝛽𝜉
0√𝛼3) 𝑝

× (2
3/4
3
1/4
√𝛽𝛼
3

1/4
(−1)
1/4
𝑝
1/2
)

−1

]

× ((−1)
3/4
𝑝
3/2
)
−1

× exp [𝑖 (𝑘𝑧 − 𝜔𝑡)] ,

𝜆 = −2𝛽𝜔𝛼
1
+ 3𝛽𝜔

2
𝛼
3
−
𝐷𝛽
2

√𝛼3√−3𝛼4 − 2𝛼5

√6

,

(65)

respectively, where𝑝 is as defined in (57) and 𝜉
0
is an arbitrary

integration constant.
Comparing these results with Liu’s results [39], it can be

seen that the solutions here are new.

4. Conclusion

Searching for first integrals of nonlinear ODEs is one of
the most important problems since they permit us to solve
a nonlinear differential equation by quadratures. Apply-
ing the first integral method, which is based on the ring
theory of commutative algebra, some new exact traveling
wave solutions to the (2+1)-dimensional hyperbolic non-
linear Schrodinger (HNLS) equation, generalized nonlinear
Schrodinger (GNLS) equationwith a source andhigher-order
nonlinear Schrodinger equation in nonlinear optical fibers
were established.

These solutions may be important for the explanation of
some practical physical problems.

The first integral method described herein is not only
efficient but also has the merit of being widely applicable.
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Therefore, this method can be applied to other nonlinear
evolution equations and this will be done elsewhere.
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