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This paper aims at studying the boundedness and compactness of weighted composition operator between spaces of analytic
functions. We characterize boundedness and compactness of the weighted composition operator 𝑢𝐶𝜙 from the Hardy spaces 𝐻𝑝

to the Zygmund type spaces Z𝛼 = {𝑓 ∈ 𝐻(𝐷) : sup𝑧∈𝐷(1 − |𝑧|
2
)

𝛼
|𝑓



(𝑧)| < ∞} and the little Zygmund type spacesZ𝛼,0 in terms
of function theoretic properties of the symbols 𝑢 and 𝜙.

1. Introduction

Let 𝐷 = {𝑧 : |𝑧| < 1} be the open unit disk in the complex
planeC and𝑇 = {𝑧 : |𝑧| = 1} its boundary, and𝐻(𝐷) denotes
the set of all analytic functions on 𝐷. An analytic self-map
𝜑 : 𝐷 → 𝐷 induces the composition operator 𝐶𝜑 on𝐻(𝐷),
defined by 𝐶𝜑(𝑓) = 𝑓(𝜑(𝑧)) for 𝑓 analytic on 𝐷. It is a well-
known consequence of Littlewood’s subordination principle
that the composition operator 𝐶𝜑 is bounded on the classical
Hardy 𝐻𝑝 (0 < 𝑝 ≤ ∞) spaces, Bergman 𝐴𝑝 (0 < 𝑝 ≤ ∞)

spaces, and Bloch spaces (see, e.g., [1–4]).
Let 𝑢 be a fixed analytic function on the open unit

disk. Define a linear operator 𝑢𝐶𝜑 on the space of analytic
functions on 𝐷, called a weighted composition operator, by
𝑢𝐶𝜑𝑓 = 𝑢 ⋅ (𝑓 ∘ 𝜑), where 𝑓 is an analytic function on𝐷. We
can regard this operator as a generalization of amultiplication
operator and a composition operator. In recent years the
weighted composition operator has received much attention
and appears in various settings in the literature. For example,
it is known that isometries of many analytic function spaces
are weighted composition operators (see [5], for instance).
Their boundedness and compactness have been studied on
various Banach spaces of analytic functions, such as Hardy,
Bergman, BMOA, Bloch-type, and Zygmund spaces; see, for
example, [6–11]. Also, it has been studied from one Banach
space of analytic functions to another; one may see [12–23].

The purpose of this paper is to consider the weighted
composition operators from the Hardy space 𝐻𝑝 (0 < 𝑝 <

∞) to the Zygmund type spaces Z𝛼. Our main goal is to
characterize boundedness and compactness of the operators
𝑢𝐶𝜑 from𝐻

𝑝 toZ𝛼 in terms of function theoretic properties
of the symbols 𝑢 and 𝜑.

Now we give a detailed definition of these spaces. For 0 ≤
𝑟 < 1, 𝑓(𝑧) ∈ 𝐻(𝐷), we set

𝑀𝑝 (𝑟, 𝑓) = (
1

2𝜋

∫

2𝜋

0






𝑓 (𝑟𝑒
𝑖𝜃
)







𝑝
𝑑𝜃)

1/𝑝

, 0 < 𝑝 < ∞,

𝑀∞ (𝑟, 𝑓) = max
0≤𝜃≤2𝜋






𝑓 (𝑟𝑒
𝑖𝜃
)






.

(1)

For 0 < 𝑝 ≤ ∞, the Hardy space 𝐻𝑝 consists of those
functions 𝑓 ∈ 𝐻(𝐷), for which





𝑓



𝑝
= sup
0≤𝑟<1

𝑀𝑝 (𝑟, 𝑓) < ∞. (2)

It is well known that with norm (2) the𝐻𝑝 space is a Banach
space if 1 ≤ 𝑝 ≤ ∞, for 0 < 𝑝 < 1, 𝐻𝑝 space is a nonlocally
convex topological vector space, and 𝑑(𝑓, 𝑔) = ‖𝑓 − 𝑔‖

𝑝
𝑝 is a

complete metric for it. For more information about the 𝐻𝑝
space, one may see these books, for example, [24, 25].
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For 𝛼 > 0 the 𝛼-Bloch space 𝛽𝛼 consists of all analytic
functions 𝑓 defined on𝐷 such that





𝑓



𝛽
𝛼

= sup{(1 − |𝑧|2)
𝛼 




𝑓

(𝑧)






: 𝑧 ∈ 𝐷} , 0 < 𝛼 < +∞.

(3)

The space Z𝛼 consists of all analytic functions 𝑓 defined on
𝐷 such that




𝑓



Z
𝛼

= sup {(1 − |𝑧|2)
𝛼 




𝑓

(𝑧)






: 𝑧 ∈ 𝐷} , 0 < 𝛼 < +∞.

(4)

When 𝛼 = 1, it is called the Zygmund space. From a theorem
by Zygmund (see [26, vol. I, p. 263] or [24,Theorem 5.3]), we
see that𝑓 ∈Z1 if and only if𝑓 is continuous in the close unit
disk𝐷 = {𝑧 : |𝑧| ≤ 1} and the boundary function 𝑓(𝑒𝑖𝜃) such
that






𝑓 (𝑒
𝑖(𝜃+ℎ)

) + 𝑓 (𝑒
𝑖(𝜃−ℎ)

) − 2𝑓 (𝑒
𝑖𝜃
)







ℎ

< ∞.
(5)

When 𝛼 > 1, from Proposition 8 of [27], we know thatZ𝛼 =
𝛽𝛼−1. Then the space Z𝛼 is called a Zygmund type space if
0 < 𝛼 ≤ 1. However, all results in this paper are valid for all
Z𝛼 spaces (𝛼 > 0). An analytic function 𝑓 ∈ 𝐻(𝐷) is said to
belong to the little Zymund type spaceZ𝛼,0 which consists of
all 𝑓 ∈ Z𝛼 satisfying lim|𝑧|→1−(1 − |𝑧|

2
)
𝛼
|𝑓

(𝑧)| = 0. It can

be easily proved thatZ𝛼 is a Banach space under the norm





𝑓



∗
=




𝑓 (0)





+






𝑓

(0)






+




𝑓



Z
𝛼

. (6)

And the polynomials are norm-dense in closed subspace
Z𝛼,0. For some other information on this space and some
operators on it, see, for example, [28–31].

Throughout this paper, constants are denoted by 𝐶, 𝐶(𝑝),
they are positive, and 𝐶(𝑝) are only depending on 𝑝 and may
differ from one occurrence to the another.

2. Auxiliary Results

In order to prove themain results of this paper.We need some
auxiliary results. The first lemma is well known.

Lemma 1 (see [24, p. 65]). For 𝑝 > 1, there exists a constant
𝐶(𝑝) such that

∫

2𝜋

0

𝑑𝜃

|1 − 𝑧|
𝑝 ≤

𝐶 (𝑝)

(1 − |𝑧|
2
)

𝑝−1
for every 𝑧 ∈ 𝐷. (7)

Lemma 2. Suppose that 0 < 𝑝 < ∞, 𝑓 ∈ 𝐻𝑝; then






𝑓
(𝑛)
(𝑧)






≤





𝑓



𝑝

(1 − |𝑧|
2
)

1/𝑝+𝑛 (8)

for every 𝑧 ∈ 𝐷 and all nonnegative integer 𝑛 = 0, 1, 2, . . ..

Proof. We use induction on 𝑛. The case 𝑛 = 0 holds because
it is Exercise 5 in [25, p. 85]. Assume the case 𝑛 = 𝑘 holds. Fix

0 < 𝑟 < 1 and let 𝑔(𝑧) = 𝑓(𝑘)(𝑟𝑧). Then 𝑔(𝑧) is in𝐻∞ ⊂ 𝛽1,
and ‖𝑔‖𝛽

1

≤ ‖𝑔‖∞. It follows that

(1 − |𝑧|
2
)






𝑔

(𝑧)






= (1 − |𝑧|

2
)






𝑟𝑓
(𝑘+1)

(𝑟𝑧)







≤





𝑓



𝑝

(1 − |𝑟𝑧|
2
)

1/𝑝+𝑘

≤





𝑓



𝑝

(1 − |𝑧|
2
)

1/𝑝+𝑘
.

(9)

Let 𝑟 → 1
−; we have






𝑓
(𝑘+1)

(𝑧)






≤





𝑓



𝑝

(1 − |𝑧|
2
)

1/𝑝+𝑘+1
. (10)

Then the case 𝑛 = 𝑘 + 1 holds. Hence (8) holds.

Lemma 3. For 0 < 𝑝 < ∞, suppose 𝑢𝐶𝜑 : 𝐻𝑝 → Z𝛼,0
is a bounded operator. Then 𝑢𝐶𝜑 : 𝐻𝑝 → Z𝛼 is a bounded
operator.

This is obvious.

3. Boundedness of 𝑢𝐶𝜑 from 𝐻
𝑝
(0 < 𝑝 <∞) to

Z𝛼 and Z𝛼,0

In this section we characterize bounded weighted composi-
tion operators from the Hardy space𝐻𝑝 (0 < 𝑝 < ∞) to the
Zygmund spacesZ𝛼.

Theorem 4. Let 𝛼 > 0, 0 < 𝑝 < ∞, and 𝑢 be an analytic
function on the unit disc 𝐷 and 𝜑 an analytic self-map of 𝐷.
Then 𝑢𝐶𝜑 is a bounded operator from 𝐻

𝑝 to the Zygmund
spacesZ𝛼 if and only if the following are satisfied:

sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝
< ∞, (11)

sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
< ∞, (12)

sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1
< ∞. (13)

Proof . Suppose 𝑢𝐶𝜑 is bounded from 𝐻
𝑝 to the Zygmund

spacesZ𝛼. Then we can easily obtain the following results by
taking 𝑓(𝑧) = 1 and 𝑓(𝑧) = 𝑧 in𝐻𝑝, respectively:

𝑢 ∈Z𝛼,

sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧) + 𝜑 (𝑧) 𝑢


(𝑧)







< +∞.

(14)
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By (14) and the boundedness of the function 𝜑(𝑧), we get

𝐾1 = sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)






< +∞.

(15)

Let 𝑓(𝑧) = 𝑧2 in𝐻𝑝 again; in the same way we have

sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 






4𝜑 (𝑧) 𝜑

(𝑧) 𝑢

(𝑧) + 𝜑

2
(𝑧) 𝑢

(𝑧)

+2𝑢 (𝑧) (𝜑 (𝑧) 𝜑

(𝑧) + (𝜑


(𝑧))

2
)









< ∞.

(16)

Using these facts and the boundedness of the function 𝜑(𝑧)
again, we get

𝐾2 = sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 





(𝜑

(𝑧))

2
𝑢 (𝑧)








< +∞. (17)

Fix 𝑎 ∈ 𝐷; we take the test functions

𝑓𝑎 (𝑧) = −
1 − |𝑎|

2

(1 − 𝑎𝑧)
1+1/𝑝

+ 2

(1 − |𝑎|
2
)

2

(1 − 𝑎𝑧)
2+1/𝑝

−

(1 − |𝑎|
2
)

3

(1 − 𝑎𝑧)
3+1/𝑝

(18)

for 𝑧 ∈ 𝐷. From Lemma 1 we obtain that 𝑓𝑎 ∈ 𝐻
𝑝 and

sup𝑎‖𝑓𝑎‖𝑝 ≤ 𝐶(𝑝) < ∞ with a direct calculation. Since
𝑓𝑎(𝑎) = 0, 𝑓𝑎(𝑎) = 0, and 𝑓𝑎 (𝑎) = −2𝑎

2
/(1 − |𝑎|

2
)
2+1/𝑝, it

follows that, for all 𝜆 ∈ 𝐷 with |𝜑(𝜆)| > 1/2, we have

𝐶




𝑓𝑎



∗
≥






𝑢𝐶𝜑𝑓𝑎





∗
≥ sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 





(𝑢𝐶𝜑𝑓𝑎)

(𝑧)








= sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼

×









(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) 𝑓


𝑎 (𝜑 (𝑧))

+ 𝑓

𝑎 (𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)

+ 𝑢

(𝑧) 𝑓𝑎 (𝜑 (𝑧))









.

(19)

Let 𝑎 = 𝜑(𝜆); it follows that

𝐶




𝑓𝑎



∗
≥ (1 − |𝜆|

2
)

𝛼

×









(2𝜑

(𝜆) 𝑢

(𝜆) + 𝜑


(𝜆) 𝑢 (𝜆)) 𝑓


𝜑(𝜆) (𝜑 (𝜆))

+ 𝑓

𝜑(𝜆) (𝜑 (𝜆)) (𝜑


(𝜆))

2
𝑢 (𝜆)

+ 𝑢

(𝜆) 𝑓𝜑(𝜆) (𝜑 (𝜆))









= (1−|𝜆|
2
)

𝛼















(𝜑

(𝜆))

2
𝑢 (𝜆)

2(𝜑 (𝜆))

2

(1−




𝜑 (𝜆)






2
)

2+1/𝑝















≥

1

2

(1 − |𝜆|
2
)

𝛼 





𝑢 (𝜆) (𝜑

(𝜆))

2





(1 −




𝜑 (𝜆)






2
)

2+1/𝑝
.

(20)

For all 𝜆 ∈ 𝐷 with |𝜑(𝜆)| ≤ 1/2, by (17), we have

sup
𝜆∈𝐷

(1 − |𝜆|
2
)

𝛼 





𝑢 (𝜆) (𝜑

(𝜆))

2





1 −




𝜑 (𝜆)






1/𝑝+2

≤ (

4

3

)

1/𝑝+2

sup
𝜆∈𝐷

(1 − |𝜆|
2
)

𝛼 





𝑢 (𝜆) (𝜑

(𝜆))

2





< +∞.

(21)

Hence (12) holds.
Next, fix 𝑎 ∈ 𝐷; we take another test functions

𝑔𝑎 (𝑧)= −3
1 − |𝑎|

2

(1−𝑎𝑧)
1/𝑝+1

+5

(1 − |𝑎|
2
)

2

(1 − 𝑎𝑧)
1/𝑝+2

−2

(1−|𝑎|
2
)

3

(1−𝑎𝑧)
1/𝑝+3

(22)

for 𝑧 ∈ 𝐷. From Lemma 1 we obtain that 𝑔𝑎 ∈ 𝐻
𝑝 and

sup𝑎‖𝑔𝑎‖𝑝 ≤ 𝐶(𝑝) < ∞ with a direct calculation. Since

𝑔𝑎(𝑎) = 0, 𝑔

𝑎 (𝑎) = 0, and 𝑔


𝑎(𝑎) = 𝑎/(1 − |𝑎|

2
)

1/𝑝+1, it follows
that, for all 𝜆 ∈ 𝐷 with |𝜑(𝜆)| > 1/2, we obtain that

𝐶




𝑔𝑎



∗
≥






𝑢𝐶𝜑𝑔𝑎 (𝑧)





∗

≥ sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 





(𝑢𝐶𝜑𝑔𝑎)

(𝑧)








= sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼

×









(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) 𝑔


𝑎 (𝜑 (𝑧))

+ 𝑔

𝑎 (𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)

+ 𝑢

(𝑧) 𝑔𝑎 (𝜑 (𝑧))









≥ (1 − |𝜆|
2
)

𝛼
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×









(2𝜑

(𝜆) 𝑢

(𝜆) + 𝜑


(𝜆) 𝑢 (𝜆)) 𝑔


𝜑(𝜆) (𝜑 (𝜆))

+ 𝑔

𝜑(𝜆) (𝜑 (𝜆)) (𝜑


(𝜆))

2
𝑢 (𝜆)

+ 𝑢

(𝜆) 𝑔𝜑(𝜆) (𝜑 (𝜆))









= (1 − |𝜆|
2
)

𝛼

×















(2𝜑

(𝜆) 𝑢

(𝜆) + 𝜑


(𝜆) 𝑢 (𝜆))

×

𝜑 (𝜆)

(1 −




𝜑 (𝜆)






2
)

1/𝑝+1















≥

1

2

(1 − |𝜆|
2
)

𝛼 




2𝜑

(𝜆) 𝑢

(𝜆) + 𝜑


(𝜆) 𝑢 (𝜆)







(1 −




𝜑 (𝜆)






2
)

1/𝑝+1
.

(23)

For all 𝜆 ∈ 𝐷 with |𝜑(𝜆)| ≤ 1/2, by (15), we have

sup
|𝜑(𝜆)|≤1/2

(1 − |𝜆|
2
)

𝛼 




2𝜑

(𝜆) 𝑢

(𝜆) + 𝜑


(𝜆) 𝑢 (𝜆)







(1 −




𝜑 (𝜆)






2
)

1/𝑝+1

≤ (

4

3

)

1/𝑝+1

sup
|𝜑(𝜆)|≤1/2

(1 − |𝜆|
2
)

𝛼

×






2𝜑

(𝜆) 𝑢

(𝜆) + 𝜑


(𝜆) 𝑢 (𝜆)







< ∞.

(24)

Hence (13) holds.
Finally, fix 𝑎 ∈ 𝐷, and, for all 𝑧 ∈ 𝐷, let

ℎ𝑎 (𝑧) = −

𝑝 + 3

𝑝 + 1

1 − |𝑎|
2

(1 − 𝑎𝑧)
1/𝑝+1

+

2 (𝑝 + 3)

𝑝 + 2

(1 − |𝑎|
2
)

2

(1 − 𝑎𝑧)
1/𝑝+2

−

(1 − |𝑎|
2
)

3

(1 − 𝑎𝑧)
1/𝑝+3

.

(25)

From Lemma 1 we obtain that ℎ𝑎 ∈ 𝐻
𝑝 and sup𝑎‖ℎ𝑎‖𝑝 ≤

𝐶(𝑝) < ∞ with a direct calculation. Since ℎ𝑎(𝑎) = 0,

ℎ

𝑎 (𝑎) = 0, and ℎ𝑎(𝑎) = −2/(𝑝 + 1)(𝑝 + 2)(1 − |𝑎|

2
)
1/𝑝, it

follows that, for all 𝜆 ∈ 𝐷, we obtain that

𝐶




ℎ𝑎



∗
≥






𝑢𝐶𝜑ℎ𝑎 (𝑧)





∗

≥ sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 





(𝑢𝐶𝜑ℎ𝑎)

(𝑧)








= sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼

×









(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) ℎ


𝑎 (𝜑 (𝑧))

+ ℎ

𝑎 (𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)

+ 𝑢

(𝑧) ℎ𝑎 (𝜑 (𝑧))









≥ (1 − |𝜆|
2
)

𝛼

×









(2𝜑

(𝜆) 𝑢

(𝜆) + 𝜑


(𝜆) 𝑢 (𝜆)) ℎ


𝜑(𝜆) (𝜑 (𝜆))

+ ℎ

𝜑(𝜆) (𝜑 (𝜆)) (𝜑


(𝜆))

2
𝑢 (𝜆)

+ 𝑢

(𝜆) ℎ𝜑(𝜆) (𝜑 (𝜆))









= (1 − |𝜆|
2
)

𝛼 




𝑢

(𝜆) ℎ𝜑(𝜆) (𝜑 (𝜆))







=

2

(𝑝 + 1) (𝑝 + 2)

(1 − |𝜆|
2
)

𝛼 




𝑢

(𝜆)







(1 −




𝜑 (𝜆)






2
)

1/𝑝
.

(26)

Then (11) holds.
Conversely, suppose that (11), (12), and (13) hold. For 𝑓 ∈

𝐻
𝑝, by Lemma 2, we have the following inequality:

(1 − |𝑧|
2
)

𝛼 





(𝑢𝐶𝜑𝑓)

(𝑧)








= (1 − |𝑧|
2
)

𝛼

×









(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) 𝑓


(𝜑 (𝑧))

+ 𝑓

(𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)

+ 𝑢

(𝑧) 𝑓 (𝜑 (𝑧))









≤ (1 − |𝑧|
2
)

𝛼

×






(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) 𝑓


(𝜑 (𝑧))







+ (1 − |𝑧|
2
)

𝛼 





𝑓

(𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)








+ (1 − |𝑧|
2
)






𝑢

(𝑧) 𝑓 (𝜑 (𝑧))
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≤

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1





𝑓



𝑝

+

(1 − |𝑧|
2
)

𝛼 





(𝜑

(𝑧))

2
𝑢 (𝑧)








(1 −




𝜑 (𝑧)






2
)

1/𝑝+2





𝑓



𝑝

+

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝





𝑓



𝑝

≤ 𝐶




𝑓



𝑝
,





𝑢 (0) 𝑓 (𝜑 (0))





+






𝑢

(0) 𝑓 (𝜑 (0))






+






𝑢 (0) 𝑓


(𝜑 (0))







≤ (

|𝑢 (0)|

(1 −




𝜑 (0)






2
)

1/𝑝
+






𝑢

(0)







(1 −




𝜑 (0)






2
)

1/𝑝

+

|𝑢 (0)|

(1 −




𝜑 (0)






2
)

1/𝑝+1
)




𝑓



𝑝
.

(27)

This shows that 𝑢𝐶𝜑 is bounded. This completes the proof of
Theorem 4.

Theorem 5. Let 𝛼 > 0, 0 < 𝑝 < ∞, and 𝑢 be an analytic
function on the unit disc 𝐷 and 𝜑 an analytic self-map of 𝐷.
Then 𝑢𝐶𝜑 : 𝐻𝑝 → Z𝛼,0 is a bounded operator provided that
the following are satisfied:

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝
= 0, (28)

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
= 0, (29)

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1
= 0. (30)

Conversely, if 𝑢𝐶𝜑 : 𝐻
𝑝

→ Z𝛼,0 is a bounded operator,
then 𝑢 ∈ Z𝛼,0, (11), (12), and (13) hold, and the following are
satisfied:

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





= 0, (31)

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)






= 0. (32)

Proof. Assume that (28), (29), and (30) hold.Then for any 𝜖 >
0, there is a constant 𝛿, 0 < 𝛿 < 1, such that 𝛿 < |𝑧| < 1

implies

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
< 𝜖,

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝
< 𝜖,

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1
< 𝜖.

(33)

Then, for any 𝑓 ∈ 𝐻𝑝, from Lemma 2 we obtain that

(1 − |𝑧|
2
)

𝛼 





(𝑢𝐶𝜑𝑓)

(𝑧)








= (1 − |𝑧|
2
)

𝛼

×









(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) 𝑓


(𝜑 (𝑧))

+ 𝑓

(𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)

+ 𝑢

(𝑧) 𝑓 (𝜑 (𝑧))









≤ (1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







×

1

(1 −




𝜑 (𝑧)






2
)

1/𝑝+1





𝑓



𝑝

+ (1−|𝑧|
2
)

𝛼 





(𝜑

(𝑧))

2
𝑢 (𝑧)








1

(1 −




𝜑 (𝑧)






2
)

1/𝑝+2





𝑓



𝑝

+

(1 − |𝑧|
2
)






𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝





𝑓



𝑝
≤ 3





𝑓



𝑝
𝜖.

(34)

Hence 𝑢𝐶𝜑𝑓 ∈ Z𝛼,0 for all 𝑓 ∈ Z𝛼,0. On the other hand,
(25), (28), and (29) imply that (11), (12), and (13) hold; then
𝑢𝐶𝜑 : 𝐻

𝑝
→ Z𝛼 is bounded byTheorem 4. So 𝑢𝐶𝜑 : 𝐻

𝑝
→

Z𝛼,0 is bounded.
Conversely, assume that 𝑢𝐶𝜑 is bounded from𝐻

𝑝 to the
little Zygmund type spaceZ𝛼,0. Then 𝑢 = 𝑢𝐶𝜑1 ∈Z𝛼,0. Also
𝑢𝜑 = 𝑢𝐶𝜑𝑧 ∈Z𝛼,0; thus

(1−|𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧)+𝜑


(𝑧) 𝑢 (𝑧) + 𝜑 (𝑧) 𝑢


(𝑧)






→ 0

(|𝑧| → 1
−
) .

(35)

Since |𝜑| ≤ 1 and 𝑢 ∈ Z𝛼,0, we have lim|𝑧|→1−(1 −

|𝑧|
2
)
𝛼
|2𝜑

(𝑧)𝑢

(𝑧) + 𝜑


(𝑧)𝑢(𝑧)| = 0. Hence (32) holds.
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Similarly, 𝑢𝐶𝜑𝑧
2
∈Z𝛼,0; then

(1 − |𝑧|
2
)

𝛼

×








4𝜑 (𝑧) 𝜑

(𝑧) 𝑢

(𝑧) + 𝜑

2
(𝑧) 𝑢

(𝑧)

+2𝑢 (𝑧) (𝜑 (𝑧) 𝜑

(𝑧) + (𝜑


(𝑧))

2
)









→ 0

(|𝑧| → 1
−
) .

(36)

By (32), |𝜑| ≤ 1, and 𝑢 ∈ Z𝛼,0, we get that lim|𝑧|→1−(1 −
|𝑧|
2
)
𝛼
|𝑢(𝑧)(𝜑


(𝑧))
2
| = 0; that is, (31) holds.

On the other hand, from Lemma 3 and Theorem 4, we
obtain that (11), (12), and (13) hold.

4. Compactness of 𝑢𝐶𝜑

In order to prove the compactness of 𝑢𝐶𝜑 from 𝐻
𝑝 to the

Zygmund spacesZ𝛼, we require the following lemmas.

Lemma 6. Let 𝛼 > 0, 0 < 𝑝 < ∞, and 𝑢 be an analytic
function on the unit disc 𝐷 and 𝜑 an analytic self-map of 𝐷.
Suppose that 𝑢𝐶𝜑 is a bounded operator from𝐻

𝑝 toZ𝛼. Then
𝑢𝐶𝜑 is compact if and only if, for any bounded sequence {𝑓𝑛}
in𝐻𝑝 which converges to 0 uniformly on compact subsets of𝐷,
one has ‖𝑢𝐶𝜑(𝑓𝑛)‖∗ → 0 as 𝑛 → ∞.

Theproof is similar to that of Proposition 3.11 in [32].The
details are omitted.

Theorem 7. Let 𝛼 > 0, 0 < 𝑝 < ∞, 𝑢 be an analytic function
on the unit disc 𝐷 and 𝜑 an analytic self-map of 𝐷. Then 𝑢𝐶𝜑
is a compact operator from 𝐻

𝑝 to Z𝛼 if and only if 𝑢𝐶𝜑 is a
bounded operator and the following are satisfied:

(i) lim
|𝜑(𝑧)|→1

−

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝
= 0,

(ii) lim
|𝜑(𝑧)|→1

−

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
= 0,

(iii) lim
|𝜑(𝑧)|→1−

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1
= 0.

(37)

Proof. Suppose that 𝑢𝐶𝜑 is compact from𝐻
𝑝 to the Zygmund

type space Z𝛼. Let {𝑧𝑛} be a sequence in 𝐷 such that
|𝜑(𝑧𝑛)| → 1 as 𝑛 → ∞. If such a sequence does not
exist, then (37) are automatically satisfied. Without loss of

generality we may suppose that |𝜑(𝑧𝑛)| > 1/2 for all 𝑛. We
take the test functions

𝑓𝑛 (𝑧) = −

1 −




𝜑 (𝑧𝑛)






2

(1 − 𝜑 (𝑧𝑛)𝑧)

1/𝑝+1
+ 2

(1 −




𝜑 (𝑧𝑛)






2
)

2

(1 − 𝜑 (𝑧𝑛)𝑧)

1/𝑝+2

−

(1 −




𝜑 (𝑧𝑛)






2
)

3

(1 − 𝜑 (𝑧𝑛)𝑧)

1/𝑝+3
.

(38)

By a direct calculation, we may easily prove that {𝑓𝑛}
converges to 0 uniformly on compact subsets of 𝐷 and
sup𝑛‖𝑓𝑛‖𝑝 ≤ 𝐶(𝑝) < ∞. Then {𝑓𝑛} is a bounded sequence
in𝐻𝑝 which converges to 0 uniformly on compact subsets of
𝐷. Then lim𝑛→∞‖𝑢𝐶𝜑(𝑓𝑛)‖∗ = 0 by Lemma 6. Note that

𝑓𝑛 (𝜑 (𝑧𝑛)) = 0, 𝑓

𝑛 (𝜑 (𝑧𝑛)) = 0,

𝑓

𝑛 (𝜑 (𝑧𝑛)) = −

2𝜑 (𝑧𝑛)
2

(1 −




𝜑 (𝑧𝑛)






2
)

1/𝑝+2
.

(39)

It follows that





𝑢𝐶𝜑𝑓𝑛





∗
≥






𝑢𝐶𝜑𝑓𝑛





Z
𝛼

≥ (1 −




𝑧𝑛





2
)

𝛼

×









(2𝑢

(𝑧𝑛) 𝜑


(𝑧𝑛) + 𝜑


(𝑧𝑛) 𝑢 (𝑧𝑛))

× 𝑓

𝑛 (𝜑 (𝑧𝑛)) + 𝑢 (𝑧𝑛) 𝑓


𝑛 (𝜑 (𝑧𝑛)) (𝜑


(𝑧𝑛))
2

+ 𝑢

(𝑧𝑛) 𝑓𝑛 (𝜑 (𝑧𝑛))









= (1 −




𝑧𝑛





2
)

𝛼

×















(𝜑

(𝑧𝑛))
2
𝑢 (𝑧𝑛)

2𝜑 (𝑧𝑛)
2

(1 −




𝜑 (𝑧𝑛)






2
)

1/𝑝+2















.

(40)

Then

lim
𝑛→∞

(1 −




𝑧𝑛





2
)

𝛼 






𝑢 (𝑧𝑛) (𝜑

(𝑧𝑛))
2





(1 −




𝜑 (𝑧𝑛)






2
)

1/𝑝+2
= 0. (41)

Next, let

𝑔𝑛 (𝑧) = − 3

1 −




𝜑 (𝑧𝑛)






2

(1 − 𝜑 (𝑧𝑛)𝑧)

1/𝑝+1
+ 5

(1 −




𝜑 (𝑧𝑛)






2
)

2

(1 − 𝜑 (𝑧𝑛)𝑧)

1/𝑝+2

− 2

(1 −




𝜑 (𝑧𝑛)






2
)

3

(1 − 𝜑 (𝑧𝑛)𝑧)

1/𝑝+3
.

(42)
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By a direct calculation we obtain that 𝑔𝑛  0 (𝑛 → ∞)

on compact subsets of 𝐷 and sup𝑛‖𝑔𝑛‖𝑝 ≤ 𝐶(𝑝) < +∞.
Consequently, {𝑔𝑛} is a bounded sequence in 𝐻

𝑝 which
converges to 0 uniformly on compact subsets of 𝐷. Then
lim𝑛→∞‖𝑢𝐶𝜑(𝑔𝑛)‖∗ = 0 by Lemma 6. Note that 𝑔𝑛(𝜑(𝑧𝑛)) ≡
0, 𝑔𝑛 (𝜑(𝑧𝑛)) ≡ 0 and 𝑔


𝑛(𝜑(𝑧𝑛)) = 𝜑(𝑧𝑛)/(1 − |𝜑(𝑧𝑛)|

2
)
1/𝑝+1; it

follows that






𝑢𝐶𝜑𝑔𝑛





∗
≥






𝑢𝐶𝜑𝑔𝑛





Z
𝛼

≥ (1 −




𝑧𝑛





2
)

𝛼

×









(2𝑢

(𝑧𝑛) 𝜑


(𝑧𝑛) + 𝜑


(𝑧𝑛) 𝑢 (𝑧𝑛))

× 𝑔

𝑛 (𝜑 (𝑧𝑛)) + 𝑢 (𝑧𝑛) 𝑔


𝑛 (𝜑 (𝑧𝑛)) (𝜑


(𝑧𝑛))
2

+ 𝑢

(𝑧𝑛) 𝑔𝑛 (𝜑 (𝑧𝑛))









= (1 −




𝑧𝑛





2
)

𝛼

×


















(2𝑢

(𝑧𝑛) 𝜑


(𝑧𝑛) + 𝜑


(𝑧𝑛) 𝑢 (𝑧𝑛))

×

𝜑 (𝑧𝑛)

(1 −








𝜑 (𝑧𝑛)







2

)

1/𝑝+1


















.

(43)

Then lim𝑛→∞(1 − |𝑧𝑛|
2
)
𝛼
(2𝑢

(𝑧𝑛)𝜑

(𝑧𝑛) + 𝜑


(𝑧𝑛)𝑢(𝑧𝑛))/(1 −

|𝜑(𝑧𝑛)|
2
)
1/𝑝+1

= 0.
Finally, let

ℎ𝑛 (𝑧) = −

𝑝 + 3

𝑝 + 1

1 −




𝜑 (𝑧𝑛)






2

(1 − 𝜑 (𝑧𝑛)𝑧)

1/𝑝+1

+

2 (𝑝 + 3)

𝑝 + 2

(1 −




𝜑 (𝑧𝑛)






2
)

2

(1 − 𝜑 (𝑧𝑛)𝑧)

1/𝑝+2

−

(1 −




𝜑 (𝑧𝑛)






2
)

3

(1 − 𝜑 (𝑧𝑛)𝑧)

1/𝑝+3
.

(44)

By a direct calculation we obtain that ℎ𝑛  0 (𝑛 → ∞) on
compact subsets of 𝐷 and sup𝑛‖ℎ𝑛‖𝑝 < ∞. Consequently,
{ℎ𝑛} is a bounded sequence in 𝐻

𝑝 which converges to 0

uniformly on compact subsets of 𝐷. Then
lim𝑛→∞‖𝑢𝐶𝜑(ℎ𝑛)‖∗ = 0 by Lemma 6. Note that

ℎ𝑛(𝜑(𝑧𝑛)) = 2/(𝑝 + 1)(𝑝 + 2)(1 − |𝜑(𝑧𝑛)|
2
)
1/𝑝, ℎ𝑛(𝜑(𝑧𝑛)) ≡ 0,

and ℎ𝑛 (𝜑(𝑧𝑛)) ≡ 0; it follows that






𝑢𝐶𝜑ℎ𝑛





∗
≥






𝑢𝐶𝜑ℎ𝑛





Z
𝛼

≥ (1 −




𝑧𝑛





2
)

𝛼

×









(2𝑢

(𝑧𝑛) 𝜑


(𝑧𝑛) + 𝜑


(𝑧𝑛) 𝑢 (𝑧𝑛))

× ℎ

𝑛 (𝜑 (𝑧𝑛))+𝑢 (𝑧𝑛) ℎ


𝑛 (𝜑 (𝑧𝑛))(𝜑


(𝑧𝑛))
2

+ 𝑢

(𝑧𝑛) ℎ𝑛 (𝜑 (𝑧𝑛))









=

2(1 −




𝑧𝑛





2
)

𝛼 




𝑢

(𝑧𝑛)







(𝑝 + 1) (𝑝 + 2) (1 −




𝜑 (𝑧𝑛)






2
)

1/𝑝
.

(45)

Then lim𝑛→∞((1 − |𝑧𝑛|
2
)
𝛼
|𝑢

(𝑧𝑛)|/(1 − |𝜑(𝑧𝑛)|

2
)
1/𝑝
) = 0. The

proof of the necessary is completed.
Conversely, Suppose that (37) hold. Since 𝑢𝐶𝜑 is a

bounded operator, fromTheorem 4, we have

𝑀1 ≜ sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





< ∞,

𝑀2 ≜ sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)






< ∞,

𝑀3 ≜ sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)






< ∞.

(46)

Let {𝑓𝑛} be a bounded sequence in 𝐻𝑝 with ‖𝑓𝑛‖𝑝 ≤ 1 and
𝑓𝑛 → 0 uniformly on compact subsets of 𝐷. We only prove
lim𝑛→∞‖𝑢𝐶𝜑(𝑓𝑛)‖∗ = 0 by Lemma 6. By the assumption,
for any 𝜖 > 0, there is a constant 𝛿, 0 < 𝛿 < 1, such that
𝛿 < |𝜑(𝑧)| < 1 implies

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
< 𝜖,

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝
< 𝜖,

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1
< 𝜖.

(47)
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Let 𝐾 = {𝑤 ∈ 𝐷 : |𝑤| ≤ 𝛿}. Note that 𝐾 is a compact subset
of𝐷. Then from Lemma 2 it follows that





𝑢𝐶𝜑𝑓𝑛





Z
𝛼

= sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 





(𝑢𝐶𝜑𝑓𝑛)

(𝑧)








= (1 − |𝑧|
2
)

𝛼

×









(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) 𝑓


𝑛 (𝜑 (𝑧))

+ 𝑓

𝑛 (𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)

+ 𝑢

(𝑧) 𝑓𝑛 (𝜑 (𝑧))









≤ sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼

×






(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) 𝑓


𝑛 (𝜑 (𝑧))







+ sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 





𝑓

𝑛 (𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)








+ sup
𝑧∈𝐷

(1 − |𝑧|
2
)






𝑢

(𝑧) 𝑓𝑛 (𝜑 (𝑧))







≤ 3𝜖 + sup
|𝜑(𝑧)|≤𝛿

(1 − |𝑧|
2
)

𝛼

×






(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) 𝑓


𝑛 (𝜑 (𝑧))







+ sup
|𝜑(𝑧)|≤𝛿

(1 − |𝑧|
2
)

𝛼 





𝑓

𝑛 (𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)








+ sup
|𝜑(𝑧)|≤𝛿

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧) 𝑓𝑛 (𝜑 (𝑧))







≤ 3𝜖 +𝑀3sup
𝑤∈𝐾






𝑓

𝑛 (𝑤)






+ 𝑀1sup
𝑤∈𝐾






𝑓

𝑛 (𝑤)







+ 𝑀2sup
𝑤∈𝐾





𝑓𝑛 (𝑤)





.

(48)

As 𝑛 → ∞,





𝑢𝐶𝜑𝑓𝑛





Z
𝛼

→ 0. (49)

Hence 𝑢𝐶𝜑 is compact. This completes the proof of Theo-
rem 7.

In order to prove the compactness of 𝑢𝐶𝜑 on the little
Zygmund spacesZ𝛼,0, we require the following lemma.

Lemma 8. Let𝑈 ⊂Z𝛼,0. Then𝑈 is compact if and only if it is
closed, bounded and satisfies

lim
|𝑧|→1−

sup
𝑓∈𝑈

(1 − |𝑧|
2
)






𝑓

(𝑧)






= 0. (50)

The proof is similar to that of Lemma 1 in [1], but we omit it.

Theorem 9. Let 𝛼 > 0, 0 < 𝑝 < ∞, 𝑢 be an analytic function
on the unit disc 𝐷 and 𝜑 an analytic self-map of 𝐷. Then 𝑢𝐶𝜑

is compact from 𝐻
𝑝 to the little Zygmund type spaces Z𝛼,0 if

and only if (28), (29), and (30) hold.

Proof. Assume that (28), (29), and (30) hold. By Theorem 5,
we know that 𝑢𝐶𝜑 is bounded from𝐻

𝑝 to the little Zygmund
type spacesZ𝛼,0. Suppose that 𝑓 ∈ 𝐻

𝑝 with ‖𝑓‖𝑝 ≤ 1. From
Lemmas 1 and 2 we obtain that

(1 − |𝑧|
2
)

𝛼 





(𝑢𝐶𝜑𝑓)

(𝑧)








≤ (1 − |𝑧|
2
)

𝛼 




(2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)) 𝑓


(𝜑 (𝑧))







+ (1 − |𝑧|
2
)

𝛼 





𝑓

(𝜑 (𝑧)) (𝜑


(𝑧))

2
𝑢 (𝑧)








+ (1 − |𝑧|
2
)






𝑢

(𝑧) 𝑓 (𝜑 (𝑧))







≤ (1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







×

1

(1 −




𝜑 (𝑧)






2
)

1/𝑝+1





𝑓



𝑝

+

(1 − |𝑧|
2
)

𝛼 





(𝜑

(𝑧))

2
𝑢 (𝑧)








(1 −




𝜑 (𝑧)






2
)

1/𝑝+2





𝑓



𝑝

+

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝





𝑓



𝑝
,

(51)

thus

sup {







(1 − |𝑧|
2
)

𝛼
(𝑢𝐶𝜑𝑓)


(𝑧)








: 𝑓 ∈ 𝐻
𝑝
,




𝑓



𝑝
≤ 1}

≤ (1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







1

1 −




𝜑 (𝑧)






2

+

(1 − |𝑧|
2
)

𝛼 





(𝜑

(𝑧))

2
𝑢 (𝑧)








(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
+

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝
,

(52)

and it follows that

lim
|𝑧|→1−

sup {







(1 − |𝑧|
2
)

𝛼
(𝑢𝐶𝜑𝑓)


(𝑧)








: 𝑓 ∈ 𝐻
𝑝
,




𝑓



𝑝
≤ 1}

= 0.

(53)

Hence 𝑢𝐶𝜑 : 𝐻
𝑝
→ Z𝛼,0 is compact by Lemma 8.

Conversely, suppose that 𝑢𝐶𝜑 : 𝐻
𝑝
→ Z𝛼,0 is compact.

Firstly, it is obvious 𝑢𝐶𝜑 is bounded, fromTheorem 5 we
have 𝑢 ∈ Z𝛼,0, and (31), (32) hold. On the other hand, we
have
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lim
|𝑧|→1−

sup {







(1 − |𝑧|
2
)

𝛼
(𝑢𝐶𝜑𝑓)


(𝑧)








: 𝑓 ∈ 𝐻
𝑝
,




𝑓



𝑝
≤ 𝑀}

= 0,

(54)

for some𝑀 > 0 by Lemma 6.
Next, note that the proof of Theorem 4 and the fact that

the functions given in (18) are in𝐻𝑝 and have norms bounded
independently of 𝑎; we obtain that

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
= 0 (55)

for |𝜑(𝑧)| > 1/2. However, if |𝜑(𝑧)| ≤ 1/2, by (31), we easily
have

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2

≤ lim
|𝑧|→1−

(

4

3

)

1/𝑝+2

(1 − |𝑧|
2
)

𝛼 





𝑢 (𝑧) (𝜑

(𝑧))

2





= 0.

(56)

Similarly, note that the functions given in (22) and (25)
are in 𝐻𝑝 and have norms bounded independently of 𝑎, we
obtain that

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1
= 0,

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝
= 0

(57)

for |𝜑(𝑧)| > 1/2. However, if |𝜑(𝑧)| ≤ 1/2, from 𝑢 ∈Z𝛼,0 and
(32), we easily have

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 




2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1

≤ (

4

3

)

1/𝑝+1

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼

×






2𝜑

(𝑧) 𝑢

(𝑧) + 𝜑


(𝑧) 𝑢 (𝑧)







= 0,

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝

≤ lim
|𝑧|→1−

(

4

3

)

1/𝑝

(1 − |𝑧|
2
)

𝛼 




𝑢

(𝑧)







= 0.

(58)

This completes the proof of Theorem 9.

Remark 10. FromTheorems 5 and 9, we conjecture that 𝑢𝐶𝜑 :
𝐻
𝑝
→ Z𝛼,0 is compact if and only if 𝑢𝐶𝜑 : 𝐻

𝑝
→ Z𝛼,0 is

bounded.

Taking 𝑢(𝑧) = 1 from Theorems 4, 7, and 9, we
obtain the following results about the characterization of the
boundedness and compactness of the composition operator
𝐶𝜑 : 𝐻

𝑝
→ Z𝛼(or Z𝛼,0).

Corollary 11. Let 𝛼 > 0, 0 < 𝑝 < ∞, and 𝜑 be an analytic
self-map of 𝐷. Then 𝐶𝜑 : 𝐻𝑝 → Z𝛼 is a bounded operator if
and only if the following are satisfied:

sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 





(𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
< ∞,

sup
𝑧∈𝐷

(1 − |𝑧|
2
)

𝛼 




𝜑

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1
< ∞.

(59)

Corollary 12. Let 𝛼 > 0, 0 < 𝑝 < ∞, and 𝜑 be an analytic
self-map of 𝐷. Then 𝐶𝜑 : 𝐻𝑝 → Z𝛼 is a compact operator if
and only if 𝐶𝜑 is bounded and the following are satisfied:

lim
|𝜑(𝑧)|→1−

(1 − |𝑧|
2
)

𝛼 





(𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
= 0,

lim
|𝜑(𝑧)|→1−

(1 − |𝑧|
2
)

𝛼 




𝜑

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1
= 0.

(60)

Corollary 13. Let 𝛼 > 0, 0 < 𝑝 < ∞, and 𝜑 be an analytic
self-map of𝐷. Then 𝐶𝜑 : 𝐻𝑝 → Z𝛼,0 is a compact operator if
and only if

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 





(𝜑

(𝑧))

2





(1 −




𝜑 (𝑧)






2
)

1/𝑝+2
= 0,

lim
|𝑧|→1−

(1 − |𝑧|
2
)

𝛼 




𝜑

(𝑧)







(1 −




𝜑 (𝑧)






2
)

1/𝑝+1
= 0.

(61)

In the formulation of corollary, we use the notation 𝑀𝑢 on
𝐻(𝐷) defined by𝑀𝑢𝑓 = 𝑢𝑓 for 𝑓 ∈ 𝐻(𝐷). Taking 𝜑(𝑧) = 𝑧
fromTheorems 4, 5, 7, and 9, we obtain the following results
about the characterization of the boundedness and compact-
ness of pointwise multiplier𝑀𝑢 : 𝐻

𝑝
→ Z𝛼(𝑜𝑟 Z𝛼,0).

Corollary 14. Let 𝛼 > 0, 0 < 𝑝 < ∞. Then the pointwise
multiplier𝑀𝑢 : 𝐻𝑝 → Z𝛼 is a bounded operator if and only
if

(i) 𝑢 = 0 if 𝛼 < 2 + 1/𝑝;
(ii) 𝑢 ∈ 𝐻∞ if 𝛼 = 2 + 1/𝑝;

(iii) sup𝑧∈𝐷(1 − |𝑧|
2
)
𝛼−2−1/𝑝

|𝑢(𝑧)| < ∞ if 𝛼 > 2 + 1/𝑝.
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Corollary 15. Let 𝛼 > 0, 0 < 𝑝 < ∞. Then the pointwise
multiplier 𝑀𝑢 : 𝐻𝑝 → Z𝛼,0 is a bounded operator if and
only if𝑀𝑢 : 𝐻𝑝 → Z𝛼,0 is a compact operator if and only if
𝑀𝑢 : 𝐻

𝑝
→ Z𝛼 is a compact operator if and only if

(i) 𝑢 = 0 if 𝛼 ≤ 2 + 1/𝑝,
(ii) lim|𝑧|→1−(1 − |𝑧|

2
)
𝛼−2−1/𝑝

|𝑢(𝑧)| = 0 if 𝛼 > 2 + 1/𝑝.
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