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By using the Riccati transformation technique and constructing a class of Philos-type functions on time scales, we establish
some new interval oscillation criteria for the second-order damped nonlinear dynamic equations with forced term of the form
(𝑟(𝑡)𝑥Δ(𝑡))

Δ
+ 𝑝(𝑡)𝑥Δ𝜎(𝑡) + 𝑞(𝑡)(𝑥𝜎(𝑡))

𝛼
= 𝐹(𝑡, 𝑥𝜎(𝑡)) on a time scale T which is unbounded, where 𝛼 is a quotient of odd positive

integer. Our results in this paper extend and improve some known results. Some examples are given here to illustrate our main
results.

1. Introduction

In this paper, we are concerned with the oscillation criteria
for the following forced second-order nonlinear dynamic
equations with damping:

(𝑟 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑝 (𝑡) 𝑥
Δ𝜎
(𝑡) + 𝑞 (𝑡) (𝑥

𝜎
(𝑡))
𝛼
= 𝐹 (𝑡, 𝑥

𝜎
(𝑡))

(1)

on a time scale T , where 𝛼 is a quotient of odd positive
integer. Throughout this paper and without further mention,
we assume that the functions 𝑟, 𝑝, 𝑞 ∈ 𝐶rd([𝑡0,∞)T ,R), 𝐹 ∈
𝐶(T ×R,R) with 𝑟(𝑡) > 0, 𝑝(𝑡) ≤ 0, and 𝑝/𝑟𝜎 ∈R+.

The theory of time scales, which has recently received a lot
of attention, was originally introduced by Stefan Hilger in his
Ph.D. thesis in 1988 (see [1]). Since then a rapidly expanding
body of the literature has sought to unify, extend, and
generalize ideas from discrete calculus, quantum calculus,
and continuous calculus to arbitrary time scale calculus,
where a time scale is an arbitrary nonempty closed subset
of the real numbers R, and the cases when this time scale
is equal to the reals or to the integers represent the classical
theories of differential and of difference equations. Many
other interesting time scales exist, and they give rise to many

applications (see [2]). Not only does the new theory of the
so-called dynamic equations unify the theories of differential
equations and difference equations, but also it extends these
classical cases to cases “in between”, for example, to the so-
called 𝑞-difference equations when T = 𝑞N0 = {𝑞𝑡 : 𝑡 ∈

N
0
, 𝑞 > 1} (which has important applications in quantum

theory) and can be applied on different types of time scales
like T = ℎN, T = N2, and T = T

𝑛
, the space of the harmonic

numbers. A book on the subject of time scales by Bohner
and Peterson [2] summarizes and organizes much of the time
scale calculus. For advances of dynamic equations on the time
scales we refer the reader to the book [3].

Since we are interested in the oscillatory behavior of
solutions near infinity, we make the assumption throughout
this paper that the given time scale T is unbounded above.
We assume 𝑡

0
∈ T and it is convenient to assume 𝑡

0
> 0.

We define the time scale interval of the form [𝑡
0
,∞)T by

[𝑡
0
,∞)T = [𝑡0,∞)⋂ T . We assume throughout that T has

the topology that it inherits from the standard topology on
the real numbers R.

By a solution of (1), we mean a nontrivial real-valued
function 𝑥 satisfying (1) on [𝑡

𝑥
,∞)T . A solution 𝑥 of (1)

is said to be oscillatory on [𝑡
𝑥
,∞)T in case it is neither

eventually positive nor eventually negative; otherwise, it is
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nonoscillatory. Equation (1) is said to be oscillatory in case
all its solutions are oscillatory. Our attention is restricted to
those solutions of (1) which exist on some half line [𝑡

𝑥
,∞)T

and satisfy sup{|𝑥(𝑡)| : 𝑡 ≥ 𝑇} > 0 for all 𝑇 ≥ 𝑡
𝑥
.

In recent years, there has been much research activity
concerning the interval oscillation criteria for various second
order differential equations; see [4–9]. A great deal of effort
has been spent in obtaining criteria for oscillation of dynamic
equations on time scales without forcing terms and it is
usually assumed that the potential function 𝑞 is positive. We
refer the reader to the papers [10–25] and the references cited
therein. On the other hand, there has been an increasing
interest in obtaining sufficient conditions for the oscillation
and nonoscillation of solutions of dynamic equations with
forcing terms on time scales, and we refer the reader to the
papers [26–35].

In 2004, by using two inequalities due to Hölder and
Hardy and Littlewood and Polya as well as averaging func-
tions, Li [4] established several interval oscillation criteria
for the second order damped quasilinear differential equation
with forced term of the following form:

(𝑟 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝛼−1

𝑦
󸀠
(𝑡))
󸀠

+ 𝑝 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝛼−1

𝑦
󸀠
(𝑡)

+ 𝑞 (𝑡)
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨
𝛽−1
𝑦 (𝑡) = 𝑒 (𝑡) ,

(2)

where 𝑟 ∈ 𝐶1([𝑡
0
,∞),R+), and 𝛽 > 𝛼 > 0 are constants.

The obtained results were based on the information only on a
sequence of subintervals of [𝑡

0
,∞), rather than on the whole

half line, made use of the oscillatory properties of the forcing
term, and extended a known result which is obtained by
means of a Picone identity.

Erbe et al. [26] studied the forced second-order nonlinear
dynamic equation

(𝑝 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑞 (𝑡)
󵄨󵄨󵄨󵄨𝑥
𝜎
(𝑡)
󵄨󵄨󵄨󵄨
𝛾 sgn𝑥𝜎 (𝑡) = 𝑓 (𝑡) (3)

on a time scale T , where 𝛾 ≥ 1. By using the Riccati substi-
tution, the authors established some new interval oscillation
criteria, that is, the criteria given by the behavior of 𝑞 and 𝑓
on a sequence of subintervals of [𝑎,∞)T .

In [31], by constructing a class of Philos-type functions
on time scales, Li et al. established some oscillation criteria
for the second order nonlinear dynamic equations with the
forced term

𝑥
ΔΔ
(𝑡) + 𝑎 (𝑡) 𝑓 (𝑥 (𝑞 (𝑡))) = 𝑒 (𝑡) (4)

on a time scale T , where 𝑎, 𝑞, and 𝑒 are real-valued rd-
continuous functions defined on T , with 𝑞 : 𝑇 → 𝑇, 𝑞(𝑡) →
∞ as 𝑡 → ∞, and𝑓 → 𝐶(R,R), 𝑥𝑓(𝑥) > 0whenever 𝑥 ̸= 0.
The obtained results unified the oscillation of the second
order forced differential equation and the second order forced
difference equation. An example was considered to illustrate
the main results in the end.

Erbe et al. [32] were concerned with the oscillatory
behavior of the forced second-order functional dynamic
equation with mixed nonlinearities

(𝑎 (𝑡) 𝑥
Δ
(𝑡))
Δ

+

𝑛

∑
𝑖=0

𝑝
𝑖 (𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝜏𝑖 (𝑡))

󵄨󵄨󵄨󵄨
𝛼𝑖 sgn𝑥 (𝜏

𝑖 (𝑡)) = 𝑒 (𝑡)

(5)

on an arbitrary time scale T , where 𝛼
0
= 1, 𝛼

1
> 𝛼
2
>

⋅ ⋅ ⋅ > 𝛼
𝑚
> 1 > 𝛼

𝑚+1
> ⋅ ⋅ ⋅ > 𝛼

𝑛
, and 𝜏

𝑖
: T → T are

nondecreasing rd-continuous functions on R, 𝜏
𝑖
(𝑡) ≤ 𝜎(𝑡),

and lim
𝑡→∞
𝜏
𝑖
(𝑡) = ∞, for 𝑖 = 0, 1, . . . , 𝑛. Their results in

a particular case solved a problem posed by Anderson, and
their results in the special cases when the time scale is the set
of real numbers and the set of integers involved and improved
some oscillation results for second-order differential and
difference equations, respectively.

In this paper, we intend to use the Riccati transformation
technique to obtain some interval oscillation criteria for (1).
Our results do not require that 𝑞 and 𝑓 be of definite sign
and are based on the information only on a sequence of
subintervals of [𝑡

0
,∞]T rather than the whole half line. To

the best of our knowledge, nothing is known regarding the
oscillation behavior of (1) on time scales until now, and there
are few results regarding the interval oscillation criteria for (1)
on time scales without the damping term when 𝛼 < 1, so our
results expand the known scope of the study.

The paper is organized as follows. In Section 2, we present
some basic definitions and useful results from the theory of
calculus on time scales on which we rely in the later section.
In Section 3, we intend to use the Riccati transformation
technique, integral averaging technique, and inequalities to
obtain some sufficient conditions for oscillation of every
solution of (1). In Section 4, we give two examples to illustrate
Theorems 3 and 7, respectively.

2. Some Preliminaries

On any time scale T , we define the forward and the backward
jump operators by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} ,

𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} ,
(6)

where inf 0 = sup T and sup 0 = inf T . A point 𝑡 ∈ T is said to
be left-dense if 𝜌(𝑡) = 𝑡, right-dense if 𝜎(𝑡) = 𝑡, left-scattered
if 𝜌(𝑡) < 𝑡, and right-scattered if 𝜎(𝑡) > 𝑡. The graininess
function 𝜇 for a time scale T is defined by 𝜇(𝑡) = 𝜎(𝑡) − 𝑡.

For a function 𝑓 : T → R, the (delta) derivative is
defined by

𝑓
Δ
(𝑡) =

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑡)

𝜎 (𝑡) − 𝑡
, (7)

if 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered. If 𝑡 is right-
dense, then the derivative is defined by

𝑓
Δ
(𝑡) = lim
𝑠󳨀→𝑡
+

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠)

𝜎 (𝑡) − 𝑠
= lim
𝑠󳨀→𝑡
+

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠
, (8)
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provided this limit exists. A function 𝑓 : T → R is said
to be rd-continuous provided 𝑓 is continuous at right-dense
points and there exists a finite left limit at all left-dense points
in T .The set of all such rd-continuous functions is denoted by
𝐶rd(T).The derivative𝑓Δ of𝑓 and the forward jump operator
𝜎 are related by the formula

𝑓
𝜎
(𝑡) = 𝑓 (𝜎 (𝑡)) = 𝑓 (𝑡) + 𝜇 (𝑡) 𝑓

Δ
(𝑡) . (9)

Also, we will use 𝑥Δ𝜎 which is shorthand for (𝑥Δ)𝜎 to denote
𝑥Δ(𝑡)+𝜇(𝑡)𝑥ΔΔ(𝑡). We will make use of the following product
and quotient rules for the derivative of two differentiable
functions 𝑓 and 𝑔:

(𝑓𝑔)
Δ
(𝑡) = 𝑓

Δ
(𝑡) 𝑔 (𝑡) + 𝑓

𝜎
(𝑡) 𝑔
Δ
(𝑡)

= 𝑓 (𝑡) 𝑔
Δ
(𝑡) + 𝑓

Δ
(𝑡) 𝑔
𝜎
(𝑡) ,

(
𝑓

𝑔
)

Δ

(𝑡) =
𝑓Δ (𝑡) 𝑔 (𝑡) − 𝑓 (𝑡) 𝑔

Δ
(𝑡)

𝑔 (𝑡) 𝑔𝜎 (𝑡)
, if 𝑔𝑔𝜎 ̸= 0.

(10)

The integration by parts formula reads

∫
𝑐

𝑏

𝑓
Δ
(𝑡) 𝑔 (𝑡) Δ𝑡 = 𝑓 (𝑐) 𝑔 (𝑐) − 𝑓 (𝑏) 𝑔 (𝑏)

− ∫
𝑐

𝑏

𝑓
𝜎
(𝑡) 𝑔
Δ
(𝑡) Δ𝑡.

(11)

We say that a function 𝑝 : T → R is regressive provided

1 + 𝜇 (𝑡) 𝑝 (𝑡) ̸= 0, ∀𝑡 ∈ T . (12)

The set of all regressive and rd-continuous functions𝑓 : T →
R will be denoted by

R =R (T) =R (T ,R) . (13)

If 𝑝 ∈R, then we can define the exponential function by

𝑒
𝑝 (𝑡, 𝑠) = exp(∫

𝑡

𝑠

𝜉
𝜇(𝜏)
(𝑝 (𝜏)) Δ𝜏) for 𝑠, 𝑡 ∈ T , (14)

where 𝜉
ℎ
(𝑧) is the cylinder transformation, which is defined

by

𝜉
ℎ (𝑧) =

{

{

{

log (1 + ℎ𝑧)
ℎ

, ℎ ̸= 0,

𝑧, ℎ = 0.
(15)

Next, we give the following lemmas which will be used in
the proof of our main results.

Lemma 1 (see [2, Chapter 2]). If 𝑔 ∈R+; that is, 𝑔 : T → R

is rd-continuous and such that 1 + 𝜇(𝑡)𝑔(𝑡) > 0 for all 𝑡 ∈
[𝑡
0
,∞)T , then the initial value problem 𝑦Δ = 𝑔(𝑡)𝑦, 𝑦(𝑡

0
) =

𝑦
0
∈ R has a unique and positive solution on [𝑡

0
,∞)T , denoted

by 𝑒
𝑔
(𝑡, 𝑡
0
)𝑦
0
. This “exponential function” 𝑒

𝑔
(⋅, 𝑡
0
) satisfies the

semigroup property 𝑒
𝑔
(𝑎, 𝑏)𝑒

𝑔
(𝑏, 𝑐) = 𝑒

𝑔
(𝑎, 𝑐).

Lemma 2 (see [36]). If 𝜆 > 1 and 𝜌 > 1 are conjugate
numbers (1/𝜆 + 1/𝜌 = 1), then for any 𝑋,𝑌 ∈ R,

|𝑋|
𝜆

𝜆
+
|𝑌|
𝜌

𝜌
≥ |𝑋𝑌| . (16)

3. Main Results

Now, we are in a position to state and prove some new results
which guarantee that every solution of (1) oscillates. In the
sequel, we say that a function 𝑢 belongs to a function class

𝜉 (𝑎, 𝑏) := {𝑢 ∈ 𝐶
1

rd[𝑎, 𝑏]T : 𝑢 (𝑎) = 𝑢 (𝑏) = 0, 𝑢 (𝑡) ̸≡ 0} ,

(17)

denoted by 𝑢 ∈ 𝜉(𝑎, 𝑏).

Theorem 3. Assume that 𝛼 > 1 and for any 𝑇 ∈ [𝑡
0
,∞)T ,

there exist constants 𝑎
𝑘
and 𝑏
𝑘
∈ [𝑇,∞)T , such that 𝑎

𝑘
< 𝑏
𝑘
,

𝑘 = 1, 2, with

𝑞 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎
1
, 𝑏
1
]
T
∪ [𝑎
2
, 𝑏
2
]
T
, (18)

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ (−1)

𝑘
𝑓 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎

𝑘
, 𝑏
𝑘
]
T
,

𝑘 = 1, 2,

(19)

where 𝑓 ∈ 𝐶
𝑟𝑑
([𝑡
0
,∞)T ,R). Furthermore, assume that there

exist functions 𝜂 ∈ 𝐶1
𝑟𝑑
([𝑡
0
,∞)T ,R

+), 𝜂Δ(𝑡) ≥ 0, and 𝑢 ∈
𝜉(𝑎
𝑘
, 𝑏
𝑘
), 𝑘 = 1, 2, such that

∫
𝑏𝑘

𝑎𝑘

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢
Δ
(𝑡))
2

− 𝑃 (𝑡, 𝑎k) (𝑢
𝜎
(𝑡))
2
)Δ𝑡 ≤ 0,

𝑘 = 1, 2,

(20)

where

𝑃 (𝑡, 𝑎
𝑘
) = 𝛿
0 (𝑡) − 𝜂

Δ
(𝑡) 𝛿1 (𝑡, 𝑎𝑘)

+
𝜂𝜎 (𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿
1
(𝜎 (𝑡) , 𝑎𝑘) ,

𝛿
0 (𝑡) = 𝛼

1/𝛼
(
𝛼

𝛼 − 1
)
(𝛼−1)/𝛼

𝜂
𝜎
(𝑡) 𝑞
1/𝛼
(𝑡)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
(𝛼−1)/𝛼

,

𝛿
1
(𝑡, 𝑎
𝑘
) =

1

𝑒
𝑝/𝑟
𝜎 (𝑡, 𝑎
𝑘
)

× (∫
𝑡

𝑎𝑘

1

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎𝑘)
Δ𝑠)

−1

.

(21)

Then (1) is oscillatory on [𝑡
0
,∞)T .

Proof. Assume that 𝑥 is a nonoscillatory solution of (1) on
[𝑡
0
,∞)T .Without loss of generality, wemay assume that there

exists a 𝑡
1
∈ [𝑡
0
,∞)T , such that 𝑥(𝑡) > 0, 𝑥𝜎(𝑡) > 0 for all

𝑡 ∈ [𝑡
1
,∞)T . By assumption, we can choose 𝑏

1
> 𝑎
1
> 𝑡
1
,

then 𝑞(𝑡) ≥ 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) ≤ 0 on the interval [𝑎
1
, 𝑏
1
]T .

From (1), we have

(𝑟 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑝 (𝑡) 𝑥
Δ𝜎
(𝑡) ≤ 0. (22)

Using Lemma 1 and the above inequality, we get

(𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1))

Δ

≤ 0. (23)
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Hence 𝑟(𝑡)𝑥Δ(𝑡)𝑒
𝑝/𝑟
𝜎(𝑡, 𝑎
1
) is nonincreasing on [𝑎

1
, 𝑏
1
]T . So

for 𝑡 ∈ [𝑎
1
, 𝑏
1
]T ,

𝑥 (𝑡) > 𝑥 (𝑡) − 𝑥 (𝑎1) = ∫
𝑡

𝑎1

𝑟 (𝑠) 𝑥
Δ
(𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
Δ𝑠

≥ 𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1) ∫

𝑡

𝑎1

1

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
Δ𝑠.

(24)

Therefore,

𝑟 (𝑡) 𝑥
Δ
(𝑡)

𝑥 (𝑡)
<

1

𝑒
𝑝/𝑟
𝜎 (𝑡, 𝑎
1
)
(∫
𝑡

𝑎1

1

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
Δ𝑠)

−1

= 𝛿
1
(𝑡, 𝑎
1
) .

(25)

Define the function 𝜔 by

𝜔 (𝑡) = 𝜂 (𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)
, 𝑡 ∈ [𝑎

1
, 𝑏
1
]
T
. (26)

Using the product rule and the quotient rule, we obtain

𝜔
Δ
(𝑡) = 𝜂

𝜎
(𝑡)
(𝑟 (𝑡) 𝑥

Δ
(𝑡))
Δ

𝑥 (𝑡) − 𝑟 (𝑡) (𝑥
Δ
(𝑡))
2

𝑥 (𝑡) 𝑥𝜎 (𝑡)

+ 𝜂
Δ
(𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)
.

(27)

In view of (1), (26), and (27), we have

𝜔
Δ
(𝑡) = −𝜂

𝜎
(𝑡)
𝑝 (𝑡) 𝑥

Δ𝜎
(𝑡)

𝑥𝜎 (𝑡)
− 𝜂
𝜎
(𝑡) 𝑞 (𝑡) (𝑥

𝜎
(𝑡))
𝛼−1

+ 𝜂
𝜎
(𝑡)
𝐹 (𝑡, 𝑥𝜎 (𝑡))

𝑥𝜎 (𝑡)
− 𝜂
𝜎
(𝑡)
𝑟 (𝑡) (𝑥

Δ
(𝑡))
2

𝑥 (𝑡) 𝑥𝜎 (𝑡)

+ 𝜂
Δ
(𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)

= −
𝜂𝜎 (𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)

𝑟𝜎 (𝑡) 𝑥
Δ𝜎
(𝑡)

𝑥𝜎 (𝑡)
− 𝜂
𝜎
(𝑡) 𝑞 (𝑡) (𝑥

𝜎
(𝑡))
𝛼−1

− 𝜂
𝜎
(𝑡)

󵄨󵄨󵄨󵄨𝐹 (𝑡, 𝑥
𝜎
(𝑡))
󵄨󵄨󵄨󵄨

𝑥𝜎 (𝑡)
−

𝜂𝜎 (𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡)

+ 𝜂
Δ
(𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)
.

(28)

From (19), (25), and (28), we get

𝜔
Δ
(𝑡) ≤ −

𝜂𝜎 (𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿
1
(𝜎 (𝑡) , 𝑎1) − 𝜂

𝜎
(𝑡) 𝑞 (𝑡) (𝑥

𝜎
(𝑡))
𝛼−1

− 𝜂
𝜎
(𝑡)

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨

𝑥𝜎 (𝑡)
−

𝜂𝜎 (𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡)

+ 𝜂
Δ
(𝑡) 𝛿1 (𝑡, 𝑎1) .

(29)

Set

𝐺 (𝑥) = 𝜂
𝜎
(𝑡) 𝑞 (𝑡) 𝑥

𝛼−1
+ 𝜂
𝜎
(𝑡)

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨

𝑥
,

𝜆 = 𝛼, 𝜌 =
𝛼

𝛼 − 1
.

(30)

From Lemma 2, it is easy to see that

𝐺 (𝑥
𝜎
) ≥ 𝛼
1/𝛼
(
𝛼

𝛼 − 1
)
(𝛼−1)/𝛼

𝜂
𝜎
(𝑡) 𝑞
1/𝛼
(𝑡)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
(𝛼−1)/𝛼

= 𝛿
0 (𝑡) .

(31)

Since 𝑥(𝑡) > 0, we obtain

0 <
𝑥 (𝑡)

𝑟 (𝑡) 𝑥𝜎 (𝑡)
=

1

𝑟 (𝑡) + 𝜇 (𝑡) (𝑟 (𝑡) 𝑥Δ (𝑡) /𝑥 (𝑡))

=
𝜂 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
.

(32)

Thus, combining (29)–(32) and noticing that 𝜂Δ(𝑡) ≥ 0, we
have

𝜔
Δ
(𝑡) ≤ −𝑃 (𝑡, 𝑎1) −

1

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
𝜔
2
(𝑡) , (33)

where 𝑃 is defined as in Theorem 3. Multiplying (33) by
(𝑢𝜎(𝑡))

2 and integrating from 𝑎
1
to 𝑏
1
, we get

∫
𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
Δ
(𝑡) Δ𝑡 ≤ −∫

𝑏1

𝑎1

𝑃 (𝑡, 𝑎
1
) (𝑢
𝜎
(𝑡))
2
Δ𝑡

− ∫
𝑏1

𝑎1

(𝑢𝜎 (𝑡))
2
𝜔2 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡.

(34)

Using integration by parts on the first integral, we obtain

𝑢
2
(𝑡) 𝜔 (𝑡)

󵄨󵄨󵄨󵄨󵄨

𝑏1

𝑎1

− ∫
𝑏1

𝑎1

(𝑢 (𝑡) + 𝑢
𝜎
(𝑡)) 𝑢
Δ
(𝑡) 𝜔 (𝑡) Δ𝑡

≤ −∫
𝑏1

𝑎1

𝑃 (𝑡, 𝑎
1
) (𝑢
𝜎
(𝑡))
2
Δ𝑡 − ∫

𝑏1

𝑎1

(𝑢𝜎 (𝑡))
2
𝜔2 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡.

(35)
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Rearranging and using 𝑢(𝑎
1
) = 0 = 𝑢(𝑏

1
), we have

0 ≥ ∫
𝑏1

𝑎1

(𝑢𝜎 (𝑡))
2
𝜔2 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡

− ∫
𝑏1

𝑎1

(𝑢 (𝑡) + 𝑢
𝜎
(𝑡)) 𝑢
Δ
(𝑡) 𝜔 (𝑡) Δ𝑡

+ ∫
𝑏1

𝑎1

𝑃 (𝑡, 𝑎
1
) (𝑢
𝜎
(𝑡))
2
Δ𝑡

= ∫
𝑏1

𝑎1

(𝑢𝜎 (𝑡))
2
𝜔2 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡

− ∫
𝑏1

𝑎1

(2𝑢
𝜎
(𝑡) 𝑢
Δ
(𝑡) 𝜔 (𝑡)

−𝜇 (𝑡) (𝑢
Δ
(𝑡))
2

𝜔 (𝑡)) Δ𝑡

+ ∫
𝑏1

𝑎1

𝑃 (𝑡, 𝑎
1
) (𝑢
𝜎
(𝑡))
2
Δ𝑡.

(36)

Adding and subtracting the term ∫𝑏1
𝑎1

𝜂(𝑡)𝑟(𝑡)(𝑢Δ(𝑡))
2
Δ𝑡 and

using (20), we get

0 ≥ ∫
𝑏1

𝑎1

[
(𝑢𝜎 (𝑡))

2
𝜔2 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
− 2𝑢
𝜎
(𝑡) 𝑢
Δ
(𝑡) 𝜔 (𝑡)

+ (𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)) (𝑢
Δ
(𝑡))
2

]Δ𝑡

− ∫
𝑏1

𝑎1

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢
Δ
(𝑡))
2

− 𝑃 (𝑡, 𝑎
1
) (𝑢
𝜎
(𝑡))
2
)Δ𝑡

≥ ∫
𝑏1

𝑎1

[
𝑢𝜎 (𝑡) 𝜔 (𝑡)

√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)

−√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)𝑢
Δ
(𝑡) ]

2

Δ𝑡.

(37)

It follows that

∫
𝑏1

𝑎1

[
𝑢𝜎 (𝑡) 𝜔 (𝑡)

√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)

−√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)𝑢
Δ
(𝑡) ]

2

Δ𝑡 = 0.

(38)

This implies that

𝑢
𝜎
(𝑡) 𝜔 (𝑡)

√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)

− √𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)𝑢
Δ
(𝑡) = 0, 𝑡 ∈ [𝑎1, 𝑏1]T .

(39)

Solving for 𝑢Δ, we get that 𝑢 solves the IVP

𝑢
Δ
(𝑡) =

𝜔 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
𝑢
𝜎
(𝑡) ,

𝑢 (𝑎
1
) = 0, for 𝑡 ∈ [𝑎

1
, 𝑏
1
]
T
.

(40)

Since −𝜔/(𝜂𝑟 + 𝜇𝜔) ∈ R, we obtain from [2, Theorem 2.7.1]
that 𝑢(𝑡) ≡ 0 on [𝑎

1
, 𝑏
1
]T , which is a contradiction. The proof

when 𝑥 is eventually negative follows the same arguments
using the interval [𝑎

2
, 𝑏
2
]T instead of [𝑎

1
, 𝑏
1
]T , where we use

𝑞(𝑡) ≥ 0,𝐹(𝑡, 𝑥𝜎(𝑡)) ≥ 0 on [𝑎
2
, 𝑏
2
]T , and∫

𝑏2

𝑎2

(𝜂(𝑡)𝑟(𝑡)(𝑢Δ(𝑡))
2
−

𝑃(𝑡)(𝑢𝜎(𝑡))
2
)Δ𝑡 ≤ 0. The proof is complete.

Remark 4. When 𝑝(𝑡) = 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) = 𝑓(𝑡), Theorem 3
contains Theorem 3.2 in [26].

Theorem 5. Assume that 𝛼 = 1 and for any 𝑇 ∈ [𝑡
0
,∞)T ,

there exist constants 𝑎
𝑘
and 𝑏
𝑘
∈ [𝑇,∞)T , such that 𝑎

𝑘
< 𝑏
𝑘
,

𝑘 = 1, 2, with
𝑞 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎

1
, 𝑏
1
]
T
∪ [𝑎
2
, 𝑏
2
]
T
,

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ 0, for 𝑡 ∈ [𝑎

𝑘
, 𝑏
𝑘
]
T
, 𝑘 = 1, 2.

(41)

Furthermore, assume that there exist functions
𝜂 ∈ 𝐶1

𝑟𝑑
([𝑡
0
,∞)T ,R

+), 𝜂Δ(𝑡) ≥ 0, and 𝑢 ∈ 𝜉(𝑎
𝑘
, 𝑏
𝑘
),

𝑘 = 1, 2, such that

∫
𝑏𝑘

𝑎𝑘

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢
Δ
(𝑡))
2

− 𝐾 (𝑡, 𝑎
𝑘
) (𝑢
𝜎
(𝑡))
2
)Δ𝑡 ≤ 0,

𝑘 = 1, 2,

(42)

where
K (𝑡, 𝑎

𝑘
) = 𝜂
𝜎
(𝑡) 𝑞 (𝑡) − 𝜂

Δ
(𝑡) 𝛿1 (𝑡, 𝑎𝑘)

+
𝜂𝜎 (𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿
1
(𝜎 (𝑡) , 𝑎𝑘) ,

(43)

and 𝛿
1
is defined as in Theorem 3. Then (1) is oscillatory on

[𝑡
0
,∞)T .

Proof. Assume that 𝑥 is a nonoscillatory solution of (1) on
[𝑡
0
,∞)T .Without loss of generality, wemay assume that there

exists a 𝑡
1
∈ [𝑡
0
,∞)T , such that 𝑥(𝑡) > 0, 𝑥𝜎(𝑡) > 0 for all

𝑡 ∈ [𝑡
1
,∞)T . By assumption, we can choose 𝑏

1
> 𝑎
1
> 𝑡
1
,

then 𝑞(𝑡) ≥ 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) ≤ 0 on the interval [𝑎
1
, 𝑏
1
]T .

We define 𝜔 as in Theorem 3. Proceeding as in the proof of
Theorem 3 and from (25) and (32), we get

𝜔
Δ
(𝑡) = −

𝜂𝜎 (𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)

𝑟𝜎 (𝑡) 𝑥
Δ𝜎
(𝑡)

𝑥𝜎 (𝑡)
− 𝜂
𝜎
(𝑡) 𝑞 (𝑡)

− 𝜂
𝜎
(𝑡)

󵄨󵄨󵄨󵄨𝐹 (𝑡, 𝑥
𝜎
(𝑡))
󵄨󵄨󵄨󵄨

𝑥𝜎 (𝑡)

−
𝜂𝜎 (𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡) + 𝜂

Δ
(𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)

≤ −𝐾 (𝑡, 𝑎
1
) −

1

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
𝜔
2
(𝑡) ,

(44)
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where 𝐾 is defined as in Theorem 5. Multiplying (44) by
(𝑢𝜎(𝑡))

2 and integrating from 𝑎
1
to 𝑏
1
, we get

∫
𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
Δ
(𝑡) Δ𝑡 ≤ −∫

𝑏1

𝑎1

𝐾(𝑡, 𝑎
1
) (𝑢
𝜎
(𝑡))
2
Δ𝑡

− ∫
𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
2
(𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡.

(45)

The rest of the argument proceeds as in Theorem 3 to get a
contradiction to (42). The proof is complete.

Remark 6. When 𝑝(𝑡) = 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) = 𝑓(𝑡), Theorem 5
contains Theorem 2.1 in [26].

Theorem 7. Assume that 𝛼 < 1 and for any 𝑇 ∈ [𝑡
0
,∞)T ,

there exist constants 𝑎
𝑘
and 𝑏

𝑘
∈ [𝑇,∞)T , such that 𝑎

𝑘
< 𝑏
𝑘
,

𝑘 = 1, 2, with

𝑞 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎
1
, 𝑏
1
]
T
∪ [𝑎
2
, 𝑏
2
]
T
, (46)

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ (−1)

𝑘
𝑓 (𝑡) (𝑥

𝜎
(𝑡))
𝛼+1
≥ 0

for 𝑡 ∈ [𝑎
𝑘
, 𝑏
𝑘
]
T
, 𝑘 = 1, 2,

(47)

where 𝑓 ∈ 𝐶
𝑟𝑑
([𝑡
0
,∞)T ,R). Furthermore, assume that there

exist functions 𝜂 ∈ 𝐶1
𝑟𝑑
([𝑡
0
,∞)T ,R

+), 𝜂Δ(𝑡) ≥ 0, and 𝑢 ∈
𝜉(𝑎
𝑘
, 𝑏
𝑘
), 𝑘 = 1, 2, such that

∫
𝑏𝑘

𝑎𝑘

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢
Δ
(𝑡))
2

− 𝑃
1
(𝑡, 𝑎
𝑘
) (𝑢
𝜎
(𝑡))
2
)Δ𝑡 ≤ 0,

𝑘 = 1, 2,

(48)

where

𝑃
1
(𝑡, 𝑎
𝑘
) = 𝛿
2 (𝑡) − 𝜂

Δ
(𝑡) 𝛿1 (𝑡, 𝑎𝑘)

+
𝜂𝜎 (𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿
1
(𝜎 (𝑡) , 𝑎𝑘) ,

𝛿
2 (𝑡) =

1

𝛼𝛼(1 − 𝛼)
1−𝛼
𝜂
𝜎
(𝑡) 𝑞
𝛼
(𝑡)
󵄨󵄨󵄨󵄨𝑓(𝑡)
󵄨󵄨󵄨󵄨
1−𝛼
,

(49)

and 𝛿
1
is defined as in Theorem 3. Then (1) is oscillatory on

[𝑡
0
,∞)T .

Proof. Assume that 𝑥 is a nonoscillatory solution of (1) on
[𝑡
0
,∞)T .Without loss of generality, wemay assume that there

exists a 𝑡
1
∈ [𝑡
0
,∞)T , such that 𝑥(𝑡) > 0, 𝑥𝜎(𝑡) > 0 for all

𝑡 ∈ [𝑡
1
,∞)T . By assumption, we can choose 𝑏

1
> 𝑎
1
> 𝑡
1
,

then 𝑞(𝑡) ≥ 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) ≤ 0 on the interval [𝑎
1
, 𝑏
1
]T .

We define 𝜔 as in Theorem 3. Proceeding as in the proof of
Theorem 3, we have (28). Hence, from (25), (28), and (47),
we get

𝜔
Δ
(𝑡) ≤ −

𝜂𝜎 (𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿
1
(𝜎 (𝑡) , 𝑎1) −

𝜂𝜎 (𝑡) 𝑞 (𝑡)

(𝑥𝜎 (𝑡))
1−𝛼

− 𝜂
𝜎
(𝑡)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 (𝑥
𝜎
(𝑡))
𝛼

−
𝜂𝜎 (𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡) + 𝜂

Δ
(𝑡) 𝛿1 (𝑡, 𝑎1) .

(50)

Set

𝐺 (𝑥) =
𝜂
𝜎
(𝑡) 𝑞 (𝑡)

𝑥1−𝛼
− 𝜂
𝜎
(𝑡)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨 𝑥
𝛼
,

𝜆 =
1

𝛼
, 𝜌 =

1

1 − 𝛼
.

(51)

From Lemma 2, it is easy to see that

𝐺 (𝑥
𝜎
) ≥

1

𝛼𝛼(1 − 𝛼)
1−𝛼
𝜂
𝜎
(𝑡) 𝑞
𝛼
(𝑡)
󵄨󵄨󵄨󵄨𝑓 (𝑡)

󵄨󵄨󵄨󵄨
1−𝛼
= 𝛿
2 (𝑡) . (52)

Thus, combining (32), (50), and (52) and noticing that 𝜂Δ(𝑡) ≥
0, we have

𝜔
Δ
(𝑡) ≤ −𝑃1 (𝑡, 𝑎1) −

1

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
𝜔
2
(𝑡) , (53)

where 𝑃
1
is defined as in Theorem 7. Multiplying (53) by

(𝑢𝜎(𝑡))
2 and integrating from 𝑎

1
to 𝑏
1
, we get

∫
𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
Δ
(𝑡) Δ𝑡 ≤ −∫

𝑏1

𝑎1

𝑃
1
(𝑡, 𝑎
1
) (𝑢
𝜎
(𝑡))
2
Δ𝑡

− ∫
𝑏1

𝑎1

(𝑢𝜎 (𝑡))
2
𝜔2 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡.

(54)

The rest of the argument proceeds as in Theorem 3 to get a
contradiction to (47). The proof is complete.

Next, let us introduce the class of functions 𝑌, which will
be extensively used in the sequel.

Let D
0
= {(𝑡, 𝑠) ∈ T2 : 𝑡 > 𝑠 ≥ 𝑡

0
} and D = {(𝑡, 𝑠) ∈ T2 :

𝑡 ≥ 𝑠 ≥ 𝑡
0
}. We say that the function𝐻 ∈ 𝐶rd(D,R) belongs

to the class 𝑌, if

(i) 𝐻(𝑡, 𝑡) = 0, 𝑡 ≥ 𝑡
0
,𝐻(𝑡, 𝑠) > 0 on D

0
;

(ii) 𝐻 has continuous Δ-partial derivatives 𝐻Δ 𝑡(𝑡, 𝑠) and
𝐻Δ 𝑠(𝑡, 𝑠) on D such that

𝐻
Δ 𝑡 (𝑡, 𝜎 (𝑠)) = ℎ1 (𝑡, 𝑠) √𝐻 (𝜎 (𝑡) , 𝜎 (𝑠)),

𝐻
Δ 𝑠 (𝜎 (𝑡) , 𝑠) = −ℎ2 (𝑡, 𝑠) √𝐻 (𝜎 (𝑡) , 𝜎 (𝑠)),

(55)

where ℎ
1
and ℎ

2
∈ 𝐶rd(D,R).

Theorem 8. Assume that 𝛼 > 1 and for any 𝑇 ∈ [𝑡
0
,∞)T ,

there exist constants 𝑎
𝑘
and 𝑏
𝑘
∈ [𝑇,∞)T , such that 𝑎

𝑘
< 𝑏
𝑘
,

𝑘 = 1, 2, with

𝑞 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎
1
, 𝑏
1
]
T
∪ [𝑎
2
, 𝑏
2
]
T
,

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ (−1)

𝑘
𝑓 (𝑡) ≥ 0,

for 𝑡 ∈ [𝑎
𝑘
, 𝑏
𝑘
]
T
, 𝑘 = 1, 2,

(56)
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where 𝑓 ∈ 𝐶
𝑟𝑑
([𝑡
0
,∞)T ,R). Furthermore, assume that there

exists a function 𝜂 ∈ 𝐶1
𝑟𝑑
([𝑡
0
,∞)T ,R

+) such that for some𝐻 ∈
𝑌 and 𝑐

𝑘
∈ (𝑎
𝑘
, 𝑏
𝑘
)T ,

1

𝐻 (𝜎 (𝑐
𝑘
) , 𝜎 (𝑎

𝑘
))
∫
𝑐𝑘

𝑎𝑘

[𝐻 (𝜎 (𝑠) , 𝜎 (𝑎𝑘)) 𝑄 (𝑠, 𝑎k)

−
𝜂2 (𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎𝑘)
𝜙
2

1
(𝑠, 𝑎
𝑘
)]Δ𝑠

+
1

𝐻 (𝜎 (𝑏
𝑘
) , 𝜎 (𝑐

𝑘
))
∫
𝑏𝑘

𝑐𝑘

[𝐻 (𝜎 (𝑏
𝑘
) , 𝜎 (𝑠)) 𝑄 (𝑠, 𝑎k)

−
𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿(𝑠, 𝑎𝑘)
𝜙
2

2
(𝑏
𝑘
, 𝑠)]

× Δ𝑠 > 0, 𝑘 = 1, 2,

(57)

where

𝜙
1
(𝑠, 𝑎
𝑘
) = ℎ
1
(𝑠, 𝑎
𝑘
) + √𝐻(𝜎 (𝑠) , 𝜎 (𝑎𝑘))

𝜂Δ (𝑠)

𝜂 (𝑠)
,

𝜙
2
(𝑏
𝑘
, 𝑠) = ℎ

2
(𝑏
𝑘
, 𝑠) − √𝐻 (𝜎 (𝑏

𝑘
) , 𝜎 (𝑠))

𝜂Δ (𝑠)

𝜂 (𝑠)
,

𝑄 (𝑡, 𝑎
𝑘
) = 𝛿
0 (𝑡) +

𝜂𝜎 (𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿
1
(𝜎 (𝑡) , 𝑎𝑘) ,

𝛿 (𝑡, 𝑎
𝑘
) = ∫
𝑡

𝑎𝑘

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎𝑘)
(∫
𝜎(𝑡)

𝑎𝑘

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎𝑘)
)

−1

,

(58)

and 𝛿
0
and 𝛿

1
are defined as in Theorem 3. Then (1) is

oscillatory on [𝑡
0
,∞)T .

Proof. Assume that 𝑥 is a nonoscillatory solution of (1) on
[𝑡
0
,∞)T .Without loss of generality, wemay assume that there

exists a 𝑡
1
∈ [𝑡
0
,∞)T , such that 𝑥(𝑡) > 0, 𝑥𝜎(𝑡) > 0 for all

𝑡 ∈ [𝑡
1
,∞)T . By assumption, we can choose 𝑏

1
> 𝑎
1
> 𝑡
1
,

then 𝑞(𝑡) ≥ 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) ≤ 0 on the interval [𝑎
1
, 𝑏
1
]T . We

define the function 𝜔 as in Theorem 3. Proceeding as in the
proof of Theorem 3 and from (25) and (31), we get

𝜔
Δ
(𝑡) ≤ −𝑄 (𝑡, 𝑎1) +

𝜂Δ (𝑡)

𝜂 (𝑡)
𝜔 (𝑡) −

𝜂𝜎 (𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡) ,

(59)

where𝑄 is defined as inTheorem 7. Since 𝑟(𝑡)𝑥Δ(𝑡)𝑒
𝑝/𝑟
𝜎(𝑡, 𝑎
1
)

is nonincreasing on [𝑎
1
, 𝑏
1
]T , we obtain

𝑥
𝜎
(𝑡) − 𝑥 (𝑡) = ∫

𝜎(𝑡)

𝑡

𝑟 (𝑠) 𝑥
Δ
(𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
Δ𝑠

≤ 𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1) ∫

𝜎(𝑡)

𝑡

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
,

(60)

hence

𝑥
𝜎
(𝑡)

𝑥 (𝑡)
≤ 1 +

𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1)

𝑥 (𝑡)
∫
𝜎(𝑡)

𝑡

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
.

(61)

From (25), we have

𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1)

𝑥 (𝑡)
< (∫
𝑡

𝑎1

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
)

−1

. (62)

Therefore, from (61) and (62), we get

𝑥𝜎 (𝑡)

𝑥 (𝑡)
< ∫
𝜎(𝑡)

𝑎1

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
(∫
𝑡

𝑎1

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
)

−1

=
1

𝛿 (𝑡, 𝑎
1
)
.

(63)

Combining (59) and (63), we obtain

𝜔
Δ
(𝑡) ≤ −𝑄 (𝑡, 𝑎1) +

𝜂Δ (𝑡)

𝜂 (𝑡)
𝜔 (𝑡)

−
𝜂
𝜎
(𝑡) 𝛿 (𝑡, 𝑎1)

𝜂2 (𝑡) 𝑟 (𝑡)
𝜔
2
(𝑡) , 𝑡 ∈ [𝑎1, 𝑏1]T .

(64)

Multiplying both sides of (64) by𝐻(𝜎(𝑠), 𝜎(𝑡)) and integrat-
ing with respect to 𝑠 from 𝑡 to 𝑐

1
for 𝑡 ∈ (𝑎

1
, 𝑐
1
]T , we have

∫
𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡)) 𝑄 (𝑠, 𝑎1) Δ𝑠

≤ −∫
𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡)) 𝜔
Δ
(𝑠) Δ𝑠

+ ∫
𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡))
𝜂
Δ
(𝑠)

𝜂 (𝑠)
𝜔 (𝑠) Δ𝑠

− ∫
𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡))
𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝜂2 (𝑠) 𝑟 (𝑠)
𝜔
2
(𝑠) Δ𝑠.

(65)

In view of (i) and (ii), we see that

∫
𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡)) 𝜔
Δ
(𝑠) Δ𝑠

= 𝐻 (𝜎 (𝑐
1
) , 𝜎 (𝑡)) 𝜔 (𝑐1)

− ∫
𝑐1

𝑡

ℎ
1 (𝑠, 𝑡) √𝐻 (𝜎 (𝑠) , 𝜎 (𝑡))𝜔 (𝑠) Δ𝑠.

(66)
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Using (66) in (65) leads to

∫
𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡)) 𝑄 (𝑠, 𝑎1) Δ𝑠

≤ −𝐻 (𝜎 (𝑐
1
) , 𝜎 (𝑡)) 𝜔 (𝑐1)

− ∫
𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡))
𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝜂2 (𝑠) 𝑟 (𝑠)
𝜔
2
(𝑠) Δ𝑠

+ ∫
𝑐1

𝑡

(ℎ
1 (𝑠, 𝑡) √𝐻 (𝜎 (𝑠) , 𝜎 (𝑡))

+𝐻 (𝜎 (𝑠) , 𝜎 (𝑡))
𝜂
Δ
(𝑠)

𝜂 (𝑠)
)𝜔 (𝑠) Δ𝑠

= −𝐻 (𝜎 (𝑐
1
) , 𝜎 (𝑡)) 𝜔 (𝑐1)

+ ∫
𝑐1

𝑡

𝜂2 (𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

1
(𝑠, 𝑡) Δ𝑠

− ∫
𝑐1

𝑡

(√𝐻(𝜎 (𝑠) , 𝜎 (𝑡))
𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝑟 (𝑠)

𝜔 (𝑠)

𝜂 (𝑠)

−
𝜂 (𝑠)√𝑟 (𝑠)

2√𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝜙
1 (𝑠, 𝑡))

2

Δ𝑠

≤ −𝐻 (𝜎 (𝑐
1
) , 𝜎 (𝑡)) 𝜔 (𝑐1)

+ ∫
𝑐1

𝑡

𝜂2 (𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

1
(𝑠, 𝑡) Δ𝑠.

(67)

Letting 𝑡 → 𝑎+
1
in the above inequality, we get

1

𝐻 (𝜎 (𝑐
1
) , 𝜎 (𝑎

1
))
∫
𝑐1

𝑎1

[𝐻 (𝜎 (𝑠) , 𝜎 (𝑎1)) 𝑄 (𝑠, 𝑎1)

−
𝜂2 (𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

1
(𝑠, 𝑎
1
)]Δ𝑠

≤ −𝜔 (𝑐
1
) .

(68)

Similarly, multiplying both sides of (64) by𝐻(𝜎(𝑡), 𝜎(𝑠)) and
integrating with respect to 𝑠 from 𝑐

1
to 𝑡 for 𝑡 ∈ [𝑐

1
, 𝑏
1
)T , we

obtain

∫
𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠)) 𝑄 (𝑠, 𝑎1) Δ𝑠

≤ −∫
𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠)) 𝜔
Δ
(𝑠) Δ𝑠

+ ∫
𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠))
𝜂Δ (𝑠)

𝜂 (𝑠)
𝜔 (𝑠) Δ𝑠

− ∫
𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠))
𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝜂2 (𝑠) 𝑟 (𝑠)
𝜔
2
(𝑠) Δ𝑠

≤ 𝐻 (𝜎 (𝑡) , 𝜎 (𝑐1)) 𝜔 (𝑐1)

− ∫
𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠))
𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝜂2 (𝑠) 𝑟 (𝑠)
𝜔
2
(𝑠) Δ𝑠

− ∫
𝑡

𝑐1

(ℎ
2 (𝑡, 𝑠) √𝐻 (𝜎 (𝑡) , 𝜎 (𝑠))

−𝐻 (𝜎 (𝑡) , 𝜎 (𝑠))
𝜂Δ (𝑠)

𝜂 (𝑠)
)𝜔 (𝑠) Δ𝑠

= 𝐻 (𝜎 (𝑡) , 𝜎 (𝑐1)) 𝜔 (𝑐1)

+ ∫
𝑡

𝑐1

𝜂2 (𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

2
(𝑡, 𝑠) Δ𝑠

− ∫
𝑡

𝑐1

(√𝐻(𝜎 (𝑡) , 𝜎 (𝑠))
𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝑟 (𝑠)

𝜔 (𝑠)

𝜂 (𝑠)

+
𝜂 (𝑠)√𝑟 (𝑠)

2√𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝜙
2 (𝑡, 𝑠))

2

Δ𝑠

≤ 𝐻 (𝜎 (𝑡) , 𝜎 (𝑐1)) 𝜔 (𝑐1)

+ ∫
𝑡

𝑐1

𝜂2 (𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

2
(𝑡, 𝑠) Δ𝑠.

(69)

Letting 𝑡 → 𝑏−
1
in the above inequality, we get

1

𝐻 (𝜎 (𝑏
1
) , 𝜎 (𝑐

1
))
∫
𝑏1

𝑐1

[𝐻 (𝜎 (𝑏
1
) , 𝜎 (𝑠)) 𝑄 (𝑠, 𝑎1)

−
𝜂2 (𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

2
(𝑏
1
, 𝑠)] Δ𝑠

≤ 𝜔 (𝑐
1
) .

(70)

Adding (68) and (70), we get a contradiction to (57). This
completes the proof.

Theorem 9. Assume that 𝛼 < 1 and for any 𝑇 ∈ [𝑡
0
,∞)T ,

there exist constants 𝑎
𝑘
and 𝑏
𝑘
∈ [𝑇,∞)T , such that 𝑎

𝑘
< 𝑏
𝑘
,

𝑘 = 1, 2, with

𝑞 (𝑡) ≥ 0 for 𝑡 ∈ [𝑎
1
, 𝑏
1
]
T
∪ [𝑎
2
, 𝑏
2
]
T
,

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ (−1)

𝑘
𝑓 (𝑡) (𝑥

𝜎
(𝑡))
𝛼+1
≥ 0,

for 𝑡 ∈ [𝑎
𝑘
, 𝑏
𝑘
]
T
, 𝑘 = 1, 2,

(71)
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where 𝑓 ∈ 𝐶
𝑟𝑑
([𝑡
0
,∞)T ,R). Furthermore, assume that there

exists a function 𝜂 ∈ 𝐶1
𝑟𝑑
([𝑡
0
,∞)T ,R

+) such that for some𝐻 ∈
𝑌 and 𝑐

𝑘
∈ (𝑎
𝑘
, 𝑏
𝑘
)T ,

1

𝐻 (𝜎 (𝑐
𝑘
) , 𝜎 (𝑎

𝑘
))
∫
𝑐𝑘

𝑎𝑘

[𝐻 (𝜎 (𝑠) , 𝜎 (𝑎𝑘)) 𝑄 (𝑠, 𝑎𝑘)

−
𝜂2 (𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎𝑘)
𝜙
2

1
(𝑠, 𝑎
𝑘
)]Δ𝑠

+
1

𝐻 (𝜎 (𝑏
𝑘
) , 𝜎 (𝑐

𝑘
))
∫
𝑏𝑘

𝑐𝑘

[𝐻 (𝜎 (𝑏
𝑘
) , 𝜎 (𝑠)) 𝑄 (𝑠, 𝑎𝑘)

−
𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎𝑘)
𝜙
2

2
(𝑏
𝑘
, 𝑠)]

× Δ𝑠 > 0, 𝑘 = 1, 2,

(72)

where

𝑄 (𝑡, 𝑎
𝑘
) = 𝛿
2 (𝑡) +

𝜂𝜎 (𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿
1
(𝜎 (𝑡) , 𝑎𝑘) . (73)

𝛿
1
is defined as inTheorem 3, 𝛿

2
is defined as inTheorem 7, and

𝜙
1
, 𝜙
2
, and 𝛿 are defined as inTheorem 8.Then (1) is oscillatory

on [𝑡
0
,∞)T .

Theproof ofTheorem 9 is similar to that ofTheorem 8, so
we omit the proof.

Remark 10. The main results in this paper can also be
extended to the following second order damped dynamic
equations with mixed nonlinearities:

(𝑟 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑝 (𝑡) 𝑥
Δ𝜎
(𝑡) + 𝑞0 (𝑡) 𝑥 (𝜏0 (𝑡))

+ 𝑞
1 (𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝜏1 (𝑡))

󵄨󵄨󵄨󵄨
𝛽−1
𝑥 (𝜏
1 (𝑡))

+ 𝑞
2 (𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝜏2 (𝑡))

󵄨󵄨󵄨󵄨
𝛾−1
𝑥 (𝜏
2 (𝑡)) = 𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ,

(74)

where 𝛾 > 1 > 𝛽 > 0, 𝜏
𝑖
(𝑡) ≤ 𝜎(𝑡), 𝑖 = 0, 1, 2, or the more

general equation

(𝑟 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑝 (𝑡) 𝑥
Δ𝜎
(𝑡)

+

𝑛

∑
𝑖=0

𝑞
𝑖 (𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝜏𝑖 (𝑡))

󵄨󵄨󵄨󵄨
𝛼𝑖−1𝑥 (𝜏

𝑖 (𝑡)) = 𝐹 (𝑡, 𝑥
𝜎
(𝑡))

(75)

on any arbitrary time scale T , where 𝛼
0
= 1, 𝛼

1
> 𝛼
2
> ⋅ ⋅ ⋅ >

𝛼
𝑚
> 1 > 𝛼

𝑚+1
> ⋅ ⋅ ⋅ > 𝛼

𝑛
> 0 and 𝜏

𝑖
are nondecreasing rd-

continuous functions on R with 𝜏
𝑖
(𝑡) ≤ 𝜎(𝑡), 𝑖 = 0, 1, . . . , 𝑛.

Due to the limited space, we omit it here and leave it to the
readers who are interested in this problem.

4. Examples

In this section, we will show the applications of our interval
oscillation criteria in two examples. Firstly, we will give an
example to illustrate Theorem 3.

Example 1. Consider the following second order forced
difference equations with damping:

Δ(𝑡 (sin 𝜋𝑡
4
+ 2)Δ𝑥 (𝑡))

−
𝑡2 − 1

𝑡2
(sin 𝜋 (𝑡 + 1)

4
+ 2)Δ𝑥 (𝑡)

+
𝑐
0

(𝑡 + 1)
2
(sin 𝜋𝑡

4
+ 2) 𝑥

2
(𝑡) = − cos 𝜋𝑡

4
,

(76)

for 𝑡 ≥ 2, where 𝑐
0
is a positive constant. Here

𝑟 (𝑡) = 𝑡 (sin 𝜋𝑡
4
+ 2) ,

𝑝 (𝑡) = −
𝑡2 − 1

𝑡2
(sin 𝜋 (𝑡 + 1)

4
+ 2) ,

𝑞 (𝑡) =
𝑐
0

(𝑡 + 1)
2
(sin 𝜋𝑡

4
+ 2) ,

𝐹 (𝑡, 𝑥 (𝑡)) = 𝑓 (𝑡) = − cos 𝜋𝑡
4
, 𝛼 = 2.

(77)

Let

𝑎
1
= 8ℎ, 𝑏

1
= 𝑎
2
= 8ℎ + 2,

𝑏
2
= 8ℎ + 4, ℎ = 1, 2, . . . ,

(78)

such that

𝑞 (𝑡) ≥ 0, (−1)
𝑘
𝑓 (𝑡) ≥ 0,

𝑡 ∈ [8ℎ, 8ℎ + 2) ∪ [8ℎ + 2, 8ℎ + 4) , 𝑘 = 1, 2.
(79)

For 𝑡 ≥ 2, we obtain

𝛿
1
(𝜎 (𝑡) , 𝑎𝑘)

=
1

(1 + 𝜇 (𝑡) (𝑝 (𝑡) /𝑟𝜎 (𝑡))) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎𝑘)

×(∫
𝜎(𝑡)

𝑎𝑘

1

(1+𝜇 (𝑠) (𝑝 (𝑠) /𝑟𝜎 (𝑠))) 𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎𝑘)
Δ𝑠)

−1

≤
𝑡

𝑡 − 1
𝛿
1
(𝑡, 𝑎
𝑘
) .

(80)
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Setting 𝜂(𝑡) = 1/𝑡 and 𝑢(𝑡) = sin(𝜋𝑡/2), we have

𝑃 (𝑡, 𝑎
𝑘
) ≥ 2 (𝑡 + 1) (

𝑐
0

(𝑡 + 1)
2
(sin 𝜋𝑡

4
+ 2))

1/2󵄨󵄨󵄨󵄨󵄨󵄨󵄨
− cos 𝜋𝑡

4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/2

= 2(𝑐
0
(sin 𝜋𝑡

4
+ 2)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
cos 𝜋𝑡
4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)
1/2

,

𝑏1−1

∑
𝑗=𝑎1

(𝜂 (𝑗) 𝑟 (𝑗) (Δ𝑢 (𝑗))
2
− 𝑃 (𝑗, 𝑎

1
) 𝑢
2
(𝑗 + 1))

≤

8ℎ+1

∑
𝑗=8ℎ

(
1

𝑗
⋅ 𝑗 (sin

𝜋𝑗

4
+2)(sin

𝜋 (𝑗 + 1)

2
−sin

𝜋𝑗

2
)

2

−2(𝑐
0
(sin

𝜋𝑗

4
+ 2) cos

𝜋𝑗

4
)
1/2

sin2
𝜋 (𝑗 + 1)

2
)

=
√2

2
+ 4 − 2(2𝑐

0
)
1/2
.

(81)

Then byTheorem 3, every solution of (76) is oscillatory if

𝑐
0
≥
1

2
(
√2

4
+ 2)

2

. (82)

Next, we will give an example to illustrate Theorem 7.

Example 2. Consider the following second order forced
differential equations with damping:

(𝑡 (sin 2𝑡 + 2) 𝑥󸀠 (𝑡))
󸀠

− (sin 2𝑡 + 2) 𝑥󸀠 (𝑡) +
𝑐
0
cos22𝑡
𝑡1/𝛼

𝑥
𝛼
(𝑡)

= − sin 2𝑡, 𝑡 ≥ 1,
(83)

where 𝑐
0
is a positive constant. Here,

𝑟 (𝑡) = 𝑡 (sin 2𝑡 + 2) , 𝑝 (𝑡) = − sin 2𝑡 − 2,

𝑞 (𝑡) =
𝑐
0
cos22𝑡
𝑡1/𝛼

, 𝐹 (𝑡, 𝑥 (𝑡)) = 𝑓 (𝑡) = − sin 2𝑡,

𝛼 < 1.

(84)

Let

𝑎
1
= 2ℎ𝜋, 𝑏

1
= 𝑎
2
= 2ℎ𝜋 +

𝜋

2
,

𝑏
2
= 2ℎ𝜋 + 𝜋, ℎ = 1, 2, . . . ,

(85)

such that

𝑞 (𝑡) ≥ 0, (−1)
𝑘
𝑓 (𝑡) ≥ 0,

𝑡 ∈ [2ℎ𝜋, 2ℎ𝜋 +
𝜋

2
) ∪ [2ℎ𝜋 +

𝜋

2
, 2ℎ𝜋 + 𝜋) , 𝑘 = 1, 2.

(86)

Setting 𝜂(𝑡) = 1/𝑡 and 𝑢(𝑡) = sin 2𝑡, we obtain

𝑃
1
(𝑡, 𝑎
𝑘
) =

𝑡

𝛼𝛼(1 − 𝛼)
1−𝛼
(
𝑐
0
cos22𝑡
𝑡1/𝛼

)

𝛼

|− sin 2𝑡|1−𝛼

=
𝑐𝛼
0

𝛼𝛼(1 − 𝛼)
1−𝛼

cos2𝛼2𝑡|− sin 2𝑡|1−𝛼,

∫
𝑏1

𝑎1

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢
󸀠
(𝑡))
2

− 𝑃
1
(𝑡, 𝑎
1
) 𝑢
2
(𝑡)) d𝑡

= ∫
𝜋/2

0

(
1

𝑡
⋅ 𝑡 (sin 2𝑡 + 2) (2 cos 2𝑡)2

−
𝑐𝛼
0

𝛼𝛼(1 − 𝛼)
1−𝛼

cos2𝛼2𝑡 sin3−𝛼2𝑡) d𝑡

=
6

5
√𝜋 + 𝜋 −

𝑐𝛼
0

4𝛼𝛼(1 − 𝛼)
1−𝛼

×
Γ (2 − 𝛼/2) Γ (𝛼 + 1/2)

Γ ((𝛼 + 5) /2)
,

(87)

where Γ is the gamma function. Then by Theorem 7, every
solution of (83) is oscillatory if

6

5
√𝜋 + 𝜋 ≤

𝑐𝛼
0

4𝛼𝛼(1 − 𝛼)
1−𝛼

Γ (2 − 𝛼/2) Γ (𝛼 + 1/2)

Γ ((𝛼 + 5) /2)
. (88)
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