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The existence of the exponential attractors for coupled Ginzburg-Landau equations describing Bose-Einstein condensates and
nonlinear optical waveguides and cavities with periodic initial boundary is obtained by showing Lipschitz continuity and the
squeezing property.

1. Introduction

Inertial set was introduced (see [1–5]) in order to overcome
some of the theoretical difficulties that are associated with
inertial manifolds. An inertial set, by definition, contains
the global attractor and attracts all trajectories at a uniform
exponential rate. Consequently, it contains the slow transients
as well as the global attractor. In the theory of dynamical
systems the slow transients correspond to slowly converging
stable manifolds that are in some sense close to central
manifolds. Numerical simulations of infinite dimensional
dynamical systems often capture both slow transients and
parts of the attractor. After a large but finite time the state
of the system obtained from the numerical calculation may
often be at a finite distance from the global attractor but at
an infinitesimal distance to the inertial set. In this sense, we
propose to call the inertial set an exponential attractor to be
consistent with the physical intuition [5].

An exponential attractor is an exponentially attracting
compact set with finite fractal dimension that is positively
invariant under the forward semiflow. The notion of expo-
nential attractors was introduced by Eden et al. [3] and has
been shown to be one of the very important notions in the
study of long time behavior of solutions to nonlinear diffusion
equations [6]. The easiest way of obtaining an exponential
attractor is by taking the intersection of an absorbing set with
an inertial manifold.

In the area of hyperbolic evolutionary equations, the
existence of exponential attractors has been proved for many
equations. In this paper, we will prove the existence of expo-
nential attractor for coupled Ginzburg-Landau equations

𝑖𝑢
𝑡
+ 𝛾
2
Δ𝑢 + 𝑖𝛾𝑢 + (𝜎

1
+ 𝑖𝜎
2
|𝑢|
2
) |𝑢|
2
𝑢 + V = 0,

𝑖V
𝑡
+ 𝛾
2
Δ𝑢 + (𝑖Γ − 𝜒) V + 𝑢 = 0,

(1)

with the periodic boundary conditions

𝑢 (𝑥, 𝑡) = 𝑢 (𝑥 + 𝐷, 𝑡) , V (𝑥, 𝑡) = V (𝑥 + 𝐷, 𝑡) ,

𝑥 ∈ 𝑅, 𝑡 > 0,

(2)

and initial value

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , V (𝑥, 0) = V

0
(𝑥) , 𝑥 ∈ 𝑅. (3)

Its physical realizations include systems from nonlinear
optics and a double-cigar-shaped Bose-Einstein condensate
with a negative scattering length. In particular, in the case of
the optical systems, 𝑢 and V are amplitudes of electromagnetic
waves in two cores of the system, the evolutional variable 𝑡 is
either time or propagation distance in the dual-core optical
fiber, and 𝑥 is the transverse coordinate in the cavity or the
reduced time in the application to the fibers [7].

This paper is organized as follows. In Section 2, we give
a description of preliminaries with existence of exponential



2 Abstract and Applied Analysis

attractor and the properties of solutions and bounded absorb-
ing sets of (1). In Section 3, the existence of the exponential
attractor in 𝑉

2
type exponential attractor is proved. In

Section 4, we give some conclusions for this paper.

2. Preliminaries

Let𝑉
1
, 𝑉
2
be twoHilbert spaces, and let𝑉

2
be dense in𝑉

1
and

compactly imbedded into𝑉
1
. Let 𝑆(𝑡)

𝑡≥0
be a continuousmap

from 𝑉
1
, 𝑉
2
into itself. We study

𝑑𝑢

𝑑𝑡
+ 𝐴𝑢 + 𝑔 (𝑢) = 𝑓 (𝑥) , 𝑡 > 0, 𝑥 ∈ Ω, (4)

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , (5)

Dirichlet problem or periodic boundary problem, (6)

where Ω is a bounded open set in 𝑅𝑛, 𝜕Ω is smooth, and
𝐴 is a positive self-adjoint operator with a compact inverse.
Letting {𝑤

𝑖
}
∞

𝑖=1
denote the complete set of eigenvectors of 𝐴,

the corresponding eigenvalues are

0 ≤ 𝜆
1
< 𝜆
1
⋅ ⋅ ⋅ 𝜆
𝑖
< ⋅ ⋅ ⋅ 󳨀→ +∞. (7)

We assume that the nonlinear semigroup 𝑆(𝑡)
𝑡≥0

defined
in (4)–(6) possesses a compact attractor B of (𝑉

2
, 𝑉
1
)-type;

namely, there exists a compact set B in 𝑉
1
, and B attracts all

bounded subsets in 𝑉
2
and is invariant under the action of

𝑆(𝑡)
𝑡≥0

.
Let 𝐶 be a compact subset of 𝑉

2
. 𝑆(𝑡)
𝑡≥0

leaves the set 𝐶
invariant and set

B = ⋂
𝑠≥0

⋃

𝑡≥𝑠

𝑆(𝑡)
𝑡≥0
𝐶, (8)

that is, for 𝑆(𝑡)
𝑡≥0

on 𝐶, B is the global attractor.

Definition 1. A compact set 𝑀 is called an exponential
attractors for 𝑆(𝑡)

𝑡≥0
, 𝐶 if

(i) B ⊆ 𝑀 ⊆ 𝐶;
(ii) 𝑆(𝑡)𝑀 ⊆ 𝑀, for every 𝑡 ≥ 0;
(iii) 𝑀 has finite fractal dimension 𝑑

𝐹
< ∞;

(iv) There exist constants 𝑐
1
and 𝑐
2
such that

distV
2
(𝑆 (𝑡) 𝐶,𝑀) ≤ 𝑐

1
exp (−𝑐

2
𝑡) , ∀𝑡 > 0, (9)

where

distV
2
(𝐴,𝐷) = sup

𝑥∈𝐴

inf
𝑦∈𝐷

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑉
2

. (10)

Definition 2. If there exists a bounded function 𝑙(𝑡) indepen-
dent 𝑢 and V such that

‖𝑆 (𝑡) 𝑢 − 𝑆 (𝑡) V‖
𝑉
2

≤ 𝑙 (𝑡) ‖𝑢 − V‖
𝑉
2

, (11)

for every 𝑢, V ∈ 𝐶, then we say 𝑆(𝑡) is Lipschitz continuous in
𝐶 and 𝑙(𝑡) is Lipschitz constant for 𝑆(𝑡) in 𝐶.

Definition 3. A continuous semigroup 𝑆(𝑡)
𝑡≥0

is said to satisfy
the squeezing property on 𝐶 if there exists 𝑡

∗
> 0 such that

𝑆(𝑡
∗
) satisfies the following.
For every 𝛿 ∈ (0, (1/8)), there exists an orthogonal

projection 𝑃
𝑁
0

of rank equal to𝑁
0
such that for every 𝑢 and

V in 𝐶 if
󵄩󵄩󵄩󵄩󵄩
𝑃
𝑁
0

(𝑆 (𝑡
∗
) 𝑢 − 𝑆 (𝑡

∗
) V)
󵄩󵄩󵄩󵄩󵄩V
2

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑁
0

(𝑆 (𝑡
∗
) 𝑢 − 𝑆 (𝑡

∗
) V)
󵄩󵄩󵄩󵄩󵄩V
2

(12)

holds, then we also have
󵄩󵄩󵄩󵄩𝑆 (𝑡∗) 𝑢 − 𝑆 (𝑡∗) V

󵄩󵄩󵄩󵄩V
2

≤ 𝛿‖𝑢 − V‖V
2

, (13)

where 𝑄
𝑁
0

= 𝐼 − 𝑃
𝑁
0

.

Theorem 4 (see [3]). Suppose (4)–(6) satisfy the following
conditions.

(1) There exist nonlinear semigroup 𝑆(𝑡)
𝑡≥0

and a compact
attractor B.

(2) There exists a compact set C in 𝑉
2
which is positively

invariant for 𝑆(𝑡)
𝑡≥0

.
(3) 𝑆(𝑡)

𝑡≥0
is Lipschitz continuous and is squeezing in 𝐶.

Then (4)–(6) admit an exponential attractor 𝑀 in 𝑉
2
for

𝑆(𝑡)
𝑡≥0

and

𝑀 = ⋃

0≤𝑡≤𝑡
∗

𝑆 (𝑡)𝑀
∗
, (14)

where

𝑀
∗
= B⋃(

∞

⋃

𝑗=1

∞

⋃

𝑘=1

𝑆(𝑡
∗
)
𝑗

(𝐸
(𝑘)
)) . (15)

Moreover,

𝑑
𝐹
(𝑀) ≤ 1 + 𝐶𝑁

0
,

dist
𝑉
2
(𝑆 (𝑡) 𝐵,𝑀) ≤ 𝐶

0
exp (−𝐶

1
𝑡) ,

(16)

where𝑁
0
,𝐸(𝑘) are defined as in [4],𝐶,𝐶

0
,𝐶
1
are the constants

independent of 𝐵, and 𝑡
∗
is a positive constant.

Proposition 5. There exists 𝑡
0
(𝐵
0
) such that

𝐵
∗
= ⋃

0≤𝑡≤𝑡
0

𝑆 (𝑡) 𝐵
0 (17)

is a compact positively invariant set in 𝑉
1
and is absorbing set

for all bounded subsets in𝑉
2
, where 𝐵

0
is a closed absorbing set

in 𝑉
2
for 𝑆(𝑡)

𝑡≥0
.

Proposition 6. Let 𝐵
0
, 𝐵
1
be bounded and closed absorbing

sets for (4)–(6) in (𝑉
2
, 𝑉
1
), respectively. Then there exists

a compact attractor 𝐴∗ of (𝑉
2
, 𝑉
1
)-type. For the proof of

Proposition 5 and Proposition 6, we refer the reader to [5].

Denoting by | ⋅ |
𝐿
𝑝 the norm in 𝐿𝑝(0, 𝐿), 1 ≤ 𝑝 ≤ ∞, for

simplicity, we denote by | ⋅ |
0
and | ⋅ |

∞
the norm in the case
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𝑝 = 2 and 𝑝 = ∞, respectively. Suppose that 𝐻 = 𝐿2(0, 𝐿),
𝐸
𝑖
= 𝐻
𝑖
(0, 𝐿) × 𝐻

𝑖
(0, 𝐿) (𝑖 = 1, 2), where𝐻𝑖(0, 𝐿) is a Hilbert

space for the scalar product

((⋅, ⋅))
𝐻
𝑖 = (⋅, ⋅) +

𝑖

∑

𝑗=1

(𝐷
𝑗
⋅, 𝐷
𝑗
⋅) , 𝐷 =

𝜕

𝜕𝑥
. (18)

The norm of 𝐸
𝑖
is defined by ‖(𝑢, V)‖2

𝐸
𝑖

= ‖𝑢‖
2

𝐻
𝑖 + ‖V‖

2

𝐻
𝑖 .

We now establish some time-uniform a priori estimates
on (𝑢, V) in 𝐸

1
and 𝐸

2
, respectively.

Lemma 7. Assume that (𝑢
0
, V
0
) ∈ 𝐸
1
; then

‖(𝑢, V)‖
2

𝐸
1

≤ 𝑐
󵄩󵄩󵄩󵄩(𝑢0, V0)

󵄩󵄩󵄩󵄩

2

𝐸
1

𝑒
−𝛿
1
𝑡
+ 𝑐
1
. (19)

Thus there exists 𝑡
1
= 𝑡
1
(𝑅) > 0 such that

‖(𝑢, V)‖
2

𝐸
1

≤ 𝑐
2
, 𝑡 ≥ 𝑡

1
, (20)

whenever ‖(𝑢
0
, V
0
)‖
𝐸
1

≤ 𝑅.

Lemma 8. Assume that (𝑢
0
, V
0
) ∈ 𝐸
2
; then

‖(𝑢, V)‖
2

𝐸
2

≤ 𝑐
󵄩󵄩󵄩󵄩(𝑢0, V0)

󵄩󵄩󵄩󵄩

2

𝐸
2

𝑒
−𝛿
2
𝑡
+ 𝑐
3
. (21)

Thus there exists 𝑡
2
= 𝑡
2
(𝑅) > 0 such that

‖(𝑢, V)‖
2

𝐸
2

≤ 𝑐
4
, 𝑡 ≥ 𝑡

2
, (22)

whenever ‖(𝑢
0
, V
0
)‖
𝐸
2

≤ 𝑅.

Theorem 9. Assume that all the parameters of (1) are positive.
For (𝑢

0
, V
0
) given in 𝐸

𝑖
(𝑖 = 1, 2), there exists a unique solution

(𝑢, V) ∈ 𝐿
∞
(𝑅
+
, 𝐸
𝑖
) . (23)

And also

(𝑢, V) ∈ C (𝑅
+
, 𝐸
1
) , ∀ (𝑢

0
, V
0
) ∈ 𝐸
1
. (24)

Furthermore, the solution operator of the system is a continuous
semigroup 𝑆(𝑡) on 𝐸

1
which possesses bounded absorbing sets

𝐵
𝑖
⊂ 𝐸
𝑖
, for 𝑖 = 1, 2.

Thus, we observe that Lemmas 7 and 8 show that there
exists constant 𝑘 depending only on the data that the balls

𝐵
1
= {(𝑢, V) ∈ 𝐸

1
, ‖𝑢‖
𝐻
1

+ ‖V‖
𝐻
1

≤ 𝑘} ,

𝐵
2
= {(𝑢, V) ∈ 𝐸

2
, ‖𝑢‖
𝐻
2

+ ‖V‖
𝐻
2

≤ 𝑘}

(25)

are bounded absorbing sets for 𝑆(𝑡) in𝐸
1
and𝐸

2
, respectively:

Let

𝑉
1
= 𝐸
1
, 𝑉

2
= 𝐸
2
, 𝐵 = ⋃

𝑡≥0

𝑆 (𝑡) 𝐵
2
, (26)

then 𝐵 is a compact invariant subset in 𝑉
2
; we know that

semigroup 𝑆(𝑡) defined by problem (31)–(34) possesses a 𝑉
2
-

type compact attractor. According to Theorem 4, we need
only to show the Lipschitz continuity and the squeezing
property of the dynamical system 𝑆(𝑡) in 𝐵, respectively. That
is what we proceed to do in the following sections.

3. Exponential Attractor in 𝑉
2

for Problem
(1)-(2)

In this section, we show the existence of the exponential
attractor in 𝑉

2
for problem (1)-(2). In order to prove the

Lipschitz continuity and the squeezing property, we need to
extend Hölder inequality

∫
Ω

󵄨󵄨󵄨󵄨𝑢 (𝑥) 𝑢2 (𝑥) ⋅ ⋅ ⋅ 𝑢𝑘 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥 ≤

𝑘

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗
, (27)

where ∑𝑘
𝑗=1
(1/𝑝
𝑗
) = 1, 𝑝

𝑗
> 1 and Gagliardo-Nirenberg (G-

N) inequality
󵄩󵄩󵄩󵄩󵄩
∇
𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩𝑝
≤ 𝑐
󵄩󵄩󵄩󵄩∇
𝑚
𝑢
󵄩󵄩󵄩󵄩

𝑎

𝑟
‖𝑢‖
1−𝑎

𝑞
, (28)

where

1

𝑝
=
𝑗

𝑛
+ 𝑎 (

1

𝑟
−
𝑚

𝑛
) +
1 − 𝑎

𝑞
,

1 ≤ 𝑞, 𝑟 ≤ ∞, 0 ≤ 𝑗 < 𝑚,
𝑗

𝑚
≤ 𝑎 ≤ 1,

(29)

and the Young’s inequality

𝑎𝑏 ≤
𝜀

𝑝
𝑎
𝑝
+
1

𝑞
𝜀
(−𝑞/𝑏)
𝑏
𝑞
, 𝑎, 𝑏, 𝜀 > 0, 1 < 𝑝,

𝑞 < ∞,
1

𝑝
+
1

𝑞
= 1.

(30)

Theorem 10. Assume 𝑤
1
(𝑡) = (𝑢

1
(𝑡), V
1
(𝑡)), and 𝑤

2
(𝑡) =

(𝑢
2
(𝑡), V
2
(𝑡)) are two solutions of problem (1)-(2) with initial

values 𝑤
10
= (𝑢
10
, V
10
), 𝑤
20
= (𝑢
20
, V
20
) ∈ 𝐵 = 𝐻

2
× 𝐻
2; then

one has
󵄩󵄩󵄩󵄩𝑤1 (𝑡) − 𝑤2 (𝑡)

󵄩󵄩󵄩󵄩𝑉
2

≤ exp (2𝐶
0
𝑡)
󵄩󵄩󵄩󵄩𝑤10 − 𝑤20

󵄩󵄩󵄩󵄩𝑉
2

. (31)

Proof. Letting ℎ(𝑡) = 𝑢
1
(𝑡) − 𝑢

2
(𝑡), 𝑔(𝑡) = V

1
(𝑡) − V

2
(𝑡), from

(1)-(2), we have

𝑖ℎ
𝑡
+ 𝛾
2
Δℎ + 𝑖𝛾ℎ + 𝑓 (𝑢

1
, 𝑢
2
) + 𝑔 = 0, (32)

𝑖𝑔
𝑡
+ 𝛾
2
Δ𝑔 + (𝑖Γ − 𝜒) 𝑔 + ℎ = 0, (33)

with periodic initial value

ℎ (𝑥, 𝑡) = ℎ (𝑥 + 𝐷, 𝑡) , 𝑔 (𝑥, 𝑡) = 𝑔 (𝑥 + 𝐷, 𝑡) ,

𝑥 ∈ 𝑅, 𝑡 > 0,

(34)

ℎ (𝑥, 0) = 𝑢
10
(𝑥) − 𝑢

20
(𝑥) , 𝑔 (𝑥, 0) = V

10
(𝑥) − V

20
(𝑥) ,

𝑥 ∈ 𝑅,

(35)

where

𝑓 (𝑢
1
, 𝑢
2
) = 𝜎
1
(
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

𝑢
1
−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

2

𝑢
2
) + 𝑖𝜎

2
(
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

𝑢
1
−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

4

𝑢
2
) .

(36)
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Taking 𝜙
1
(𝑢) = |𝑢|

2 and 𝜙
2
(𝑢) = |𝑢|

4, then we get

𝜙
󸀠

1
(𝜉) ℎ =

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

2

, (37)

𝜙
󸀠

2
(𝜂) ℎ =

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

4

. (38)

Substituting (37) and (38) into (36), we get

𝑓 (𝑢
1
, 𝑢
2
) = 𝜎
1
(
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

𝑢
1
−
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

𝑢
2
+
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2

𝑢
2
−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

2

𝑢
2
)

+ 𝑖𝜎
2
(
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

𝑢
1
−
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

𝑢
1
+
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

4

𝑢
2
−
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

4

𝑢
2
)

= 𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))

+ 𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) .

(39)

Substituting (39) into (32), we obtain

𝑖ℎ
𝑡
+ 𝛾
2
Δℎ + 𝑖𝛾ℎ + 𝜎

1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))

+ 𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) + 𝑔 = 0,

(40)

𝑖𝑔
𝑡
+ 𝛾
2
Δ𝑔 + (𝑖Γ − 𝜒) 𝑔 + ℎ = 0. (41)

To prove theTheorem 4, we take the following four steps.

Step 1. Taking the inner product of (40) with ℎ and (41) with
𝑔, respectively, we have

(𝑖ℎ
𝑡
, ℎ) + (𝛾

2
Δℎ, ℎ) + (𝑖𝛾ℎ, ℎ)

+ (𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , ℎ)

+ (𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , ℎ) + (𝑔, ℎ) = 0,

(42)

(𝑖𝑔
𝑡
, 𝑔) + (𝛾

2
Δ𝑔, 𝑔) + ((𝑖Γ − 𝜒) 𝑔, 𝑔) + (ℎ, 𝑔) = 0, (43)

using

𝑑

𝑑𝑡
∫
Ω

|𝑢|
2
𝑑𝑥 =

𝑑

𝑑𝑡
∫
Ω

𝑢𝑢 𝑑𝑥 = ∫
Ω

(𝑢
𝑡
𝑢 + 𝑢𝑢

𝑡
) 𝑑𝑥

= 2Re∫
Ω

𝑢
𝑡
𝑢 𝑑𝑥.

(44)

Thus,

Im(𝑖 ∫
Ω

𝑢
𝑡
𝑢 𝑑𝑥) =

1

2

𝑑

𝑑𝑡
∫
Ω

|𝑢|
2
𝑑𝑥,

(𝛾
2
Δℎ, ℎ) = −𝛾

2

󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

, (𝑖𝛾ℎ, ℎ) = 𝑖𝛾‖ℎ‖
2
,

(45)

then taking the imaginary part of (42) and (43), respectively,

1

2

𝑑

𝑑𝑡
‖ℎ‖
2
+ 𝛾‖ℎ‖

2
+ 𝜎
1
Im∫
Ω

𝑢
2
𝜙
󸀠

1
(𝜉) |ℎ|

2
𝑑𝑥

+ 𝜎
2
Im∫
Ω

𝜙
2
(𝑢
1
) |ℎ|
2
𝑑𝑥

+ 𝜎
2
Re∫
Ω

𝜙
󸀠

2
(𝜂) |ℎ|

2
𝑑𝑥 + Im∫

Ω

𝑔ℎ 𝑑𝑥 = 0,

(46)

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ Im∫
Ω

ℎ𝑔 𝑑𝑥 = 0, (47)

by using the extend Hölder inequality, we can obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Im∫
Ω

𝑔ℎ 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
1

2
(
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ ‖ℎ‖
2
) ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜎
1
Im∫
Ω

𝑢
2
𝜙
󸀠

1
(𝜉) |ℎ|

2
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 ∫
Ω

󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨 𝜙
󸀠

1
(𝜉) |ℎ|

2
𝑑𝑥

≤
󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 ‖ℎ‖
2󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠

1
(𝜉)
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶‖ℎ‖
2
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜎
2
Re∫
Ω

𝑢
2
𝜙
󸀠

2
(𝜂) |ℎ|

2
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨𝜎2
󵄨󵄨󵄨󵄨 ∫
Ω

󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨 𝜙
󸀠

2
(𝜉) |ℎ|

2
𝑑𝑥

≤
󵄨󵄨󵄨󵄨𝜎2
󵄨󵄨󵄨󵄨 ‖ℎ‖
2󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠

2
(𝜂)
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶‖ℎ‖
2
.

(48)

Combining (46) and (47), then we infer that

1

2

𝑑

𝑑𝑡
(‖ℎ‖
2
+
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

) + 𝛾‖ℎ‖
2
+ 𝛾
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝜙
2
(𝑢
1
) |ℎ|
2
𝑑𝑥 ≤ 𝐶‖ℎ‖

2
+
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

.

(49)

Step 2. Taking the inner product of (40) with −ℎ
𝑥𝑥

and (41)
with −𝑔

𝑥𝑥
, respectively, we have

(𝑖ℎ
𝑡
, ℎ
𝑥𝑥
) + (𝛾

2
Δℎ, −ℎ

𝑥𝑥
) + (𝑖𝛾ℎ, −ℎ

𝑥𝑥
)

+ (𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , −ℎ

𝑥𝑥
)

+ (𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , −ℎ

𝑥𝑥
)

+ (𝑔, −ℎ
𝑥𝑥
) = 0,

(50)

(𝑖𝑔
𝑡
, −𝑔
𝑥𝑥
) + (𝛾
2
Δ𝑔, −𝑔

𝑥𝑥
) + ((𝑖Γ − 𝜒) 𝑔, −𝑔

𝑥𝑥
)

+ (ℎ, −𝑔
𝑥𝑥
) = 0.

(51)

Note that

(𝑖ℎ
𝑡
, −ℎ
𝑥𝑥
) = 𝑖 ∫

Ω

ℎ
𝑥𝑡
ℎ
𝑥
𝑑𝑥,

(𝑔, −ℎ
𝑥𝑥
) = ∫
Ω

𝑔
𝑥
ℎ
𝑥
𝑑𝑥,

(𝛾
2
Δℎ, −ℎ

𝑥𝑥
) = ‖Δℎ‖

2
,

(𝑖𝛾ℎ, −ℎ
𝑥𝑥
) = 𝑖𝛾

󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

,
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(𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , −ℎ

𝑥𝑥
)

= 𝜎
1
∫
Ω

[
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

(𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))

+ ℎℎ
𝑥
(𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))
𝑥
] 𝑑𝑥,

(𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , −ℎ

𝑥𝑥
)

= 𝑖𝜎
2
∫
Ω

[
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

(𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂))

+ ℎℎ
𝑥
(𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂))
𝑥
] 𝑑𝑥,

(52)

then taking the imaginary part of (50) and (51), respectively,

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛾
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜎
1
Im∫
Ω

(𝑢
2
𝜙
󸀠

1
(𝜉)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ ℎℎ
𝑥
(𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))x
) 𝑑𝑥

+ 𝜎
2
Im∫
Ω

𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ 𝜎
2
Re∫
Ω

(𝑢
2
𝜙
󸀠

2
(𝜂)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ ℎℎ
𝑥
(𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂))
𝑥
) 𝑑𝑥

+ Im∫
Ω

𝑔
𝑥
ℎ
𝑥
𝑑𝑥 = 0,

(53)

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+ Im∫
Ω

ℎ𝑔 𝑑𝑥 = 0. (54)

Note the following inequalities:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜎
1
Im∫
Ω

(𝑢
2
𝜙
󸀠

1
(𝜉)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ ℎℎ
𝑥
(𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉))
𝑥
) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 Im∫
Ω

(
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜙
󸀠

1
(𝜉)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ |ℎ|
󵄨󵄨󵄨󵄨󵄨
ℎ
𝑥

󵄨󵄨󵄨󵄨󵄨
(
󵄨󵄨󵄨󵄨𝜙1(𝑢1)𝑥

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢2𝑥
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜙
󸀠

1
(𝜉)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜙
󸀠

1
(𝜉)
𝑥

󵄨󵄨󵄨󵄨󵄨
)) 𝑑𝑥

≤ 𝐶
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+
󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 ‖ℎ‖
󵄩󵄩󵄩󵄩󵄩
ℎ
𝑥

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩𝜙1(𝑢1)𝑥

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩𝑢2𝑥
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠

1
(𝜉)
󵄩󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
𝜙
󸀠

1
(𝜉)
𝑥

󵄩󵄩󵄩󵄩󵄩∞
) ,

≤ 𝐶
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝑐‖ℎ‖
2
,

𝜎
2
Re∫
Ω

(𝑢
2
𝜙
󸀠

2
(𝜂)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+ ℎℎ
𝑥
(𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂))
𝑥
) 𝑑𝑥

≤ 𝐶
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝑐‖ℎ‖
2
,

(55)

Combining (53) and (54), one can obtain

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥
󵄩󵄩󵄩󵄩

2

) + 𝛾
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛾
󵄩󵄩󵄩󵄩𝑔𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥
󵄩󵄩󵄩󵄩

2

+ 𝑐‖ℎ‖
2
.

(56)

Step 3. Taking the inner product of (40) with ℎ
𝑥𝑥𝑥𝑥

and (41)
with 𝑔

𝑥𝑥𝑥𝑥
, respectively, we have

(𝑖ℎ
𝑡
, ℎ
𝑥𝑥𝑥𝑥
) + (𝛾

2
Δℎ, ℎ
𝑥𝑥𝑥𝑥
) + (𝑖𝛾ℎ, ℎ

𝑥𝑥𝑥𝑥
)

+ (𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , ℎ

𝑥𝑥𝑥𝑥
)

+ (𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , ℎ

𝑥𝑥𝑥𝑥
)

+ (𝑔, ℎ
𝑥𝑥𝑥𝑥
) = 0,

(𝑖𝑔
𝑡
, 𝑔
𝑥𝑥𝑥𝑥
) + (𝛾
2
Δ𝑔, 𝑔
𝑥𝑥𝑥𝑥
) + ((𝑖Γ − 𝜒) 𝑔, 𝑔

𝑥𝑥𝑥𝑥
)

+ (ℎ, 𝑔
𝑥𝑥𝑥𝑥
) = 0,

(57)

using

(𝑖ℎ
𝑡
, ℎ
𝑥𝑥𝑥𝑥
) = 𝑖 ∫

Ω

ℎ
𝑥𝑥𝑡
ℎ
𝑥𝑥
𝑑𝑥,

(𝑔, ℎ
𝑥𝑥𝑥𝑥
) = ∫
Ω

𝑔
𝑥𝑥
ℎ
𝑥𝑥
𝑑𝑥,

(𝛾
2
Δℎ, ℎ
𝑥𝑥𝑥𝑥
) =
󵄩󵄩󵄩󵄩ℎ𝑥𝑥𝑥

󵄩󵄩󵄩󵄩

2

,

(𝑖𝛾ℎ, ℎ
𝑥𝑥𝑥𝑥
) = 𝑖𝛾

󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

,

(𝜎
1
ℎ (𝜙
1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)) , ℎ

𝑥𝑥𝑥𝑥
)

= 𝜎
1
((ℎ (𝜙

1
(𝑢
1
) + 𝑢
2
𝜙
󸀠

1
(𝜉)))
𝑥𝑥
, ℎ
𝑥𝑥
)

= 𝜎
1
(ℎ
𝑥𝑥
𝜙
1
(𝑢
1
) + 𝜓
1
, ℎ
𝑥𝑥
) ,

(𝑖𝜎
2
ℎ (𝜙
2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)) , ℎ

𝑥𝑥𝑥𝑥
)

= 𝑖𝜎
2
((ℎ (𝜙

2
(𝑢
1
) + 𝑢
2
𝜙
󸀠

2
(𝜂)))
𝑥𝑥
, ℎ
𝑥𝑥
)

= 𝑖𝜎
2
(ℎ
𝑥𝑥
𝜙
2
(𝑢
1
) + 𝜓
2
, ℎ
𝑥𝑥
) ,

(58)

where

𝜓
1
= ℎ
𝑥𝑥
𝑢
2
𝜙
󸀠

1
(𝜉)

+ 2ℎ
𝑥
(𝜙
1
(𝑢
1
)
𝑥
+ 𝑢
2𝑥
𝜙
󸀠

1
(𝜉) + 𝑢

2
𝜙
󸀠

1
(𝜉)
𝑥
)

+ ℎ (𝜙
1
(𝑢
1
)
𝑥𝑥
+ 𝑢
2𝑥𝑥
𝜙
󸀠

1
(𝜉) + 2𝑢

2𝑥
𝜙
󸀠

1
(𝜉)
𝑥

+𝑢
2
𝜙
󸀠

1
(𝜉)
𝑥𝑥
) ,
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𝜓
2
= ℎ
𝑥𝑥
𝑢
2
𝜙
󸀠

2
(𝜂)

+ 2ℎ
𝑥
(𝜙
2
(𝑢
1
)
𝑥
+ 𝑢
2𝑥
𝜙
󸀠

2
(𝜂) + 𝑢

2
𝜙
󸀠

2
(𝜂)
𝑥
)

+ ℎ (𝜙
2
(𝑢
1
)
𝑥𝑥
+ 𝑢
2𝑥𝑥
𝜙
󸀠

2
(𝜂) + 2𝑢

2𝑥
𝜙
󸀠

2
(𝜂)
𝑥

+𝑢
2
𝜙
󸀠

2
(𝜂)
𝑥𝑥
) ,

(59)

then taking the imaginary part of (50) and (51), respectively,

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝛾
󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜎
1
Im (𝜓

1
, ℎ
𝑥𝑥
)

+ 𝜎
2
(ℎ
𝑥𝑥
𝜙
2
(𝑢
1
) , ℎ
𝑥𝑥
) + 𝜎
2
Re (𝜓

2
, ℎ
𝑥𝑥
)

+ Im∫
Ω

𝑔
𝑥𝑥
ℎ
𝑥𝑥
𝑑𝑥 = 0,

(60)

1

2

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ Im∫
Ω

ℎ
𝑥𝑥
𝑔
𝑥𝑥
𝑑𝑥 = 0. (61)

Note the following inequalities:

󵄨󵄨󵄨󵄨󵄨
Im (𝜓

1
, ℎ
𝑥𝑥
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶‖ℎ‖

2

𝐻
2 ,

󵄨󵄨󵄨󵄨󵄨
𝜎
2
Re (𝜓

2
, ℎ
𝑥𝑥
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶‖ℎ‖

2

𝐻
2 .

(62)

Combining (60) and (61), one can obtain

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

) + 𝛾
󵄩󵄩󵄩󵄩ℎ𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨ℎ𝑥𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

.

(63)

Step 4. Combining (49), (56) and (63), we get

1

2

𝑑

𝑑𝑡
(‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) + 𝛾‖ℎ‖

2

𝐻
2 + 𝛾
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2

+ 𝜎
2
∫
Ω

𝜙
2
(𝑢
1
) (|ℎ|
2
+
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨ℎ𝑥𝑥
󵄨󵄨󵄨󵄨

2

) 𝑑𝑥

≤ 𝐶 (‖ℎ‖
2
+
󵄩󵄩󵄩󵄩ℎ𝑥
󵄩󵄩󵄩󵄩

2

+ ‖ℎ‖
2

𝐻
2) +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑔𝑥𝑥
󵄩󵄩󵄩󵄩

2

.

(64)

Taking 𝜇 = min(Γ, 𝛾),𝐶
0
= max(𝐶, 1) and noting that

𝜎
2
∫
Ω

(|ℎ|
2
+
󵄨󵄨󵄨󵄨ℎ𝑥
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨ℎ𝑥𝑥
󵄨󵄨󵄨󵄨

2

) 𝑑𝑥 ≥ 0, (65)

so (64) can be reduced to

1

2

𝑑

𝑑𝑡
(‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) + 𝜇 (‖ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2)

≤ 𝐶
0
(‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) .

(66)

By Gronwall’s inequality

‖ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2 ≤ exp (2𝐶0𝑡) (‖ℎ (0)‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) , (67)

that is,
󵄩󵄩󵄩󵄩𝑤1 (𝑡) − 𝑤2 (𝑡)

󵄩󵄩󵄩󵄩𝑉
2

≤ exp (2𝐶
0
𝑡)
󵄩󵄩󵄩󵄩𝑤10 − 𝑤20

󵄩󵄩󵄩󵄩𝑉
2

. (68)

Meanwhile, it indicates that the Lipschitz constant 𝑙(𝑡) ≤
exp(2𝐶

0
𝑡). This completes the proof.

Now, we intend to show the squeezing property for
semigroup 𝑆(𝑡). To this end, we introduce the operator 𝐴 =
−(𝜕/𝜕𝑥

2
) from𝐷(𝐴) to𝐻 with domain

𝐷 (𝐴) = {𝑢 ∈ 𝐻
2
(Ω)} . (69)

Obviously, 𝐴 is an unbounded self-adjoint positive opera-
tor and the inverse 𝐴−1 is compact. Thus, there exists an
orthonormal basis {𝑤

𝑖
}
∞

𝑖=1
𝑖 = 1 of 𝐻 consisting of eigen-

vectors of 𝐴 such that

𝐴𝑤
𝑖
= 𝜆
𝑖
𝑤
𝑖
,

0 ≤ 𝜆
1
< 𝜆
1
⋅ ⋅ ⋅ 𝜆
𝑖
< ⋅ ⋅ ⋅ 󳨀→ +∞, when 𝑖 󳨀→ ∞.

(70)

For all𝑁 denote by 𝑃 = 𝑃
𝑛
: 𝐻 → span{𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
} the

projector 𝑄 = 𝑄
𝑁
= 𝐼 − 𝑃

𝑁
. In the following, we will use

󵄩󵄩󵄩󵄩󵄩
𝐴
(1/2)
𝑢
󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕𝑢

𝜕𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

,

󵄩󵄩󵄩󵄩󵄩
𝐴
(1/2)
𝑢
󵄩󵄩󵄩󵄩󵄩
≥ 𝜆
(1/2)

𝑁+1
, 𝑢 ∈ 𝑄

𝑁
𝐻,

󵄩󵄩󵄩󵄩𝑄𝑁𝑢
󵄩󵄩󵄩󵄩 ≤ ‖𝑢‖ , 𝑢 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝐴𝑄𝑁𝑢
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑄𝑁𝐴𝑢

󵄩󵄩󵄩󵄩 ≤ ‖𝐴𝑢‖ , 𝑢 ∈ 𝐷 (𝐴) .

(71)

Decompose ℎ, 𝑔 as

ℎ = 𝑃ℎ + 𝑄ℎ, 𝑔 = 𝑃𝑔 + 𝑄𝑔. (72)

Applying 𝑄 to (32) and (33) we find that

𝑖𝑄ℎ
𝑡
+ 𝛾
2
Δ𝑄ℎ + 𝑖𝛾ℎ + 𝑄𝑓 (𝑢

1
, 𝑢
2
) + 𝑄𝑔 = 0, (73)

𝑖𝑄𝑔
𝑡
+ 𝛾
2
Δ𝑄𝑔 + (𝑖Γ − 𝜒)𝑄𝑔 + 𝑄ℎ = 0. (74)

Take the inner product of (73) with 𝑄ℎ and (74) with 𝑄𝑔,
respectively. Then like Step 1, we can get

1

2

𝑑

𝑑𝑡
(‖𝑄ℎ‖

2
+
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

) + 𝛾‖𝑄ℎ‖
2
+ Γ
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝑄𝜙
2
(𝑢
1
) |𝑄ℎ|

2
𝑑𝑥

≤ 𝐶‖𝑄ℎ‖
2
+
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

.

(75)

Take the inner product of (73) with −𝑄ℎ
𝑥𝑥

and (74) with
−𝑄𝑔
𝑥𝑥
, respectively. Then like Step 2, we can get

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑄ℎ𝑥

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑄𝑔𝑥

󵄩󵄩󵄩󵄩

2

) + 𝛾
󵄩󵄩󵄩󵄩𝑄ℎ𝑥

󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑄𝑔𝑥

󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝑄𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨𝑄ℎ𝑥
󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶
󵄩󵄩󵄩󵄩𝑄ℎ𝑥

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑄𝑔𝑥

󵄩󵄩󵄩󵄩

2

+ 𝑐‖𝑄ℎ‖
2
.

(76)
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Take the inner product of (73) with 𝑄ℎ
𝑥𝑥𝑥𝑥

and (74) with
𝑄𝑔
𝑥𝑥𝑥𝑥

, respectively. Then like Step 3, we can get

1

2

𝑑

𝑑𝑡
(
󵄩󵄩󵄩󵄩𝑄ℎ𝑥𝑥

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩

2

) + 𝛾
󵄩󵄩󵄩󵄩𝑄ℎ𝑥𝑥

󵄩󵄩󵄩󵄩

2

+ Γ
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩

2

+ 𝜎
2
∫
Ω

𝑄𝜙
2
(𝑢
1
)
󵄨󵄨󵄨󵄨𝑄ℎ𝑥𝑥

󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 𝐶‖𝑄ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩

2

.

(77)

Combining (75), (76), and (77), we get

1

2

𝑑

𝑑𝑡
(‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) + 𝜇 (‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2)

≤ 𝐶
0
(‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) .

(78)

Using the G-N inequality

󵄩󵄩󵄩󵄩𝑢𝑥
󵄩󵄩󵄩󵄩

2

≤ ‖𝑢‖
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩 ≤
1

2
(‖𝑢‖
2
+
󵄩󵄩󵄩󵄩𝑢𝑥𝑥
󵄩󵄩󵄩󵄩

2

) , (79)

from (78), we have

1

2

𝑑

𝑑𝑡
(‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2) + 𝜇 (‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2)

≤
3𝐶
0

2
(‖𝑄ℎ‖ +

󵄩󵄩󵄩󵄩𝑄ℎ𝑥𝑥
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩)

≤
3𝐶
0

2
𝜆
−1

𝑁+1
(
󵄩󵄩󵄩󵄩𝑄ℎ𝑥𝑥

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑄𝑔𝑥𝑥

󵄩󵄩󵄩󵄩)

≤
3𝐶
0

2
𝜆
−1

𝑁+1
(‖𝑄ℎ‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2)

≤
3𝐶
0

2
𝜆
−1

𝑁+1
exp (2𝐶

0
𝑡) (‖ℎ (0)‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) .

(80)

By Gronwall lemma we get

‖𝑄ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2

≤ (‖ℎ (0)‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) exp (−2𝜇𝑡)

+ 𝐶𝜆
−1

𝑁+1
exp (2𝐶

0
𝑡) (‖ℎ (0)‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2)

≤ [exp (−2𝜇𝑡) + 𝐶𝜆−1
𝑁+1

exp (2𝐶
0
𝑡)]

× (‖ℎ (0)‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) .

(81)

Letting 𝑡
∗
> 0 be fixed we take 𝑤(𝑡) = 𝑤

1
(𝑡) − 𝑤

2
(𝑡) =

(ℎ(𝑡), 𝑔(𝑡)) and assume that

exp (−2𝜇𝑡
∗
) ≤

1

256
. (82)

Then we choose𝑁 large enough so that

𝐶𝜆
−1

𝑁+1
exp (2𝐶

0
𝑡) ≤

1

256
, (83)

that is,

𝜆
𝑁+1
≥ 256𝐶 exp (2𝐶

0
𝑡) . (84)

From (82) and (84), we obtain

‖𝑄ℎ‖
2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑄𝑔
󵄩󵄩󵄩󵄩

2

𝐻
2 ≤

1

128
(‖ℎ (0)‖

2

𝐻
2 +
󵄩󵄩󵄩󵄩𝑔 (0)

󵄩󵄩󵄩󵄩

2

𝐻
2) . (85)

This shows that when 𝑡
∗
> 0 is fixed, Lipschitz constant for

𝑆(𝑡) in 𝐵 is equal to exp(2𝐶
0
𝑡
∗
) and𝑁 satisfies

𝜆
𝑁+1
≥ 256𝐶 exp (2𝐶

0
𝑡
∗
) . (86)

We have

‖𝑄𝑤‖
𝑉
2

≤ ‖𝑄𝑤 (0)‖
𝑉
2

. (87)

So when
󵄩󵄩󵄩󵄩𝑄𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

>
󵄩󵄩󵄩󵄩𝑃𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

,

󵄩󵄩󵄩󵄩𝑤 (𝑡∗)
󵄩󵄩󵄩󵄩𝑉
2

=
󵄩󵄩󵄩󵄩𝑄𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

+
󵄩󵄩󵄩󵄩𝑃𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

< 2
󵄩󵄩󵄩󵄩𝑄𝑤 (𝑡∗)

󵄩󵄩󵄩󵄩𝑉
2

≤
1

64
‖𝑄𝑤 (0)‖

𝑉
2

≤
1

64
‖𝑤 (0)‖

𝑉
2

.

(88)

This completes the proof of Theorem 4.

Theorem 11. The semigroup 𝑆(𝑡) associated with problem (1)-
(2) is squeezing in 𝐵. Now we conclude this section by giving
our main result.

Theorem 12. Suppose that problem (1)-(2) satisfiesTheorem 9;
there exist 𝑡

∗
≥ (1/2𝜇) ln(256) and N large enough such that

𝜆
𝑁+1
≥ 256𝐶 exp (2𝐶

0
𝑡
∗
) . (89)

Then for the nonlinear semigroup 𝑆(𝑡) defined in (4) and (5),
𝑆(𝑡)
𝑡≤0

; 𝐵 admits an exponential attractor𝑀 in 𝑉
2
and

𝑑
𝐹
(𝑀) ≤ 1 + 𝐶𝑁

0
,

dist
𝑉
2
(𝑆 (𝑡) 𝐵,𝑀) ≤ 𝐶

0
exp (−𝐶

1
𝑡) ,

(90)

where 𝐶
0
, 𝐶
1
, 𝐶 are constants independent of the solution of

the equation.

4. Conclusions

In this paper, we have studied the coupled Ginzburg-Landau
equations which describe Bose-Einstein condensates and
nonlinear optical waveguides and cavities with periodic
initial boundary; the existence of the exponential attractors is
obtained by showing Lipschitz continuity and the squeezing
property. For exponential attractor, 𝑁 is only large enough
such that

𝜆
𝑁+1
≥ 256𝐶 exp (2𝐶

0
𝑡
∗
) . (91)
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