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Based on the works of Perko andWalter, Moeckel and Simo, and Zhang and Zhou, we study the necessary conditions and suffcient
conditions for the uniformly rotating planar nested regular polygonal periodic solutions for the 2𝑁-body problems.

1. Introduction and Main Results

Let𝑚𝑗 > 0, 𝑞𝑗 ∈ R2 be the mass and position of the 𝑗th body.
The Newtonian 𝑁-body problem concerns the motion of 𝑁
point particles. The motion is governed by

𝑚𝑗 ̈𝑞𝑗 =
𝜕𝑈

𝜕𝑞𝑗

, 𝑗 = 1, 2, . . . , 𝑁, (1)

where 𝑈 is the Newtonian potential:

𝑈 = ∑

1≤𝑗<𝑘≤𝑁

𝑚𝑗𝑚𝑘


𝑞𝑗 − 𝑞𝑘



. (2)

In the famous paper [1], Perko andWalter proved the fol-
lowing result.

Theorem 1 (see [1]). For 𝑁 ≥ 4, the 𝑁 bodies move with
uniformly angular velocity and locate on the vertices of regular
𝑁-gon if and only if𝑚1 = 𝑚2 = ⋅ ⋅ ⋅ = 𝑚𝑁.

In 1995, Moeckel and Simó [2] studied planar nested 2𝑁-
body problems; they assume one regular 𝑁-gon is inscribed
on a unit circle, the other on a circle with radius 𝑎, 𝑎 > 0 and

𝑎 ̸= 1; precisely, let 𝜌𝑗 = 𝑒
(2𝜋𝑖/𝑁)𝑗, where 𝑖2 = −1; and the

points𝑚𝑗 and �̃�𝑗 locate at 𝑞𝑗 and 𝑞𝑗:

𝑞𝑗 = (𝜌𝑗 − 𝑧0) 𝑒
𝑖𝜔𝑡
, 𝑞𝑗 = (𝑎𝜌𝑗 − 𝑧0) 𝑒

𝑖𝜔𝑡
,

𝑗 = 1, 2, . . . , 𝑁,

(3)

where 𝑧0 = (1/(𝑀1 + 𝑀2)) ∑(𝑚𝑗𝜌𝑗 + a�̃�𝑗𝜌𝑗), 𝑀1 = ∑𝑚𝑗,
𝑀2 = ∑ �̃�𝑗, and𝑀 = 𝑀1 + 𝑀2. For short, throughout this
paper, all indices and summations will range from 1 to 𝑁
unless we give other restrictions.

For the nested 2𝑁-body problems, Moeckel and Simó
proved the following theorem.

Theorem 2 (see [2]). If 𝑚1 = ⋅ ⋅ ⋅ = 𝑚𝑁 := 𝑚 and �̃�1 = ⋅ ⋅ ⋅ =
�̃�𝑁 := �̃�, then for everymass ratio 𝑟 = �̃�/𝑚, there are exactly
two planar central configurations consisting of two nested
regular𝑁-gons. For one of them, the ratio of the sizes of the two
nested𝑁-gons is less than 1, and for the other it is greater than
1.

In 2003, Zhang and Zhou [3] studied the inverse problem
ofMoeckel and Simó’s theorem [2], and they got the following
results.
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Theorem 3 ([3], the case of 𝜃 = 0). If (3) is a solution of (1),
then 𝜔2 satisfies

[

[

1

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
−
𝑁𝜔
2

𝑀

]

]

⋅ [

[

1

4𝑎
2
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
−
𝑎𝑁𝜔
2

𝑀

]

]

= [

[

∑

1 − 𝑎𝜌𝑗


1 − 𝑎𝜌𝑗



3
−
𝑁𝜔
2

𝑀

]

]

⋅ [

[

∑

𝑎 − 𝜌𝑗


𝑎 − 𝜌𝑗



3
−
𝑎𝑁𝜔
2

𝑀

]

]

(4)

or equivalently

𝜔
2

= (
1

16𝑎
2
( ∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
)

2

−(∑

1 − 𝑎𝜌𝑗


1 − 𝑎𝜌𝑗



3
)(∑

𝑎 − 𝜌𝑗


𝑎 − 𝜌𝑗



3
))

×(
𝑁

𝑀

[

[

1

4
(𝑎 +

1

𝑎
2
)( ∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
)

−𝑎∑

1 − 𝑎𝜌𝑗


1 − 𝑎𝜌𝑗



3
−∑

𝑎 − 𝜌𝑗


𝑎 − 𝜌𝑗



3
]

]

)

−1

.

(5)

And in [3], they proved the following theorem [3, Theo-
rem 2]:

Theorem 4. If 𝜔 satisfies (4) or (5) and (𝑞1, . . . , 𝑞𝑁; 𝑞1,

. . . , 𝑞𝑁) given by (3) is a periodic solution of (1), then 𝑚1 =
⋅ ⋅ ⋅ = 𝑚𝑁 and �̃�1 = ⋅ ⋅ ⋅ = �̃�𝑁.

In the proof of [3, Theorem 2], the authors claimed that
the first eigenvalue 𝜆1(𝐴𝐵 − 𝐶𝐷) of the matrix 𝐴𝐵 − 𝐶𝐷 is
simple [3, page 2168]; this is not obvious. In fact, it seems very
difficult to prove.

Based on all the above works, we try to give strict proofs
about the following two theorems. By the work of Moeckel
and Simó [2], if we can get a periodic solution of the form
given by (5) with 𝑎 ∈ (0, 1), the other periodic solution with
radius 1/𝑎 can be obtained by symmetry. Hence, in the fol-
lowing, we only discuss the periodic solution with radius
𝑎 ∈ (0, 1). The other one with radius 1/𝑎 can be obtained by
symmetry.

Theorem 5. For𝑁 ≥ 3, if 𝑎 ∈ (𝑎∗, 1), where 𝑎∗ ∈ (0, 1), and
(𝑞1, . . . , 𝑞𝑁, 𝑞1, . . . , 𝑞𝑁) given by (3) is a periodic solution for
(1), then𝑚1 = ⋅ ⋅ ⋅ = 𝑚𝑁 and �̃�1 = ⋅ ⋅ ⋅ = �̃�𝑁.

Theorem 6. If 𝑚1 = ⋅ ⋅ ⋅ = 𝑚𝑁 := 𝑚, �̃�1 = ⋅ ⋅ ⋅ = �̃�𝑁 := �̃�,
and the constant 𝜔 > 0 is given by

𝜔
2
=
𝑚

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁

+ �̃�∑
1 − 𝑎0 cos (2𝜋𝑗/𝑁)


1 − 𝑎0𝜌𝑗



3
,

(6)

where 𝜇 = �̃�/𝑚 and 𝑎0 is a unique solution of the following
equation:

𝑎
3
− 𝜇

4𝑎
2
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁

− (1 − 𝜇)∑
𝑎


1 − 𝑎𝜌𝑗



3

+ (1 − 𝑎
2
𝜇)∑

cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
= 0,

(7)

then (𝑞1, . . . , 𝑞𝑁, 𝑞1, . . . , 𝑞𝑁)with (𝑚1, . . . , 𝑚𝑁, �̃�1, . . . , �̃�𝑁) is
a periodic solution of (1) with angular velocity 𝜔.

When𝑚1 = ⋅ ⋅ ⋅ = 𝑚𝑁 and �̃�1 = ⋅ ⋅ ⋅ = �̃�𝑁, we have 𝑧0 = 0
which implies that the center of the masses locates at the
origin. ByTheorem 6, we get a periodic solution of (1) which
rotates about the origin with radius 𝑎0 ∈ (0, 1). By symmetry,
(1) has another periodic solution which rotates about the
origin with radius 1/𝑎0 ∈ (1,∞).

2. The Proof of Theorem 5

Substituting (3) into (1), we have

−𝜔
2
(𝜌𝑘 − 𝑧0) 𝑒

𝑖𝜔𝑡
= ∑

𝑗 ̸= 𝑘

𝑚𝑗 (𝑞𝑗 − 𝑞𝑘)


𝑞𝑗 − 𝑞𝑘



3
+∑

�̃�𝑗 (𝑞𝑗 − 𝑞𝑘)


𝑞𝑗 − 𝑞𝑘



3
,

−𝜔
2
(𝑎𝜌𝑘 − 𝑧0) 𝑒

𝑖𝜔𝑡
= ∑

𝑚𝑗 (𝑞𝑗 − 𝑞𝑘)


𝑞𝑗 − 𝑞𝑘



3
+ ∑

𝑗 ̸= 𝑘

�̃�𝑗 (𝑞𝑗 − 𝑞𝑘)


𝑞𝑗 − 𝑞𝑘



3
,

(8)

where 𝑘 = 1, 2, . . . , 𝑁.
By (3), (8) can be written as

−𝜔
2
(𝜌𝑘 − 𝑧0) = ∑

𝑗 ̸= 𝑘

𝑚𝑗 (𝜌𝑗 − 𝜌𝑘)


𝜌𝑗 − 𝜌𝑘



3
+∑

�̃�𝑗 (𝑎𝜌𝑗 − 𝜌𝑘)


𝑎𝜌𝑗 − 𝜌𝑘



3
,

−𝜔
2
(𝑎𝜌𝑘 − 𝑧0) = ∑

𝑚𝑗 (𝜌𝑗 − 𝑎𝜌𝑘)


𝜌𝑗 − 𝑎𝜌𝑘



3
+
1

𝑎
2
∑

𝑗 ̸= 𝑘

�̃�𝑗 (𝜌𝑗 − 𝜌𝑘)


𝜌𝑗 − 𝜌𝑘



3
,

(9)
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where 𝑘 = 1, 2, . . . , 𝑁. Equation (9) is equivalent to

𝜔
2
𝜌𝑘 = (∑

𝑗 ̸= 𝑘

𝜌𝑘 − 𝜌𝑗


𝜌𝑘 − 𝜌𝑗



3
𝑚𝑗 +

𝜔
2

𝑀
∑𝜌𝑗𝑚𝑗)

+(∑

𝜌𝑘 − 𝑎𝜌𝑗


𝜌𝑘 − 𝑎𝜌𝑗



3
�̃�𝑗 +

𝑎𝜔
2

𝑀
∑𝜌𝑗�̃�𝑗) ,

𝑎𝜔
2
𝜌𝑘 = (∑

𝑎𝜌𝑘 − 𝜌𝑗


𝑎𝜌𝑘 − 𝜌𝑗



3
𝑚𝑗 +

𝜔
2

𝑀
∑𝜌𝑗𝑚𝑗)

+(
1

𝑎
2
∑

𝑗 ̸= 𝑘

𝜌𝑘 − 𝜌𝑗


𝜌𝑘 − 𝜌𝑗



3
�̃�𝑗 +

𝑎𝜔
2

𝑀
∑𝜌𝑗�̃�𝑗) ,

(10)

where 𝑘 = 1, 2, . . . , 𝑁. Multiplying both sides of (10) by 𝜌−𝑘,
we get

𝜔
2
= (∑

𝑗 ̸= 𝑘

1 − 𝜌𝑗−𝑘


1 − 𝜌𝑗−𝑘



3
𝑚𝑗 +

𝜔
2

𝑀
∑𝜌𝑗−𝑘𝑚𝑗)

+(∑

1 − 𝑎𝜌𝑗−𝑘


1 − 𝑎𝜌𝑗−𝑘



3
�̃�𝑗 +

𝑎𝜔
2

𝑀
∑𝜌𝑗−𝑘�̃�𝑗) ,

𝑎𝜔
2
= (∑

𝑎 − 𝜌𝑗−𝑘


𝑎 − 𝜌𝑗−𝑘



3
𝑚𝑗 +

𝜔
2

𝑀
∑𝜌𝑗−𝑘𝑚𝑗)

+(
1

𝑎
2
∑

𝑗 ̸= 𝑘

1 − 𝜌𝑗−𝑘


1 − 𝜌𝑗−𝑘



3
�̃�𝑗 +

𝑎𝜔
2

𝑀
∑𝜌𝑗−𝑘�̃�𝑗) ,

(11)

where 𝑘 = 1, 2, . . . , 𝑁.
Let 𝐴 = (𝑎𝑘,𝑗)𝑁×𝑁, 𝐵 = (𝑏𝑘,𝑗)𝑁×𝑁, 𝐶 = (𝑐𝑘,𝑗)𝑁×𝑁, and 𝐷 =

(𝑑𝑘,𝑗)𝑁×𝑁, where

𝑎𝑘,𝑗 :=

{{

{{

{

1 − 𝜌𝑗−𝑘


1 − 𝜌𝑗−𝑘



3
, if 𝑗 ̸= 𝑘,

0, otherwise,

𝑏𝑘,𝑗 :=

1 − 𝑎𝜌𝑗−𝑘


1 − 𝑎𝜌𝑗−𝑘



3
,

𝑐𝑘,𝑗 :=

𝑎 − 𝜌𝑗−𝑘


𝑎 − 𝜌𝑗−𝑘



3
,

𝑑𝑘,𝑗 := 𝜌𝑗−𝑘.

(12)

Then (11) can be rewritten in the following compact form:

(𝐴 +
𝜔
2

𝑀
𝐷)�⃗� + (𝐵 +

𝑎𝜔
2

𝑀
𝐷) ⃗̃𝑚 = 𝜔

2
1⃗,

(𝐶 +
𝜔
2

𝑀
𝐷)�⃗� + (

1

𝑎
2
𝐴 +

𝑎𝜔
2

𝑀
𝐷) ⃗̃𝑚 = 𝑎𝜔

2
1⃗,

(13)

where �⃗� = (𝑚1, . . . , 𝑚𝑁),
⃗̃𝑚 = (�̃�1, . . . , �̃�𝑁), and 1⃗ = (1,

. . . , 1).
An 𝑁 × 𝑁 matrix R = (𝑟𝑗,𝑘)𝑁×𝑁 is called circulant (see

[4]) if

𝑟𝑗,𝑘 = 𝑟𝑗−1,𝑘−1, (14)

where 𝑟0,𝑘 and 𝑟𝑗,0 are equal to 𝑟𝑁,𝑘 and 𝑟𝑗,𝑁, respectively. Let
𝜌0 = 1. IfR is a circulant matrix, its general formulas for the
eigenvalues 𝜆𝑘(R) and eigenvectors V𝑘(R) are

𝜆𝑘 (R) = ∑
𝑗

𝑟1,𝑗𝜌
𝑗−1

𝑘−1
, 𝑘 = 1, 2, . . . , 𝑁, (15)

V𝑘 (R) = (𝜌𝑘−1, 𝜌
2
𝑘−1, . . . , 𝜌

𝑁
𝑘−1) , 𝑘 = 1, 2, . . . , 𝑁. (16)

Remark 7. From the formula (15), we have 𝜆1(R) = ∑
𝑁
𝑗=1 𝑟1,𝑗.

The last equation implies that the eigenvalue 𝜆1(R) is equal
to the summation of the first row of matrix R; thus, we can
get that the summation of any row, and hence, the summation
of any column is equal to 𝜆1(R).

According to the definition of circulant matrix, it is easy
to check that the matrixes𝐴+ (𝜔2/𝑀)𝐷, 𝐵+ (𝑎𝜔2/𝑀)𝐷, 𝐶+
(𝜔
2
/𝑀)𝐷, and (1/𝑎

2
)𝐴 + (𝑎𝜔

2
/𝑀)𝐷 are circulant. For

convenience, we introduce some notations. Let 𝜆(1)
𝑘
, 𝜆
(2)

𝑘
, 𝜆
(3)

𝑘
,

and 𝜆(4)
𝑘

be the 𝑘th eigenvalue of matrixes𝐴+ (𝜔2/𝑀)𝐷, 𝐵+
(𝑎𝜔
2
/𝑀)𝐷, 𝐶+ (𝜔

2
/𝑀)𝐷, and (1/𝑎2)𝐴+ (𝑎𝜔2/𝑀)𝐷, respec-

tively. Then we have the following.

Proposition8. All of the eigenvalues ofmatrixes𝐴+(𝜔2/𝑀)𝐷,
𝐵 + (𝑎𝜔

2
/𝑀)𝐷, 𝐶 + (𝜔

2
/𝑀)𝐷, and (1/𝑎2)𝐴 + (𝑎𝜔2/𝑀)𝐷 are

real.

Proof. We only give the proof for the matrix 𝐴 + (𝜔2/𝑀)𝐷.
The proofs for the rest are similar. Since 𝐴 + (𝜔

2
/𝑀)𝐷 is

circulant and (𝜔2/𝑀) is real number, we get from (12) that

𝑎1,𝑗 +
𝜔
2

𝑀
𝑑1,𝑗

=

1 − 𝜌𝑗−1


1 − 𝜌𝑗−1



3
+
𝜔
2

𝑀
𝜌𝑗−1

= 𝑎1,𝑁−𝑗+2 +
𝜔
2

𝑀
𝑑1,𝑁−𝑗+2,

(17)

where 𝑗 = 1, 2, . . . , 𝑁. Thus, the matrix 𝐴 + (𝜔
2
/𝑀)𝐷 is

Hermitian.We know that all the eigenvalues of𝐴+(𝜔2/𝑀)𝐷
are real since the eigenvalues of Hermitian matrix are real.
The proof is completed.

From the proof of Proposition 8, we have known that
𝐴 + (𝜔

2
/𝑀)𝐷, 𝐵 + (𝑎𝜔

2
/𝑀)𝐷, 𝐶 + (𝜔

2
/𝑀)𝐷, and (1/𝑎2)𝐴 +

(𝑎𝜔
2
/𝑀)𝐷 are Hermitian. Thus, the vectors {V1, . . . , V𝑁}

defined by (16) are basis of C𝑁. It is clear that �⃗� ∈ C𝑁 and
⃗̃𝑚 ∈ C𝑁. Let

�⃗� = 𝑎1V1 + ⋅ ⋅ ⋅ + 𝑎𝑁V𝑁,
⃗̃𝑚 = 𝑏1V1 + ⋅ ⋅ ⋅ + 𝑏𝑁V𝑁, (18)
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where 𝑎𝑗, 𝑏j ∈ C. Substituting (18) into (13), we can get

𝜔
2
1⃗ = ∑𝑎𝑗𝜆

(1)
𝑗 V𝑗 +∑𝑏𝑗𝜆

(2)
𝑗 V𝑗,

𝑎𝜔
2
1⃗ = ∑𝑎𝑗𝜆

(3)
𝑗 V𝑗 +∑𝑏𝑗𝜆

(4)
𝑗 V𝑗.

(19)

Note that V1 = 1⃗. We can get from (19) that

(𝑎1𝜆
(1)
1 + 𝑏1𝜆

(2)
1 − 𝜔

2
) V1 + ∑

𝑗=2

(𝑎𝑗𝜆
(1)
𝑗 + 𝑏𝑗𝜆

(2)
𝑗 ) V𝑗 = 0,

(𝑎1𝜆
(3)
1 + 𝑏1𝜆

(4)
1 − 𝑎𝜔

2
) V1 + ∑

𝑗=2

(𝑎𝑗𝜆
(3)
𝑗 + 𝑏𝑗𝜆

(4)
𝑗 ) V𝑗 = 0.

(20)

Since V1, V2, . . . , V𝑁 are basis, we can get from (20) that

𝑎1𝜆
(1)
1 + 𝑏1𝜆

(2)
1 = 𝜔

2
,

𝑎1𝜆
(3)
1 + 𝑏1𝜆

(4)
1 = 𝑎𝜔

2
,

(21)

𝑎𝑗𝜆
(1)
𝑗 + 𝑏𝑗𝜆

(2)
𝑗 = 0,

𝑎𝑗𝜆
(3)
𝑗 + 𝑏𝑗𝜆

(4)
𝑗 = 0,

𝑗 = 2, 3, . . . , 𝑁. (22)

Lemma 9. If 𝜆(1)𝑗 𝜆
(4)
𝑗 − 𝜆

(2)
𝑗 𝜆
(3)
𝑗 ̸= 0, 𝑗 = 1, 2, . . . , 𝑁 − 1, then

𝑚1 = 𝑚2 = ⋅ ⋅ ⋅ = 𝑚𝑁 and �̃�1 = �̃�2 = ⋅ ⋅ ⋅ = �̃�𝑁.

Proof

Case 1 (if 𝜆(1)𝑁 𝜆
(4)
𝑁 − 𝜆

(2)
𝑁 𝜆
(3)
𝑁 ̸= 0). It is clear that

𝜆
(1)
𝑗 𝜆
(4)
𝑗 − 𝜆

(2)
𝑗 𝜆
(3)
𝑗 =



𝜆
(1)
𝑗 𝜆
(2)
𝑗

𝜆
(3)
𝑗 𝜆
(4)
𝑗



̸= 0, 𝑗 = 1, 2, . . . , 𝑁.

(23)

By Gramer’s rule, we get from (22) and (23) that

𝑎2 = ⋅ ⋅ ⋅ = 𝑎𝑁 = 𝑏2 = ⋅ ⋅ ⋅ = 𝑏𝑁 = 0. (24)

Note that 𝜔2 and 𝑎𝜔2 are real. From Proposition 8, it is clear
that 𝜆(1)1 , 𝜆

(2)
1 , 𝜆
(3)
1 , and 𝜆

(4)
1 are real. Thus, we know from (21)

and (23) for 𝑗 = 1 that 𝑎1 and 𝑏1 are real. Substituting (24) into
(18), we get

�⃗� = 𝑎1V1,
⃗̃𝑚 = 𝑏1V1. (25)

Thus, we have

𝑚1 = 𝑚2 = ⋅ ⋅ ⋅ = 𝑚𝑁, �̃�1 = ⋅ ⋅ ⋅ = �̃�𝑁. (26)

Case 2. (if 𝜆(1)𝑁 𝜆
(4)
𝑁 − 𝜆

(2)
𝑁 𝜆
(3)
𝑁 = 0). By the similar proof as to

(24), we have

𝑎2 = ⋅ ⋅ ⋅ = 𝑎𝑁−1 = 𝑏2 = ⋅ ⋅ ⋅ = 𝑏𝑁−1 = 0. (27)

We can get from (18) and (27) that

�⃗� = 𝑎1V1 + 𝑎𝑁V𝑁,
⃗̃𝑚 = 𝑏1V1 + 𝑏𝑁V𝑁. (28)

Since 𝑎1 and 𝑏1 are real, it follows from (28) that �⃗� ∈ R𝑁 if and
only if 𝑎𝑁 = 0 or 𝑎𝑁V𝑁 ∈ R𝑁. If 𝑎𝑁V𝑁 ∈ R𝑁, from the general
formulas of eigenvectors defined in (16), we know that

V𝑁 = (𝜌𝑁−1, 𝜌
2
𝑁−1, . . . , 𝜌

𝑁−1
𝑁−1 , 1) . (29)

Since 𝑎𝑁V𝑁 = (𝑎𝑁𝜌𝑁−1, . . . , 𝑎𝑁𝜌
𝑁−1
𝑁−1 , 𝑎𝑁) ∈ R𝑁, so 𝑎𝑁 ∈ R.

Hence, �⃗� ∈ R𝑁 if and only if 𝑎𝑁 = 0 or V𝑁 ∈ R𝑁. If V𝑁 ∈ R𝑁,
then 𝜌𝑁−1 ∈ R from (29), which implies that sin(2𝜋(𝑁 −

1)/𝑁) = − sin(2𝜋/𝑁) = 0. But it is impossible for 𝑁 ≥ 3.
Thus, 𝑎𝑁 = 0. Similarly, we can get 𝑏𝑁 = 0. We get from (28)
that

�⃗� = 𝑎1V1,
⃗̃𝑚 = 𝑏1V1. (30)

Thus, we have

𝑚1 = ⋅ ⋅ ⋅ = 𝑚𝑁, �̃�1 = ⋅ ⋅ ⋅ = �̃�𝑁. (31)

From Cases 1 and 2, the proof is completed.

The rest of the proof is to verify the assumptions of
Lemma 9 by the special structure of our matrixes (12). In
order to proceed the proof, we must study the eigenvalues in
more details. Since 𝜌𝑗 is the root of unity, it is easy to check
that

∑

𝑗

𝜌
𝑘
𝑗 = {

0, if 𝑘 ̸=𝑁

𝑁, if 𝑘 = 𝑁. (32)

Then from the general formulas of eigenvalue of circulant
matrix, we have

𝜆
(1)

𝑘
= ∑

𝑗

(𝑎1,𝑗 +
𝜔
2

𝑀
𝑑1,j)𝜌

𝑘−1
𝑗−1

= ∑

𝑗 ̸= 1

𝜌
𝑘−1
𝑗−1 − 𝜌

𝑘
𝑗−1


1 − 𝜌𝑗−1



3

= ∑

𝑗 ̸=𝑁

𝜌
𝑘−1
𝑗 − 𝜌

𝑘
𝑗


1 − 𝜌𝑗



3
,

(33)

where 𝑘 = 1, 2, . . . , 𝑁−1 and (32) is used. FromProposition 8,
we know that the eigenvalue𝜆(1)

𝑘
is real.Thus, we only take the

real part and get that

𝜆
(1)

𝑘
= ∑

𝑗 ̸=𝑁

cos (2𝜋𝑗/𝑁) (𝑘 − 1) − cos (2𝜋𝑗/𝑁) 𝑘

1 − 𝜌𝑗



3
,

for 𝑘 = 1, 2, . . . , 𝑁 − 1.

(34)
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Note that |𝑎 − 𝜌𝑗| = |1 − 𝑎𝜌𝑗|. Using similar method as
proving (34), we have

𝜆
(2)

𝑘
= ∑(𝑏1𝑗 +

𝑎𝜔
2

𝑀
𝑑1𝑗)𝜌

𝑘−1
𝑗−1

= ∑
cos (2𝜋𝑗/𝑁) (𝑘 − 1) − 𝑎 cos (2𝜋𝑗/𝑁) 𝑘


1 − 𝑎𝜌𝑗



3
,

𝜆
(3)

𝑘
= ∑(𝑐1𝑗 +

𝜔
2

𝑀
𝑑1𝑗)𝜌

𝑘−1
𝑗−1

= ∑
acos (2𝜋𝑗/𝑁) (𝑘 − 1) − cos (2𝜋𝑗/𝑁) 𝑘


1 − 𝑎𝜌𝑗



3
,

𝜆
(4)

𝑘
= ∑(

1

𝑎
2
𝑎1𝑗 +

𝑎𝜔
2

𝑀
𝑑1𝑗)𝜌

𝑘−1
𝑗−1

=
1

𝑎
2
∑

𝑗 ̸=𝑁

cos (2𝜋𝑗/𝑁) (𝑘 − 1) − cos (2𝜋𝑗/𝑁) 𝑘

1 − 𝜌𝑗



3
,

(35)

where 𝑘 = 1, 2, . . . , 𝑁 − 1.

Lemma 10. 𝜆(1)
𝑘
𝜆
(4)

𝑘
−𝜆
(2)

𝑘
𝜆
(3)

𝑘
= 𝜆
(1)

𝑁−𝑘+1
𝜆
(4)

𝑁−𝑘+1
−𝜆
(2)

𝑁−𝑘+1
𝜆
(3)

𝑁−𝑘+1
,

𝑘 = 2, . . . , 𝑁 − 1.

Proof. We get from (34) that

𝜆
(1)

𝑁−𝑘+1

= ∑

𝑗 ̸=𝑁

cos (2𝜋𝑗/𝑁) 𝑘 − cos (2𝜋𝑗/𝑁) (𝑘 − 1)

1 − 𝜌𝑗



3

= −𝜆
(1)

𝑘
, for 𝑘 = 2, 3, . . . , 𝑁 − 1.

(36)

Similarly, we get from (35) that

𝜆
(2)

𝑁−𝑘+1
= −𝜆
(3)

𝑘
,

𝜆
(3)

𝑁−𝑘+1
= −𝜆
(2)

𝑘
,

𝜆
(4)

𝑁−𝑘+1
= −𝜆
(4)

𝑘
,

(37)

where 𝑘 = 2, 3, . . . , 𝑁 − 1. From (36) and (37), the result
follows.

Remark 11. Let

ℓ =

{{{{

{{{{

{

𝑁

2
, if 𝑁 is even,

(𝑁 + 1)

2
, if 𝑁 is odd.

(38)

From Lemma 10, it is clear that to prove all the 𝑁 − 1

inequalities of Lemma 9 suffices to prove the ℓ inequalities
𝜆
(1)

𝑘
𝜆
(4)

𝑘
− 𝜆
(2)

𝑘
𝜆
(3)

𝑘
̸= 0, 𝑘 = 1, 2, . . . , ℓ.

With the similar proof as in [2, Lemma 2], we can get the
following proposition.

Proposition 12. Let 𝜓𝛽,𝑘(𝑎) = ∑𝑗(cos(2𝜋𝑗/𝑁)𝑘/|1 − 𝑎𝜌𝑗|
𝛽
).

Then for 𝑘 = 1, 2, . . . , 𝑁, 𝛽 > 0 and 𝑎 ∈ (0, 1), 𝜓𝛽,𝑘(𝑎) and all
of its derivatives are positive.

Lemma 13. For𝑁 ≥ 3, 𝜆(1)1 𝜆
(4)
1 − 𝜆

(2)
1 𝜆
(3)
1 > 0.

Proof. From (34) and (35), we can get

𝜆
(1)
1 =

1

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
,

𝜆
(2)
1 = ∑

1 − 𝑎 cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
,

𝜆
(3)
1 = ∑

𝑎 − cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
,

𝜆
(4)
1 =

1

4𝑎
2
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
.

(39)

Let 𝐴1(𝑎) = 𝜆
(1)
1 𝜆
(4)
1 − 𝜆

(2)
1 𝜆
(3)
1 . Then

𝐴1 (𝑎) =
1

16𝑎
2
( ∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
)

2

− (∑
1 − 𝑎 cos (2𝜋𝑗/𝑁)


1 − 𝑎𝜌𝑗



3
)

×(∑
𝑎 − cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
)

=
1

16𝑎
2
( ∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
)

2

− 𝑎(∑
1


1 − 𝑎𝜌𝑗



3
)

2

− 𝑎(∑
cos (2𝜋𝑗/𝑁)

(1 − 𝑎𝜌𝑗)
3
)

2

+ (1 + 𝑎
2
)(∑

1


1 − 𝑎𝜌𝑗



3
)(∑

cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
) .

(40)

Clearly, ∑(1/|1 − 𝑎𝜌𝑗|
3
) > 0. By Proposition 12, we get that

𝜓3,1 = ∑(cos(2𝜋𝑗/𝑁)/|1 − 𝑎𝜌𝑗|
3
) > 0 for 𝑎 ∈ (0, 1). Note that

(1/4)∑𝑗 ̸=𝑁 csc (𝜋𝑗/𝑁) = ∑𝑗 ̸=𝑁((1−cos(2𝜋𝑗/𝑁))/|1−𝜌𝑗|
3
) >

0. We have from (40)

𝐴1 (𝑎) >
1

16𝑎
2
( ∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
)

2

− 𝑎(∑
1


1 − 𝑎𝜌𝑗



3
)

2

− 𝑎(∑
cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
)

2
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+ 2𝑎(∑
1


1 − 𝑎𝜌𝑗



3
)(∑

cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
)

=
1

16𝑎
2
( ∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
)

2

− 𝑎(∑
1


1 − 𝑎𝜌𝑗



3
−∑

cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
)

2

=
1

𝑎
2

{

{

{

∑

𝑗 ̸=𝑁

1 − cos (2𝜋𝑗/𝑁)

1 − 𝜌𝑗



3

− ∑

𝑗 ̸=𝑁

𝑎
3/2
(1 − cos (2𝜋𝑗/𝑁))

1 − 𝑎𝜌𝑗



3

}

}

}

⋅ 𝑔 (𝑎)

=
1

𝑎
2

{

{

{

∑

𝑗 ̸=𝑁

(1 − cos
2𝜋𝑗

𝑁
) ⋅ ℎ (𝑗, 𝑎)

}

}

}

⋅ 𝑔 (𝑎) ,

(41)

where 𝑔(𝑎) = (1/4)∑𝑗 ̸=𝑁 csc (𝜋𝑗/𝑁) + ∑𝑗 ̸=𝑁(𝑎
3/2
(1 −

cos(2𝜋𝑗/𝑁))/|1−𝑎𝜌𝑗|
3
) and ℎ(𝑗, 𝑎) = (1/|1−𝜌𝑗|

3
)−(𝑎
3/2
/|1−

𝑎𝜌𝑗|
3
). Note that ℎ(𝑗, 𝑎) = (1/|1 − 𝜌𝑗|

3
) − (𝑎

3/2
/(1 + 𝑎

2
−

2𝑎 cos(2𝜋𝑗/𝑁))3/2) and hence

𝑑ℎ (𝑗, 𝑎)

𝑑𝑎
=
(3/2) 𝑎

1/2
(𝑎 − 1) (𝑎 + 1)


1 − 𝑎𝜌𝑗



5
< 0, for 𝑎 ∈ (0, 1) .

(42)

We know from (42) that ℎ(𝑗, 𝑎) is decreasing function in 𝑎 for
𝑎 ∈ (0, 1). It is easy to check that ℎ(𝑗, 1) = 0. Thus

ℎ (𝑗, 𝑎) > ℎ (𝑗, 1) = 0, for 𝑎 ∈ (0, 1) , 𝑗 = 1, . . . , 𝑁 − 1.

(43)

So, ∑𝑗 ̸=𝑁(1 − cos(2𝜋𝑗/𝑁)) ⋅ ℎ(𝑗, 𝑎) > 0 since ℎ(𝑗, 𝑎) > 0 and
1 − cos(2𝜋𝑗/𝑁) > 0. Note that 𝑔(𝑎) > 0 for 𝑎 ∈ (0, 1). From
(41), we can get 𝐴1(𝑎) > 0. The result follows.

For 𝑘 = 1, 2, . . . , ℓ, let

𝛼𝑘 (𝑎) = ∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝑎𝜌𝑗



3
. (44)

Lemma 14. If𝑁 is odd, then 𝛼(𝑁+1)/2(1) = 0; If𝑁 is even, then
𝛼𝑁/2(1) > 0.

Proof. If𝑁 is odd, by the definition of 𝛼𝑘, we have

𝛼(𝑁+1)/2 (1)

= ∑

𝑗 ̸=𝑁

(cos
2𝜋𝑗 (((𝑁 + 1) /2) − 1)

𝑁

− cos
2𝜋𝑗 ((𝑁 + 1) /2)

𝑁
)

× (

1 − 𝜌𝑗



3
)

−1

= ∑

𝑗 ̸=𝑁

cos (𝜋𝑗 − (𝜋𝑗/𝑁)) − cos (𝜋𝑗 + (𝜋𝑗/𝑁))

1 − 𝜌𝑗



3
= 0.

(45)

If𝑁 is even, we get that

𝛼𝑁/2 (1)

= ∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 ((𝑁/2) − 1) /𝑁) − cos (2𝜋𝑗 (𝑁/2) /𝑁)

1 − 𝜌𝑗



3

=
1

4
∑

𝑗 ̸=𝑁

(−1)
𝑗+1 1

sin (𝜋𝑗/𝑁)

=
1

4

[

[

𝑁/2

∑

𝑗=1

(−1)
𝑗+1 1

sin (𝜋𝑗/𝑁)

+

𝑁/2−1

∑

𝑗=1

(−1)
𝑗+1 1

sin (𝜋𝑗/𝑁)
]

]

.

(46)

Case 1. If𝑁/2 is even, then

𝛼𝑁/2 (1) =
1

4

[

[

2

𝑁/2

∑

𝑗=1

(−1)
𝑗+1 1

sin (𝜋𝑗/𝑁)
+ 1]

]

. (47)

Since the signs of the terms in the sum ∑
𝑁/2
𝑗=1 (−1)

𝑗+1
(1/

sin(𝜋𝑗/𝑁)) alternate and 1/ sin(𝜋𝑗/𝑁) is decreasing in 𝑗 for
1 ≤ 𝑗 ≤ 𝑁/2, we get that ∑𝑁/2𝑗=1 (−1)

𝑗+1
(1/ sin(𝜋𝑗/𝑁)) > 0 and

hence 𝛼𝑁/2(1) > 0.

Case 2. If𝑁/2 is odd, then

𝛼𝑁/2 (1) =
1

4

[

[

2

𝑁/2−1

∑

𝑗=1

(−1)
𝑗+1 1

sin (𝜋𝑗/𝑁)
+ 1]

]

. (48)

Since the signs of the terms in summation ∑𝑁/2−1𝑗=1 (−1)
𝑗+1

(1/ sin(𝜋𝑗/𝑁)) alternate and 1/ sin(𝜋𝑗/𝑁) is decreasing in
𝑗 for 1 ≤ 𝑗 ≤ 𝑁/2 − 1, we get that ∑(𝑁/2)−1𝑗=1 (−1)

𝑗+1
(1/

sin(𝜋𝑗/𝑁)) > 0 and hence 𝛼𝑁/2(1) > 0.
By Cases 1 and 2, we see that 𝛼𝑁/2(1) > 0 for even𝑁.
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Proposition 15. For 𝑘 = 1, 2, . . . , ℓ − 1, then 𝛼𝑘(1) > 0.

Proof. Clearly, 𝛼1(1) > 0. We need to prove 𝛼𝑘(1) > 0, 𝑘 ≥ 2.
Note that

2

sin (𝜋𝑗/𝑁)

𝑘−1

∑

𝑚=0

cos
2𝜋𝑗

𝑁
𝑚

=
2 sin (𝜋𝑗𝑘/𝑁) cos (𝜋𝑗 (𝑘 − 1) /𝑁)

sin2 (𝜋𝑗/𝑁)

=
sin (𝜋𝑗 (2𝑘 − 1) /𝑁)

sin2 (𝜋𝑗/𝑁)
+

1

sin (𝜋𝑗/𝑁)
.

(49)

Hence, by the definition of 𝛼𝑘(𝑎), we have

𝛼𝑘 (1) = ∑

𝑗 ̸=𝑁

2 sin (𝜋𝑗 (2𝑘 − 1) /𝑁) sin (𝜋𝑗/𝑁)

(2 − 2 cos (2𝜋𝑗/𝑁))3/2

=
1

4
∑

𝑗 ̸=𝑁

[−
1

sin (𝜋𝑗/𝑁)

+
2

sin (𝜋𝑗/𝑁)

𝑘−1

∑

𝑚=0

cos
2𝜋𝑗

𝑁
𝑚] .

(50)

Then, we get that

(𝛼𝑘 (1) − 𝛼𝑘−1 (1)) − (𝛼𝑘+1 (1) − 𝛼𝑘 (1))

=
1

2
∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)
sin (𝜋𝑗/𝑁)

= ∑

𝑗 ̸=𝑁

sin
𝜋𝑗 (2𝑘 − 1)

𝑁

= cot 𝜋 (2𝑘 − 1)
2𝑁

.

(51)

Notice that 0 < 𝜋(2𝑘 − 1)/(2𝑁) < 𝜋/2 for 𝑘 = 2, . . . , ℓ − 1.
Hence, cot 𝜋(2𝑘 − 1)/2𝑁 > 0 for 𝑘 = 2, . . . , ℓ − 1. Then we
have

𝛼𝑘 (1) − 𝛼𝑘−1 (1) > 𝛼𝑘+1 (1) − 𝛼𝑘 (1) . (52)

By (52), we get that 𝛼𝑘−1(1) + 𝛼k+1(1) < 2𝛼𝑘(1) which implies
that 𝛼𝑘+1(1) < 𝛼𝑘(1) or 𝛼𝑘−1(1) < 𝛼𝑘(1). If there is 𝛼𝑘(1) ≤ 0,
we use two cases to proceed our proof.

Case 1. (If 𝛼𝑘−1(1) < 𝛼𝑘(1)). By (52), we have 𝛼𝑘−2(1) −
𝛼𝑘−1(1) < 𝛼𝑘−1(1) − 𝛼𝑘(1) < 0 and hence 𝛼𝑘−2(1) < 𝛼𝑘−1(1) <
𝛼𝑘(1) ≤ 0. By inductions, we have 𝛼1(1) < ⋅ ⋅ ⋅ < 𝛼𝑘(1) < 0
which contradicts with 𝛼1(1) > 0.

Case 2. (If 𝛼𝑘+1(1) < 𝛼𝑘(1)). By (52), we have 𝛼𝑘+2(1) −
𝛼𝑘+1(1) < 𝛼𝑘+1(1) − 𝛼𝑘(1) < 0. Then, 𝛼𝑘+2(1) < 𝛼𝑘+1(1) <

𝛼𝑘(1) ≤ 0. By inductions, we get that for even 𝑁, 𝛼𝑁/2(1) <
𝛼(𝑁/2)−1(1) < ⋅ ⋅ ⋅ < 𝛼𝑘(1) < 0 which contradicts with
𝛼𝑁/2(1) > 0; for odd 𝑁, 𝛼(𝑁+1)/2(1) < 𝛼(𝑁−1)/2(1) < ⋅ ⋅ ⋅ <

𝛼𝑘(1) ≤ 0 which contradicts with 𝛼(𝑁+1)/2(1) = 0.

From Cases 1 and 2, we see that there is always a contra-
diction if there exists 𝛼𝑘(1) ≤ 0. Hence, 𝛼𝑘(1) > 0, 𝑘 = 1,

. . . , ℓ.

Let

ℓ̃ =

{{{{

{{{{

{

𝑁

2
, if 𝑁 is even,

(𝑁 − 1)

2
, if 𝑁 is odd,

𝑎
∗
= min
𝑎∈(0,1), 𝛼𝑘(𝑎)>0, 𝑘=1,2,...,ℓ̃

𝑎.

(53)

By the continuity, Lemma 14 and Proposition 15, we see that
𝑎
∗
∈ (0, 1).
For 𝑘 = 1, 2, . . . , ℓ, let

𝛽𝑘 (𝑎) = ∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝑎𝜌𝑗



5
. (54)

Similar to Lemma 14, we have

Lemma 16. If𝑁 is odd, then 𝛽(𝑁+1)/2(1) = 0; If𝑁 is even, then
𝛽𝑁/2(1) > 0.

Proposition 17. For 𝑘 = 1, 2, . . . , ℓ − 1, then 𝛽𝑘(1) > 0.

Proof. Clearly, 𝛽1(1) > 0. We need to prove 𝛽𝑘(1) > 0, 𝑘 ≥ 2.
Note that

2

sin3 (𝜋𝑗/𝑁)

𝑘−1

∑

𝑚=0

cos
2𝜋𝑗

𝑁
𝑚

=
1

sin3 (𝜋𝑗/𝑁)
⋅
2 sin (𝜋𝑗𝑘/𝑁) cos (𝜋𝑗 (𝑘 − 1) /𝑁)

sin (𝜋𝑗/𝑁)

=
sin (𝜋𝑗 (2𝑘 − 1) /𝑁)

sin4 (𝜋𝑗/𝑁)
+

1

sin3 (𝜋𝑗/𝑁)
.

(55)

By the definition of 𝛽𝑘(1), we have

𝛽𝑘 (1) =
1

16
∑

𝑗 ̸=𝑁

[−
1

sin3 (𝜋𝑗/𝑁)

+
2

sin3 (𝜋𝑗/𝑁)

𝑘−1

∑

𝑚=0

cos
2𝜋𝑗

𝑁
𝑚] .

(56)

Then, we get that

(𝛽𝑘 (1) − 𝛽𝑘−1 (1)) − (𝛽𝑘+1 (1) − 𝛽𝑘 (1))

=
1

8
∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)
sin3 (𝜋𝑗/𝑁)

=
1

8
𝛼𝑘 (1) > 0.

(57)

By similar proofs as in Proposition 15, we can get 𝛽𝑘 > 0. The
proof is completed.
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Let

𝑎
∗
= min
𝑎∈(0,1),𝛽𝑘(𝑎)>0, 𝑘=1,2,...,ℓ̃

𝑎. (58)

By the continuity, Lemma 16 and Proposition 17, we see that
𝑎
∗
∈ (0, 1).

Lemma 18. For 𝑘 = 2, 3, . . . , ℓ and 𝑎∗ = max{𝑎∗, 𝑎∗},
𝜆
(1)

𝑘
𝜆
(4)

𝑘
− 𝜆
(2)

𝑘
𝜆
(3)

𝑘
> 0.

Proof. Let 𝐴𝑘(𝑎) = 𝜆
(1)

𝑘
𝜆
(4)

𝑘
− 𝜆
(2)

𝑘
𝜆
(3)

𝑘
. From (34) and (35), we

can get

𝐴𝑘 (𝑎) =
1

𝑎
2
(∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝜌𝑗



3
)

2

− (∑
cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − 𝑎 cos (2𝜋𝑗𝑘/𝑁)


1 − 𝑎𝜌𝑗



3
)

⋅ (∑
𝑎 cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)


𝑎 − 𝜌𝑗



3
) .

(59)

By the definitions of ℓ and ℓ̃, we see that ℓ̃ = ℓ if 𝑁 is even
and ℓ̃ = ℓ − 1 if𝑁 is odd. For odd𝑁, we get

𝐴 (𝑁+1)/2 (𝑎)

=
1

𝑎
2
( ∑

𝑗 ̸=𝑁

(cos
2𝜋𝑗 (((𝑁 + 1) /2) − 1)

𝑁

− cos
2𝜋𝑗 ((𝑁 + 1) /2)

𝑁
) ×


1 − 𝜌𝑗



−3
)

2

− (∑(cos
2𝜋𝑗 (((𝑁 + 1) /2) − 1)

𝑁

−𝑎 cos
2𝜋𝑗 ((𝑁 + 1) /2)

𝑁
) ×


1 − 𝑎𝜌𝑗



−3
)

⋅ (∑(𝑎 cos
2𝜋𝑗 (((𝑁 + 1) /2) − 1)

𝑁

− cos
2𝜋𝑗 ((𝑁 + 1) /2)

𝑁
) ×


𝑎 − 𝜌𝑗



−3
)

= (1 − 𝑎)
2[

[

∑(−1)
𝑗 cos (𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
]

]

2

.

(60)

Let𝑓(𝑥) = cos𝑥/(1+𝑎2−2𝑎 cos 2𝑥)3/2 for 0 < 𝑥 < 𝜋/2.Then

𝑓

(𝑥) =

− sin𝑥 (1 + 𝑎2 − 2𝑎 cos 2𝑥) − 6𝑎 cos𝑥 sin 2𝑥

(1 + 𝑎
2
− 2𝑎 cos 2𝑥)5/2

< 0.

(61)

Hence, cos(𝜋𝑗/𝑁)(𝑎 − 1)/|𝑎 − 𝜌𝑗|
3 is decreasing in 𝑗 for 0 <

𝜋𝑗/𝑁 < 𝜋/2. Note that the signs of the terms alternate, then
the summation is negative for 0 < 𝜋𝑗/𝑁 < 𝜋/2. By symmetry,
the summation for the rest terms is also negative. Hence, we
have

𝐴 (𝑁+1)/2 (𝑎) > 0. (62)

For any 𝑘, 𝑘 = 2, 3, . . . , ℓ̃, let

𝐺 (𝑎) = ∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝜌𝑗



3

− 𝑎
3/2
∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝑎𝜌𝑗



3
.

(63)

With direct computation, we have

𝐺

(𝑎) =

3

2
𝑎
1/2
(𝑎 + 1) (𝑎 − 1)

× ∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝑎𝜌𝑗



5
< 0,

for 𝑎 ∈ (𝑎∗, 1) ,
(64)

where Proposition 17 is used. It follows from (64) that 𝐺(𝑎)
is decreasing for 𝑎 ∈ (𝑎∗, 1). Note that 𝐺(1) = 0. So, 𝐺(𝑎) >
𝐺(1) = 0 for 𝑎 ∈ (0, 1). It is that

∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝜌𝑗



3

> 𝑎
3/2
∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋j𝑘/𝑁)

1 − 𝑎𝜌𝑗



3
,

(65)

where 𝑎 ∈ (𝑎∗, 1) and 𝑘 = 2, 3, . . . , ℓ̃. From (65), we can get

1

𝑎
2
(∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝜌𝑗



3
)

2

> 𝑎( ∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝑎𝜌𝑗



3
)

2

,

(66)

where 𝑎 ∈ (𝑎∗, 1) and 𝑘 = 2, 3, . . . , ℓ̃.
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By (59), we can get

𝐴𝑘 (𝑎) =
1

𝑎
2
(∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝜌𝑗



3
)

2

− 𝑎(∑
cos (2𝜋𝑗 (𝑘 − 1) /𝑁)


1 − 𝑎𝜌𝑗



3
)

2

+ (1 + 𝑎
2
)(∑

cos (2𝜋𝑗 (𝑘 − 1) /𝑁)

1 − 𝑎𝜌𝑗



3
)

×(∑
cos (2𝜋𝑗𝑘/𝑁)

1 − 𝑎𝜌𝑗



3
)

− 𝑎(∑
cos (2𝜋𝑗𝑘/𝑁)

1 − 𝑎𝜌𝑗



3
)

2

.

(67)

From Proposition 12, we have

𝐴𝑘 (𝑎) >
1

𝑎
2
(∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝜌𝑗



3
)

2

− 𝑎

{{

{{

{

(∑
cos (2𝜋𝑗 (𝑘 − 1) /𝑁)


1 − 𝑎𝜌𝑗



3
)

2

− 2(∑
cos (2𝜋𝑗 (𝑘 − 1) /𝑁)


1 − 𝑎𝜌𝑗



3
)

×(∑
cos (2𝜋𝑗𝑘/𝑁)

1 − 𝑎𝜌𝑗



3
)

+ (∑
cos (2𝜋𝑗𝑘/𝑁)

1 − a𝜌𝑗



3
)

2
}}

}}

}

=
1

𝑎
2
(∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝜌𝑗



3
)

2

− 𝑎( ∑

𝑗 ̸=𝑁

cos (2𝜋𝑗 (𝑘 − 1) /𝑁) − cos (2𝜋𝑗𝑘/𝑁)

1 − 𝑎𝜌𝑗



3
)

2

> 0,

(68)

where (66) is used and 𝑘 = 2, 3, . . . , ℓ̃.
By (62) and (68), the proof is completed.

The following example illustrate that the 𝑎∗ in Lemma 18
can be obtained for some special cases.

Example 19. If𝑁 = 3, then 𝑎∗ = 0.

Proof. For𝑁 = 3, we have

𝛼1 (𝑎) =
2

((1 + (𝑎/2))
2
+ (3/4))

3/2
> 0,

𝛼2 (𝑎) =
1

((1 + (𝑎/2))
2
+ (3/4))

3/2
> 0.

(69)

By the definition of 𝑎∗, we have 𝑎∗ = 0.
Similarly, we get that

𝛽1 (𝑎) =
2

((1 + (𝑎/2))
2
+ (3/4))

5/2
> 0,

𝛽2 (𝑎) =
1

((1 + (𝑎/2))
2
+ (3/4))

5/2
> 0.

(70)

By the definition of 𝑎∗, we have 𝑎∗ = 0. Hence, 𝑎∗ = 0 for
𝑁 = 3.

Lemmas 13 and 18 show that the hypotheses of Lemma 9
are satisfied.Thus the proof of theTheorem 5 was completed.

3. The Proof of Theorem 6

Since 𝑚1 = 𝑚2 = ⋅ ⋅ ⋅ = 𝑚𝑁 = 𝑚 and �̃�1 = �̃�2 = ⋅ ⋅ ⋅ = �̃�𝑁 =
�̃�, we get that 𝑧0 = 0. Hence, by (3), we have

𝑞𝑘 = 𝜌𝑘𝑒
𝑖𝜔𝑡
, 𝑞𝑘 = 𝑎𝜌𝑘𝑒

𝑖𝜔𝑡
. (71)

Substituting 𝑞𝑘 and 𝑞𝑘 into (1), then by (11) we get that

𝜔
2
=
𝑚

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
+ �̃�∑

1 − 𝑎 cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
,

𝑎𝜔
2
= 𝑚∑

𝑎 − cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
+
�̃�

4𝑎
2
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
.

(72)

From (72), we have

𝜔
2
=
𝑚

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
+ �̃�∑

1 − 𝑎 cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
,

𝜔
2
=
1

𝑎

[

[

𝑚∑
𝑎 − cos (2𝜋𝑗/𝑁)


1 − 𝑎𝜌𝑗



3
+
�̃�

4𝑎
2
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁

]

]

.

(73)

From (73), the constant 𝜔2 exists only if the following equa-
tion holds:

𝑎

{

{

{

𝑚

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
+ �̃�∑

1 − 𝑎 cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3

}

}

}

= 𝑚∑
𝑎 − cos (2𝜋𝑗/𝑁)

1 − 𝑎𝜌𝑗



3
+
�̃�

4𝑎
2
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
.

(74)
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Note that 𝜇 = �̃�/𝑚. Then we get from (74) that

𝑎
3
− 𝜇

4𝑎
2
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
− (1 − 𝜇) 𝑎𝑓 (𝑎) + (1 − 𝑎

2
𝜇) 𝑔 (𝑎) = 0,

(75)

where 𝑓(𝑎) = ∑(1/|1 − 𝑎𝜌𝑗|
3
) and 𝑔(𝑎) = ∑(cos(2𝜋𝑗/𝑁)/|1 −

𝑎𝜌𝑗|
3
).

Lemma20. For 𝜇 > 0 and𝑁 ≥ 3, the constant𝜔2 can be given
by

𝜔
2
=
𝑚

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁
+ �̃�∑

1 − 𝑎0 cos (2𝜋𝑗/𝑁)

1 − 𝑎0𝜌𝑗



3
, (76)

where 𝑎0 is the unique solution of (75).

Proof. By the relationship between (74) and (75), it suffices to
prove that (75) has solution 𝑎 = 𝑎0 for 𝜇 > 0 and𝑁 ≥ 3. Let

𝐹 (𝑎) = (𝑎 −
𝜇

𝑎
2
)
1

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁

− (1 − 𝜇) 𝑎𝑓 (𝑎) + (1 − 𝑎
2
𝜇) 𝑔 (𝑎) .

(77)

From (75) and (77), the roots of (75) are zeros of (77). From
the definitions of 𝜓𝛽,𝑘(𝑎) defined in Proposition 12, we have
𝜓1,𝑁(𝑎) = ∑(1/|1−𝑎𝜌𝑗|).Through direct calculations, we find
that

𝜓1,𝑁 (𝑎) = (1 + 𝑎
2
) 𝑓 (𝑎) − 2𝑎𝑔 (𝑎) ,

𝑑𝜓1,𝑁 (𝑎)

𝑑𝑎
= − 𝑎𝑓 (𝑎) + 𝑔 (𝑎) .

(78)

From (78), (77) can be written as

𝐹 (𝑎) = (𝑎 −
𝜇

𝑎
2
)
1

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁

+ (1 + 𝑎
2
𝜇)
𝑑𝜓1,𝑁 (𝑎)

𝑑𝑎
+ 𝜇𝑎𝜓1,𝑁 (𝑎) .

(79)

Notice that 𝜓1,𝑁(𝑎) = ∑𝑗 ̸=𝑁(1/|1 − 𝑎𝜌𝑗|) + (1/|1 − 𝑎𝜌𝑁|) =
∑𝑗 ̸=𝑁(1/|1 − 𝑎𝜌𝑗|) + (1/|1 − a|). Hence, we have

lim
𝑎→1

𝜓1,𝑁 (𝑎) = +∞. (80)

From (79), (80), and Proposition 12, we can get that

lim
𝑎→0

𝐹 (𝑎) = −∞, lim
𝑎→1

𝐹 (𝑎) = +∞. (81)

On the other hand, by (79), we get that

𝐹

(𝑎) = (1 +

2𝜇

𝑎
3
)
1

4
∑

𝑗 ̸=𝑁

csc
𝜋𝑗

𝑁

+ 𝜇𝜓1,𝑁 (𝑎) + 3𝑎𝜇
𝑑 𝜓1,𝑁 (𝑎)

𝑑𝑎

+ (1 + 𝑎
2
𝜇)
𝑑
2
𝜓1,𝑁 (𝑎)

𝑑𝑎
2

.

(82)

From (82) and Proposition 12, we know that 𝐹(𝑎) > 0 for 𝑎 ∈
(0, 1). This, together with (81), implies that there is a unique
solution 𝑎 = 𝑎0 for 𝐹(𝑎) = 0. The proof is completed.
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