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Based on the works of Perko and Walter, Moeckel and Simo, and Zhang and Zhou, we study the necessary conditions and suffcient
conditions for the uniformly rotating planar nested regular polygonal periodic solutions for the 2N-body problems.

1. Introduction and Main Results

Letm; > 0,q; € R’ be the mass and position of the jth body.
The Newtonian N-body problem concerns the motion of N
point particles. The motion is governed by

ou
m.q.:—, j=1,2,...,N, 1
5= 30 m

where U is the Newtonian potential:

mjmk
U= )

1gj<ng|‘L' - Qk'

In the famous paper [1], Perko and Walter proved the fol-
lowing result.

Theorem 1 (see [1]). For N > 4, the N bodies move with
uniformly angular velocity and locate on the vertices of regular
N-gon if and only if m; = m, = --- = my,.

In 1995, Moeckel and Simo [2] studied planar nested 2N-
body problems; they assume one regular N-gon is inscribed
on a unit circle, the other on a circle with radius a, a > 0 and

a#1; precisely, let p; = /N, where i* = ~1; and the

points m; and 71, locate at g; and g;:

iwt ~ iwt

a;=(pj=2)e",  q;=(ap;~2)e"",
€)
ji=12,...,N,

where z, = (1/(M; + M,)) Z(mjpj + aFn“jpj), M, = ij,
M, = Yy mj;and M = M, + M,. For short, throughout this
paper, all indices and summations will range from 1 to N
unless we give other restrictions.

For the nested 2N-body problems, Moeckel and Simé
proved the following theorem.

Theorem 2 (see [2]). Ifm, = --- =my :=mand i, =--- =
iy := m, then for every mass ratior = ifi/m, there are exactly
two planar central configurations consisting of two nested
regular N-gons. For one of them, the ratio of the sizes of the two
nested N-gons is less than 1, and for the other it is greater than
1.

In 2003, Zhang and Zhou [3] studied the inverse problem
of Moeckel and Sim¢’s theorem [2], and they got the following
results.



Theorem 3 ([3], the case of 0 = 0). If (3) is a solution of (1),
then w” satisfies

e et ¥

J#N

l-ap; N’ a-p;  aNo’
[rm ] fyeon
{ -ap| M fa-p M
(4)
or equivalently
o
1( ﬂ)
164> N N
Ia—
N l( i) ™
><<M 1 = <];NCSC )
-1
1-ap; a-—p;
—a) ) ]3:|> :
|1 -ap)| ja- p
©)

And in [3], they proved the following theorem [3, Theo-
rem 2]:

Theorem 4. If w satisfies (4) or (5) and (q;>...,9ns Gi>
..»qnN) given by (3) is a periodic solution of (1), then m; =
.. :mNgndﬁl =... :ﬁN.

In the proof of [3, Theorem 2], the authors claimed that
the first eigenvalue A,(AB — CD) of the matrix AB — CD is
simple [3, page 2168]; this is not obvious. In fact, it seems very
difficult to prove.

Based on all the above works, we try to give strict proofs
about the following two theorems. By the work of Moeckel
and Simo [2], if we can get a periodic solution of the form
given by (5) with a € (0, 1), the other periodic solution with
radius 1/a can be obtained by symmetry. Hence, in the fol-
lowing, we only discuss the periodic solution with radius
a € (0, 1). The other one with radius 1/a can be obtained by
symmetry.

Theorem 5. For N > 3, ifa € (a*, 1), wherea™ € (0,1), and

G- 9n Zh, .. ,qN) given by (3) is a periodic solution for
(1), thenm, = --- =my and iy = -+ = M.
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Theorem 6. Ifm, = --- = my = m, i, = -+ = My = M,
and the constant w > 0 is given by

Z CSC—

]#N

6
_+ 1 —agcos(27j/N) (©)

+ 1 ,

|1 -

where y = m/m and a, is a unique solution of the following
equation:

-
4a2 J;Ncsc
-(1 —M)ZL
L-ap 7
(27j/N)
+(1—a2‘u)zcos =0,
1-ap’
then(qy,....qn>q1s>- - -»Gn) With (my, ..., my, My, ..., Hy) is

a periodic solution of (1) with angular velocity w.

Whenm, =--- =myandm, =--- =iy, wehavez, = 0
which implies that the center of the masses locates at the
origin. By Theorem 6, we get a periodic solution of (1) which
rotates about the origin with radius g, € (0, 1). By symmetry,
(1) has another periodic solution which rotates about the
origin with radius 1/a, € (1, 00).

2. The Proof of Theorem 5

Substituting (3) into (1), we have

—0’ (p - z9) € = ) m; (4; - a) Ly ; (q; - a)

-,
ik |a; - a |3 - a|

m; (q; - ) - i, (q; - )

7-af

- (ap, - 2) e = Y]

laj-a@| i |3 -a
(8)
wherek=1,2,...,N.
By (3), (8) can be written as
P (p-z)= Y m; (p; - pi) Ly ii; (ap; - pi)
ik |pj— | lap; - |
o (ape-z)= Y m; (p; - apy) L ﬁj(Pj_Pk),
’ loj—ap| @7 |p-p
9)
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where k = 1,2,..., N. Equation (9) is equivalent to
Pr
wzpk=<z— S o )
J*k'Pk P]|

— . 2
+<2Hﬁj+%2pjﬁj>,
 —

sty - <Z np

lape — i

+< Ly PP, 4 WY oy >

J*k'Pk P;|

where k = 1,2,...
we get

W e <zl_
J¢k|1 ~Pj k'
[z

|1 -ap;

w<z_f’

|a Pj k'

J¢k|1_P] k'

wherek =1,2,...,N.

(10)

, N. Multiplying both sides of (10) by p_,

o)

2
aw —~
+3r 2P

o)

S )

(11)

Let A = (@ j)nxns B = (B ) s> € = (6 j)nwn> and D =
(d, ;) nxn> Where
1-pik
j e
5 if j#k
Hej = |1 PJ-k|
0, otherwise,
. 1—apj
foj 3 (12)
|1-ap;i]
97 Pjk
Gj = ———>
o= pyei]
dyj = Pjk

Then (11) can be rewritten in the following compact form:

2 2
A+ D)+ B+ 2D )@= o,
M M

2 2
C+w—D m+ A+ﬂD = aw’1,
M M

(13)

where m = (my,...,my), n = (Mg, ..., M), and1 = (1,
S 1.
An N x N matrix # =

(4]) if

(rj 1) nxn is called circulant (see

Tik =Tj-1k-1> (14)

where ry; and r;, are equal to 7y and r; , respectively. Let
po = 1. If R is a circulant matrix, its general formulas for the
eigenvalues A, (%) and eigenvectors v (%) are

M (R)=Yrpl), k=1,2,...,N,
J

(15)

k=1,2,...,N. (16)

Vi (£) = (Pk_ppf_p '~-’PI§11) >

Remark 7. From the formula (15), we have A, (%) = Z o1 T
The last equation implies that the eigenvalue A, (%) is equal
to the summation of the first row of matrix %; thus, we can
get that the summation of any row, and hence, the summation
of any column is equal to A, ().

According to the definition of circulant matrix, it is easy
to check that the matrixes A + (w?/M)D, B+ (aw?/M)D,C +
(W*/M)D, and (1/a*)A + (aw?/M)D are c1rculant For
convenience, we introduce some notations. Let A(l) /\ /\(3)
and Ag‘) be the kth eigenvalue of matrixes A + (W*/M )D, B+
(aw?/M)D, C + (0*/M)D, and (1/a*) A + (aw?/M)D, respec-
tively. Then we have the following.

Proposition 8. All of the eigenvalues of matrixes A+(w”*/M)D,
B+ (aw’/M)D, C + (w*/M)D, and (1/a*)A + (aw?/M)D are
real.

Proof. We only give the proof for the matrix A + (w”/M)D
The proofs for the rest are similar. Since A + (w?/M)D is
circulant and (w®/M) is real number, we get from (12) that

_ 1 _ﬁj—l w?
-7,

wZ

=0 N-ja2 T MdLijn)

MPi (17)

where j = 1,2,...,N. Thus, the matrix A + (W*/M)D is
Hermitian. We know that all the eigenvalues of A + (w*/M)D
are real since the eigenvalues of Hermitian matrix are real.
The proof is completed. 0

From the proof of Proposition 8, we have known that
A+ (&’ /M)D, B + (aw’/M)D, C + (w*/M)D, and (1/a*)A +

(aw?*/M)D are Hermitian. Thus, the vectors v, ovnt
defined by (16) are basis of CN. 1t is clear that m € CY and
i e CV. Let

M=av, +-+ayVas i=by +--+byvy,  (18)



where aj,bj € C. Substituting (18) into (13), we can get
237 (1) (2)
w'l= Zaj/lj vj+ ijlj V>

aw’l = Z aj)\(j3)vj + Z bj/\(1.4)vj.

(19)

Note that v, = 1. We can get from (19) that

(@Al +BAY =) vy + Y (a AP + 52T ) v =0,
j=2

(al)t(f) + bl)t(14) - awz) v+ Z (aj)t?) + b].)t(f)) v = 0.
j=2

(20)
Since v, v,, ..., vy are basis, we can get from (20) that
a AP + 5 AP = o,
(21)
alA(ls) + b1/\(14) = aw’,
1) 2 _
ahy bA=0 2,3, ,N 22)
aj/\(js) +bj)L§4) =0, j=2,3,...,N.

Lemma 9. If)t;”)t?” - )L(jz))t(f);&o,j =12,...,N -1, then
my=my =---=myandim, = M, = --- = M.

Proof
Case 1 (if )\(I\lj))\(f]) - )&(If,))tf,) #0). It is clear that

A(}) /\(.2)
ADY@ @30 _ 7o 40, i-1.2 N
i it~ A§3> /124) , j=12,...,N.

(23)
By Gramer’s rule, we get from (22) and (23) that
Gy = =ay=b = =by=0. (24)

Note that w?® and aw” are real. From Proposition 8, it is clear
that /\(11), /\(12), A(13), and A(14) are real. Thus, we know from (21)
and (23) for j = 1 thata, and b, are real. Substituting (24) into
(18), we get
m=av, = by, (25)
Thus, we have
My =m, =+ =my, m, =--- = iy. (26)

Case 2. (if /\(1\1,)/\(13) - )L(If,)}t(lf,) = 0). By the similar proof as to
(24), we have

Gy=-=ay =by==by, =0. (27)
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We can get from (18) and (27) that

M= a; vy + ayvy 71 = by, +byvy. (28)
Since a, and b, are real, it follows from (28) that 772 € RY ifand
onlyifay = 0 or ayvy € RY. Ifayvy € RY, from the general
formulas of eigenvectors defined in (16), we know that

VN = (PN—l’PIZ\I—l""’pII\\Ijjll’l)' (29)

Since ayvy = (anPy-1>--->ANPR - ay) € RV, s0ay € R.
Hence, 7 € RN ifand only if ay, = 0 or vy € R, If vy € RY,
then py_; € R from (29), which implies that sin(27z(N —
1)/N) = —sin(2n/N) = 0. But it is impossible for N > 3.
Thus, ay = 0. Similarly, we can get by, = 0. We get from (28)
that

m=ayv,  m=bu,. (30)

Thus, we have
my = =my, m, =--- = iy. (31
From Cases 1 and 2, the proof is completed. O

The rest of the proof is to verify the assumptions of
Lemma 9 by the special structure of our matrixes (12). In
order to proceed the proof, we must study the eigenvalues in
more details. Since p; is the root of unity, it is easy to check
that

ifk#N

if k= N. (32)

0,
2 = {N,
J

Then from the general formulas of eigenvalue of circulant
matrix, we have

2
1 w k-1
/\5() = z <a1,j + Mdl,j) Pj-1

J

_ /);'<—_11 _P;'(—l

& |1 —Pj71|3 (33)
A
S I —

N |1 p

wherek = 1,2,..., N-1and (32) is used. From Proposition 8,

we know that the eigenvalue )Lg) is real. Thus, we only take the
real part and get that

Wy

j#*N |1—p,-| (34)

cos (2mj/N) (k — 1) — cos (27j/N) k
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Note that |a — ij =1]1- apjl. Using similar method as
proving (34), we have

aw2 —
r =2 (bu * Wdlf) Pt

Ly (271j/N) (k = 1) - a cos (27j/N) k

>

L -ap)|

2
w k—
Af)ZE:(ﬁj+57dU)Pff

~ Z acos (271j/N) (k = 1) — cos (27j/N) k (33)
|1 - apy| ,
L= (lz ])Pf_'f
1 Z cos (2mj/N) (k= 1) —cos(27j/N)k
@ 1=y |
wherek =1,2,...,N - 1.

(1)1(4)_1(2)73) _ (1) (4) (2) (3)
iemzmaloN/\ 1’\ A A = ANk ANk ANk ANk

Proof. We get from (34) that

(1)
AN k+1
cos (271j/N) k — cos (27j/N) (k - 1)
=2 ; (36)
j*N |1 -]
=AY, fork=23,...,N-1L
Similarly, we get from (35) that
(2 __1®
/\N—k+1 - _/\k >
(3) 2
ANk = A (37)
(4) 4)
/\N—k+1 = _/\k >
where k = 2,3,...,N — 1. From (36) and (37), the result
follows. O

Remark 11. Let

N . .
—, if N is even,

l= (38)
%, if N is odd.

From Lemma 10, it is clear that to prove all the N — 1
inequalities of Lemma 9 suffices to prove the € inequalities

ADAG —A@AD 20, k=1,2,...,¢.

With the similar proof as in [2, Lemma 2], we can get the
following proposition.

Proposition 12. Let wﬁ’k(a) = Zj(cos(an/N)k/Il - apjlﬁ).
Then fork = 1,2,...,N, > 0 and a € (0,1), yg(a) and all
of its derivatives are positive.

Lemma13. For N > 3, /\(11)/\(14) - /\(12)/\(13) > 0.

Proof. From (34) and (35), we can get

/\(11) Z csc

]#N

1 —acos (27j/N)
(2)
A= Z E
|1 - ap|
(/) >
a—cos (2rj/N
A=y

1 ‘“Pj'3

AM) E csc
)
aa> & N

>

Let A,(a)

2
i
A (a) = oa 2(2 csc#)

j*N

~ <Z 1—acos(2ﬂj/N)>

|1 -ap)
><<Za—cos(27Tj/N)>
1-ap
1 mj ’
e %)
<Z|1—apj|3> <Z (1-ap;)’ )
i (1+d 1 >< cos(2nj/N)>'
o2 (252

(40)

= AP —APAP). Then

Clearly, Y (1/]1 - apj|3) > 0. By Proposition 12, we get that
v, = 2.(cos(2mj/N)/|1 - ap]-|3) > 0 for a € (0, 1). Note that

(1/4) ¥ 4 csc (mj/N) = Zj¢N((l—cos(2nj/N))/|l—pj|3) >
0. We have from (40)



cos (271j/N) >

L-ap|

1 - cos (27j/N)

3
N [1-p)

a** (1 - cos (271j/N))
-9 (a)

'3

j*N 'l—apj

1 {Z <1—cos%> h(],a)} -g(a),

Q
N}

JEN
(41)

where g(a) = (1/4) Z#N csc (mj/N) + Z#N(am(l -
cos(2mij/N))/|1-ap;|*) and h(j,a) = (1/11-p;|*) - (a**/|1 -
apj|3). Note that h(j,a) = (1/|]1 - pj|3) - @?/1 +a* -
2a cos(27rj/N))3/2) and hence

dh(j,a) (3/2)a*(@a-1)(a+1)
da

< <0, forae(0,1).
|1 -ap| )
42

We know from (42) that h(j, a) is decreasing function in a for
a € (0,1). It is easy to check that h(j, 1) = 0. Thus

N-1.
(43)

h(j,a)>h(j,1)=0, forae(0,1), j=1,...,

So, ZHN(I — cos(2mj/N)) - h(j,a) > 0 since h(j,a) > 0 and
1 — cos(2mj/N) > 0. Note that g(a) > 0 for a € (0,1). From
(41), we can get A, (a) > 0. The result follows. O

Fork=1,2,...,¢,let

Z cos (2mj (k - 1) /N) - cos (27T]k/N)

oy (a) =

44)

j#*N 'l—ap]'

Lemmal4. If N isodd, then &(y,1)/,(1) = 0; If N is even, then
(XN/Z(l) > 0.
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Proof. If N is odd, by the definition of o, we have

X(N+1)/2 (1)

2 (N +1) /2) - 1)
z (COS N

j*N

g TN+ 1)/2))

N
X <|1 ‘Pj|3)_1

_ Z cos (7j — (mj/N)) = cos (nj + (mj/N))

: = 0.
j*N |1-pj]
(45)
If N is even, we get that
“N/Z (1)
Z cos (2mj ((N/2) = 1) /N) — cos (27j (N/2) /N)
= 3
j#N 1= p)
- _];N sin (n]/N)
[N ]
=~ )" ——
4 l; sin (7j/N)
N/2-1
1]+1
" Z - sin n]/N)
(46)
Case 1. If N/2 is even, then
N/2
(1 2 — +1 47
oy (1) = |: Z sin (ﬂ]/N) “)

Since the signs of the terms in the sum ZN/ 2(-1)7*(1/
sin(mrj/N)) alternate and 1/ sin(rrj/N) is decreasmg in j for
1 < j < N/2, we get that ¥ Y/2(~1)" (1/ sin(7j/N)) > 0 and
hence ay,(1) > 0.

Case 2. If N/2 is odd, then

N/2-1

j+1
Z 1) sin n]/N) (48)

any, (1) = [

Since the signs of the terms in summation Zi.\i/lz_l(—l)j+1

(1/sin(mrj/N)) alternate and 1/sin(mj/N) is decreasmg in
jfor1 < j < N/2 -1, we get that Z(N/z (-1)7*(1/
sin(7rj/N)) > 0 and hence ay;,(1) > 0.

By Cases 1and 2, we see that ay;/,(1) > 0 foreven N. [
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Proposition 15. Fork =1,2,...,€ — 1, then oy (1) > 0.

Proof. Clearly, «,(1) > 0. We need to prove o (1) > 0,k > 2.
Note that

2 7 o
————— ) cos—m
sin(j/N) % N

2sin (njk/N) cos (rj (k — 1) /N)

= (49)
sin® (77j/N)
_ sin (7j 2k — 1) /N) 1
~ sin® (j/N) sin (7j/N)
Hence, by the definition of «;(a), we have
2sin (j (2k — 1) /N) sin (j/N)
o (1) = Z . 32
JEN (2 -2cos (27j/N))
T N e — 50
1,2, | sin (mji/N) (50)
s1n (n]/N Z cos —m
Then, we get that
(o (1) = ey (1) = (ete41 (1) — o (1))
1 Z cos (2mj (k — 1) /N) — cos (2mjk/N)
245% sin (7j/N)
i k-1) 5D
_ Y snW&D
j#N N
‘ m(2k—-1)
- 2N
Notice that 0 < 7(2k — 1)/(2N) < /2 fork = 2,...,€ — 1.
Hence, cot m(2k —1)/2N > 0fork =2, ..., £ — 1. Then we
have
o (1) —oge_y (1) > 0y (1) — o (1) (52)

By (52), we get that o _; (1) + 0,1 (1) < 20,(1) which implies
that o, (1) < o (1) or o, (1) < ey (1). If there is (1) < 0,
we use two cases to proceed our proof.

Case 1. (If ay_;(1) < og(1)). By (52), we have og_,(1) —
a_1(1) < a_1(1) — (1) < 0 and hence o, (1) < o_;(1) <
o (1) < 0. By inductions, we have (1) < -+ < (1) < 0
which contradicts with o (1) > 0.

Case 2. (If ay.;(1) < a(1)). By (52), we have oy,,(1) —
e 1(1) < a1 (1) = (1) < 0. Then, og,,(1) < oy, (1) <
o (1) < 0. By inductions, we get that for even N, ay,(1) <
anyp-1(1) < oo < (1) < 0 which contradicts with
(xN/z(l) > 0; for odd N, “(N+1)/2(1) < (x(N*l)/Z(l) < -ee <
o (1) < 0 which contradicts with a(y,1y/,(1) = 0.

From Cases 1 and 2, we see that there is always a contra-
diction if there exists a;(1) < 0. Hence, ay.(1) > 0, k = 1,

L. O
Let
N
—, if N is even,
E =
(V- 1), if N is odd, (53)
a'= min a.

a€(0,1), ag(a)>0, k=1,2,...¢

By the continuity, Lemma 14 and Proposition 15, we see that

a* e (0,1).
Fork=1,2,...,¢,1let
cos (27j (k — 1) /N) — cos (2mjk/N
Bi(a) =) ! ) 5 (anik/N) (54)
j*N |1—apj|

Similar to Lemma 14, we have

Lemmal6. If N isodd, then By, ,),(1) = 0; If N is even, then

Bunja(1) > 0.
Proposition17. Fork =1,2,...,¢ — 1, then (1) > 0.

Proof. Clearly, 8,(1) > 0. We need to prove f;(1) > 0,k > 2.
Note that

s—m

sin? (j/N) (n]/N) Z <

B 1 ~2sin (mjk/N)cos (mj (k— 1) /N)
~ sin® (7j/N) sin (71j/N)

~ sin (7j (2k — 1) /N) . 1
~ sin*(7j/N) sin® (77j/N)’
(55)

By the definition of (1), we have

1
ﬂk (1) = E]¢N _sin3 (7T]/N)

wwmzm
Then, we get that

(B (D) = Bret (1)) = (Bear (1) = B (1)
1 Z cos (27j (k — 1) /N) — cos (2mjk/N)

8 5% sin® (7j/N) (57)

1
=-o(1)>0
g% ()
By similar proofs as in Proposition 15, we can get f3; > 0. The

proof is completed.



Let

a = min a.
a€(0,1),B(a)>0, k=1,2,...,¢ (58)

By the continuity, Lemma 16 and Proposition 17, we see that
a* €(0,1).
max{a*,a"},

Lemma 18. For k = 2,3,...,€ and a* =

ADAD — A2 5 0,

Proof. Let Ay (a) =
can get

ADAD AP From (34) and (35), we

Ay (a) =

i( Z cos (2mj (k = 1) /N) - cos (Zﬂ]k/N)

2
a\ . — .
j*¥N |1 pj|

acos (2mjk/N) >

~ <Z cos (2mj (k- 1) /N) -
1-ap

‘ <Z acos(2mj(k—1)/N) — cos (2mjk/N) >
|“ —le3
(

59)

By the definitions of £ and 2, we see that £ = £ if N is even
and Z = ¢ - 1if N is odd. For odd N, we get

AN+ (a)

1 27 (N +1)/2) - 1)
= (j;N(cos N

275 (N +1) /2) -3\?
- OST>X|1—pj| )

2mj (N +1)/2) - 1)
- < Z (cos N

2N+ /2)> AJi- apj'_3>

N

27 (N +1)/2) - 1)
. <Z(QCOS N

2 ((NN+ 1) /2)) cJa-p* >

2

= (1-a)’ [Z (-1 2 (ﬂj/]\?
|1 -ap|

(60)
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Let f(x) = cos x/(1+az—2ac052x)3/2 for 0 < x < 7r/2. Then

) —sinx(l+a2—2ac052x)—6acosxsin2x
f(x)= <0.

(1+a? - 2acos2x)”

(61)

Hence, cos(nrj/N)(a — 1)/la - pjl3 is decreasing in j for 0 <
7j/N < /2. Note that the signs of the terms alternate, then
the summation is negative for 0 < 7j/N < 7r/2. By symmetry,
the summation for the rest terms is also negative. Hence, we
have

Aenyz (@) > 0. (62)

Foranyk, k=2,3,...,2,let

Ga) = Z cos (2mj (k — 1) /N) — cos (2mjk/N)

3
j*N |1 -]

32 Z cos (2mj (k = 1) /N) — cos (271]k/N)
-a
j*N |1 —ap]|
(63)

With direct computation, we have

G (a) = %al/z (@a+1)(a-1)

y Z cos (2mj (k- 1) /N) —Scos (27jk/N) .
j*N |1 —ap]-|

forae (a", 1),
(64)

where Proposition 17 is used. It follows from (64) that G(a)
is decreasing for a € (a”,1). Note that G(1) = 0. So, G(a) >
G(1) = 0fora € (0,1). It is that

z cos (2mj (k = 1) /N) — cos (2mjk/N)

3
j*N [1-pj
2 Z cos (2mj (k — 1) /N) — cos (2mjk/N)

j*N '1—ap]'

(65)

>

wherea € (a*,1) and k = 2,3,. .., £. From (65), we can get

i< Z cos (2rj (k — 1) /N) — cos (2mjk/N) )2

@\ ok '1‘P1|3

cos (2mj (k- 1) /N) - cos (27'r]k/N)
j*N ’

1-ap)
(66)

wherea € (a*,1) and k =2,3,...,°L.
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By (59), we can get

A, (@) = iz Z cos (2mj (k — 1) /N) —3cos (27jk/N) ’
a”\ j¥N |1 _Pj|

2
cos (2mj (k- 1) /N)

|1 -ap|
(2mj (k- 1) /N)
+(1+a2)<z cos >
1-ap’
y <Z cos (ank/i\]) >

|1 -ap)
_a<z

From Proposition 12, we have

1 < Z cos (2mj (k — 1) /N) - cos (2mjk/N) >2

A —
k (a) > a2 o |1 B p]|3

cos (2mjk/N) >2

1-ap
(67)

2
cos (2mj (k — 1) /N)

|1 - ap|

—2<Z cos (2mj (k - 13)/N)>

|1 - apj

y <Z cos (27Tjk/§\]) >

|1 -ap)

. <Z cos (Zﬂjk/i\f) >2

|1-ap)|

1 < Z cos (2mj (k — 1) /N) — cos (2mjk/N) >2

3
j#N 1= p)]

cos (271j (k — 1) /N) - cos (2mjk/N) ’
-al )
JEN

3
|1 -apj
>0,
(68)
where (66) is used and k = 2,3,..., 2.
By (62) and (68), the proof is completed. O

The following example illustrate that the a* in Lemma 18
can be obtained for some special cases.

9
Example 19. If N = 3, thena” = 0.
Proof. For N = 3, we have
2
(xl (a) = N 32 > 0:
((1+ (a/2))* + (3/4))
. (69)
o, (a) = 53 > O
((1+(a/2))* + (3/4))
By the definition of a*, we have a* = 0.
Similarly, we get that
2
ﬁl (a) = N 5/2 > 0’
((1+ @/2))* + (3/4))
. (70)
B, (a) = > 0.

((1+ @27 + 3/4) ™"

By the definition of @*, we have @* = 0. Hence, a* = 0 for
N =3. O

Lemmas 13 and 18 show that the hypotheses of Lemma 9
are satisfied. Thus the proof of the Theorem 5 was completed.

3. The Proof of Theorem 6

Sincem, =m, =+~ =my =mandin, =, = =My =
i, we get that z, = 0. Hence, by (3), we have

a = s G = ape. (71)

Substituting g, and g, into (1), then by (11) we get that

Z CSC —

1-a cos(27j/N)

+mz 3 >

]#N |1 —apj| o)
- a—- cos(2mj/N) iz j
aw mZ—'l_anr +4a2j¢NcscN.
From (72), we have
1-a cos(27j/N)
+ >
];N csc mz |1 - apj|3
2 1 a- cos (an/N) 7j
" [mz el ZJ;NCS
(73)

From (73), the constant w” exists only if the following equa-
tion holds:

{ Z T +mz 1 —acos (27j/N) }

;#N 'l—ap]'

(74)
a - cos (2mj/N)
ST

m j

+— E csc—
2

4a PN N
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Note that y = #/m. Then we get from (74) that

‘uz cscﬁ—(l— )af(a)+(1—a(4)g(a)—

2
4a j*#N

(75)

where f(a) = Y (cos(2mj/N)/|1 -

apj|3).

Y(1/I1-ap;|*) and g(a) =

Lemma 20. Fory > 0and N > 3, the constant w* can be given
by

(2mj/N
+mz T‘;C_OS 7'” ) (76)

:—Z CSC —

where a, is the unique solution of (75).

Proof. By the relationship between (74) and (75), it suffices to
prove that (75) has solution a = g, for 4 > 0 and N > 3. Let

F(a)z(a——) Z csc
J#N (77)
—(l—y)af(a)+(1—a2y)g(a).

From (75) and (77), the roots of (75) are zeros of (77). From
the definitions of y;(a) defined in Proposition 12, we have
vin(@ =X/ —apjl). Through direct calculations, we find
that

yin (@) = (1+a°) f(a)-2ag(a),
(78)
d
%C’i—Nam) = —af(a)+ga).
From (78), (77) can be written as
F(a) = (a——) Z csc
(79)

) dy, n (@)

+(1+a ia + pay, y (a).

Notice that y, y(a) = Z#N(I/II - apjl) + (/11 = apyl) =
Z#N(l/ll —apjl) + (1/|1 - al). Hence, we have

}1&111//1,1\, (a) = +oo0. (80)
From (79), (80), and Proposition 12, we can get that

lim F (a) = —oo0, lim F (a) = +0o0. (81)
a—0 a—1

On the other hand, by (79), we get that
F' (a) = <1 + —> Z csc

d (a)
+ (@) + SaMw;’—Z (82)

&> y,  (a)
+ (1 + azy) dl—alj'

Abstract and Applied Analysis

From (82) and Proposition 12, we know that F'(a) > 0 fora €
(0, 1). This, together with (81), implies that there is a unique
solution a = a,, for F(a) = 0. The proof is completed. O
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