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In the real business world, player sometimes would offer a limiter to their output due to capacity constraints, financial constraints,
or cautious response to uncertainty in the world. In this paper, we modify a duopoly game with bounded rationality by imposing
lower limiters on output. Within our model, we analyze how lower limiters have an effect on dynamics of output and give proof in
theory why adding lower limiters can suppress chaos. We also explore the numbers of the equilibrium points and the distribution
of conditioned equilibrium points. Stable region of the conditioned equilibrium is discussed. Numerical experiments show that the
output evolution system having lower limiters becomes more robust than without them, and chaos disappears if the lower limiters
are big enough.The local or global stability of the conditional equilibrium points provides a theoretical basis for the limiter control
method of chaos in economic systems.

1. Introduction

Since the French economist Cournot [1] introduced the first
well-knownmodel which gives amathematical description of
competition in a duopolistic market, there are many research
works based on it (see [2–9]). The Cournot duopoly model
represents an economy consisting of two quantity-setting
firms producing the same good, or homogeneous goods,
and each firm chooses its production in order to maximize
its profits (see [2]). Rand [10] may be the first man who
suggested that the Cournot adjustment process may also fail
to converge to a Nash equilibrium and may also exhibit
cyclical and even chaotic dynamics. Puu [11, 12] suggested
a case of Cournot duopoly with two or there players, and
with a unitary elasticity demand function and constant
marginal costs, and showed that these systems also lead to
complex dynamics, including period doubling bifurcations
and chaos. Kopel [13] investigated microeconomic founda-
tions of Cournot duopoly games and demonstrated that cost
functions incorporating an interfirm externality lead to a
system of coupled logistic equations. Besides extending Puu’s
work to 𝑛 competitors (see [6]), Ahmed et al. [7] contributed

to develop dynamic Cournot game characterized by players
with complete rationality into one with bounded rationality.
After them, scholars studied Cournot game with bounded
rationality, considering influence of different demand func-
tions and different cost functions (linear and nonlinear)
(see [2, 3, 9]). Recently, some scholars (see [4, 5, 14–20])
introduced heterogeneous players into Cournot game with
bounded rationality. Aims of all the modifications previously
mentioned or not are to make Cournot game model become
economically more justified in the world.

In the real business world, it is commonly observed that
competitive firms would limit their production for steadiness
or economies of scale. Huang [21] found that cautious
responses to fluctuating prices by firms (through limiting
the growth rate of its output) may result in a higher long-
run average profit for a simple cobweb. He and Westerhoff
[22] showed that imposition of a price limiters can eliminate
homoclinic bifurcations between bull and bear markets and
hence reducemarket price volatility. It is worthy to be noticed
that work of [21, 22] is based on one-dimension economic
system. In incomplete competition, the number of players is
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not less than 2, so the problem may become more intricate
(see [23]).

This paper aims at the new output duopoly game by
imposing lower limiters on output and focuses on the impact
of limiters on dynamics and unraveling stabilizing mecha-
nism of limiter method to reduce fluctuation.

As He and Westerhoff [22] say, output limiters as applied
model are identical to a recently developed chaos control
method, the limiter method, which has been analytically and
numerically explored by [22–26].However, the existent docu-
ments do not discuss the impact of limiter on equilibrium of
economic system. Unfortunately, there exists no theoretical
result to assure the fact that chaos can be suppressed by
adding simple limiter. The results in this paper may partly
answer this puzzle in a special case.

The remainder of this paper is organized as follows.
Section 2 introduces an output duopoly game with bounded
rationality and examines the dynamics of the model.
Section 3 turns to a discussion of the duopoly game having
output lower limiters and the impact of output lower limiters
on dynamics. The final section concludes the paper.

2. The Output Duopoly Game without
Output Limiter

The output game we introduce here is based on the assump-
tion that the two firms (players) do not have a complete
knowledge of the market. Then one firm is labeled by 𝑖 = 1

and the other 𝑖 = 2. In game, players behave adaptively,
following a bounded rationality adjustment process based on
a local estimate of the marginal profit 𝜕Π

𝑖
/𝜕𝑞
𝑖
(see [2, 3, 6,

8, 9]). For example, if a firm thinks the marginal profit of the
time 𝑡 is positive, it is decided to increase its production of the
time 𝑡 + 1 or to decrease its production if the marginal profit
is negative. If the 𝑖th firm at time 𝑡 is 𝑞

𝑖
(𝑡), its output at time

𝑡 + 1 can be modeled as

𝑞
𝑖 (
𝑡 + 1) = 𝑞𝑖 (

𝑡) + 𝛼𝑖
𝑞
𝑖 (
𝑡)

𝜕Π
𝑖
(𝑞
1
, 𝑞
2
)

𝜕𝑞
𝑖

, 𝑖 = 1, 2, (1)

where Π
𝑖
(𝑞
1
, 𝑞
2
) is the after-tax profit of the 𝑖th firmat time

𝑡 and 𝛼
𝑖
is positive parameter representing the speed of

adjustment. As usual in duopoly models, the price 𝑝 of the
good at time 𝑡 is determined by the total supply 𝑄(𝑡) =

𝑞
1
(𝑡) + 𝑞

2
(𝑡) through a demand function (see [3]):

𝑝 = 𝑓 (𝑄) = 𝑎 − 𝑏𝑄, (2)

where 𝑎 and 𝑏 are positive constant, and 𝑎 is the highest price
in the market. We assume that the production cost function
has the nonlinear form:

𝐶
𝑖
(𝑞
𝑖
) = 𝑐
𝑖
+ 𝑑
𝑖
𝑞
𝑖
+ 𝑒
𝑖
𝑞
2

𝑖
, 𝑖 = 1, 2, (3)

where the positive parameter 𝑐
𝑖
is fixed cost of the 𝑖th firm. In

general, the cost function 𝐶
𝑖
(𝑞
𝑖
), climbing with the increase

of the product output, is convex, so its first derivative 𝐶
𝑖
(𝑞
𝑖
)

and second derivative 𝐶
𝑖
(𝑞
𝑖
) are positive. We can assume

that the parameters 𝑑
𝑖
, 𝑒
𝑖
are positive. In order to make the

duopoly game on the rails, the marginal profit of the 𝑖th firm
must be less than the highest price of the good in the market.
Therefore, 𝑑

𝑖
+ 2𝑒
𝑖
𝑞
𝑖
< 𝑎, 𝑖 = 1, 2.

Hence the after-tax profit Π
𝑖
of the 𝑖th firm is given by

Π
𝑖
= [𝑞
𝑖 (
𝑡) (𝑎 − 𝑏𝑄 (𝑡)) − (𝑐 + 𝑑𝑖

𝑞
𝑖 (
𝑡) + 𝑒𝑖

𝑞
2

𝑖
(𝑡))] (1 − 𝑟) ,

𝑖 = 1, 2,

(4)

where 𝑟 is the tax rate of business income tax, and 0 ≤ 𝑟 < 1;
𝑟 = 0 represents pretax profit. The marginal profit of the 𝑖th
firm at the time 𝑡 is

𝜕Π
𝑖

𝜕𝑞
𝑖

= (𝑎 − 𝑏𝑄 (𝑡) − 𝑏𝑞𝑖 (
𝑡) − 𝑑𝑖

− 2𝑒
𝑖
𝑞
𝑖 (
𝑡)) (1 − 𝑟) ,

𝑖 = 1, 2.

(5)

The duopoly model with bounded rational players can be
written in the form:

𝑞
𝑖 (
𝑡 + 1)

= 𝑞
𝑖 (
𝑡) + 𝛼𝑖

𝑞
𝑖 (
𝑡) [𝑎 − 𝑏𝑄 (𝑡) − (𝑏 + 2𝑒𝑖

) 𝑞
𝑖 (
𝑡) − 𝑑𝑖

]

× (1 − 𝑟) , 𝑖 = 1, 2.

(6)

2.1. Equilibrium Points and Local Stability. In order to make
the solution of the output duopoly model have the economi-
cal significance, we study the nonnegative stable state solution
of the model in this paper. The equilibrium solution of the
dynamics system (6) is the following algebraic nonnegative
solution:

𝑞
1
(𝑎 − 𝑏𝑄 − (𝑏 + 2𝑒

1
) 𝑞
1
) = 0,

𝑞
2
(𝑎 − 𝑏𝑄 − (𝑏 + 2𝑒

2
) 𝑞
2
) = 0.

(7)

From (7), we can get four fixed points:

𝐸
0
= (0, 0) , 𝐸

1
= (

𝑎 − 𝑑
1

2𝑏 + 2e
1

, 0) ,

𝐸
2
= (0,

𝑎 − 𝑑
2

2𝑏 + 2𝑒
2

) , 𝐸
∗
= (𝑞
∗

1
, 𝑞
∗

2
) ,

(8)

where

𝑞
∗

1
=

(𝑎 − 𝑑
1
) (2𝑏 + 2𝑒

2
) − 𝑏 (𝑎 − 𝑑

2
)

3𝑏
2
+ 4𝑏𝑒
1
+ 4𝑏𝑒
2
+ 4𝑒
1
𝑒
2

,

𝑞
∗

2
=

(𝑎 − 𝑑
2
) (2𝑏 + 2𝑒

1
) − 𝑏 (𝑎 − 𝑑

1
)

3𝑏
2
+ 4𝑏𝑒
1
+ 4𝑏𝑒
2
+ 4𝑒
1
𝑒
2

.

(9)

Since 𝐸
0
, 𝐸
1
, and 𝐸

2
are on the boundary of the decision

set, 𝐽 = {(𝑞
1
, 𝑞
2
) | 𝑞
1
≥ 0, 𝑞

2
≥ 0}, they are called boundary

equilibriums. 𝐸∗ is the unique Nash equilibrium provided
that

(𝑎 − 𝑑
1
) (𝑏 + 2𝑒

2
) − 𝑏 (𝑑

1
− 𝑑
2
) > 0,

(𝑎 − 𝑑
2
) (𝑏 + 2𝑒

1
) − 𝑏 (𝑑

2
− 𝑑
1
) > 0.

(10)
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The Nash equilibrium 𝐸
∗ is located at the intersection of

the two reaction curves which represent the locus of points of
vanishingmarginal profits in (5). In the following, we assume
that (10) is satisfied, so the Nash equilibrium 𝐸

∗ exists.
The study of the local stability of equilibrium points is

based on the eigenvalues of the Jacobian matrix of the (6):

J = [ 1 + 𝛼
1
𝐴
1

−𝛼
1
𝑏 (1 − 𝑟) 𝑞1

−𝛼
2
𝑏 (1 − 𝑟) 𝑞2

1 + 𝛼
2
𝐴
2

] , (11)

where

𝐴
1
= (𝑎 − (4𝑏 + 4𝑒

1
) 𝑞
1
− 𝑏𝑞
2
− 𝑑
1
) (1 − 𝑟) ,

𝐴
2
= (𝑎 − 𝑏𝑞

1
− (4𝑏 + 4𝑒

2
) 𝑞
2
− 𝑑
2
) (1 − 𝑟) .

(12)

As regards the conditions for the fixed point to be stable
(see [2, 3]), we have the following result.

Theorem 1. The boundary equilibria 𝐸
0
, 𝐸
1
, and 𝐸

2
are

unstable equilibrium points.

Proof. At the boundary fixed point 𝐸
0
, the Jacobian matrix is

J (𝐸
0
) = [

1 + 𝛼
1
(𝑎 − 𝑑

1
) (1 − 𝑟) 0

0 1 + 𝛼
2
(𝑎 − 𝑑

2
) (1 − 𝑟)

] .

(13)

The eigenvalues of J(𝐸
0
) are 𝜆

1
= 1+𝛼

1
(𝑎−𝑑

1
)(1−𝑟) and

𝜆
2
= 1+𝛼

2
(𝑎−𝑑
2
)(1−𝑟), which are greater than unity.Thus𝐸

0

is a repelling node with eigendirections along the coordinate
axes 𝑞

1
and 𝑞
2
.

At the boundary fixed point 𝐸
1
, the Jacobian matrix

becomes

J (𝐸
1
) =

[

[

[

[

1 − 𝛼
1
(𝑎 − 𝑑

1
) (1 − 𝑟) −

𝛼
1
𝑏 (𝑎 − 𝑑

1
) (1 − 𝑟)

2𝑏 + 2𝑒
1

0 1 +

𝛼
2
((𝑎 − 𝑑

2
) (𝑏 + 2𝑒

1
) − 𝑏 (𝑑

2
− 𝑑
1
)) (1 − 𝑟)

2𝑏 + 2𝑒
1

]

]

]

]

, (14)

whose eigenvalues are given by 𝜆
1
= 1−𝛼

1
(𝑎−𝑑
1
)(1−𝑟)with

eigenvector 𝜉
1
= (1, 0) along 𝑞

1
axe and 𝜆

2
= 1+(𝛼

2
((𝑎−𝑑

2
)−

𝑏(𝑑
2
−𝑑
1
)(𝑏+2𝑒

1
)(1−𝑟))/(2𝑏+2𝑒

1
)with eigenvector 𝜉

2
= ([(1−

𝑟)(2𝑏+2𝑒
1
)+𝛼
2
((𝑎−𝑑

2
)(𝑏+2𝑒

1
)−𝑏(𝑑

2
−𝑑
1
))]/𝛼
1
𝑏(𝑎−𝑑

1
), 1),

thus if 𝛼
1
< 2/[(𝑎 − 𝑑

1
)(1 − 𝑟)], 𝐸

1
is saddle point, with local

stable manifold along 𝑞
1
axis and the unstable tangent to 𝜉

2
.

Otherwise, 𝐸
1
is an unstable node.

The bifurcation occurring at 𝛼
1
= 2/[(𝑎 − 𝑑

1
)(1 − 𝑟)] is a

flip bifurcation at which𝐸
1
from attracting becomes repelling

along 𝑞
1
axis, on which a cycle of period 2 appears.

From the similarity between 𝐸
1
and 𝐸

2
, 𝐸
2
is a saddle

point with local stablemanifold along 𝑞
2
axis and the unstable

one tangent to 𝜉
1
= (1, [(1 − 𝑟)(2𝑏 + 2𝑒

2
) + 𝛼
1
((𝑎 − 𝑑

1
)(𝑏 +

2𝑒
2
) − 𝑏(𝑑

1
−𝑑
2
))]/𝛼
2
𝑏(𝑎−𝑑

2
)), if 𝛼

2
< 2/[(𝑎−𝑑

2
)(1− 𝑟)], 𝐸

2

is saddle point, with local stable manifold along 𝑞
2
axis and

the unstable tangent to 𝜉
1
. Otherwise, it is an unstable node.

HenceTheorem 1 is true.
In order to study the local stability of Nash equilibrium

𝐸
∗
= (𝑞
∗

1
, 𝑞
∗

2
), we estimate the Jacobian matrix at 𝐸∗, which

is

J (𝐸∗)

= [

1 − 2𝛼
1
(𝑏 + 𝑒

1
) 𝑞
∗

1
(1 − 𝑟) −𝛼

1
𝑏𝑞
∗

1
(1 − 𝑟)

−𝛼
2
𝑏𝑞
∗

2
(1 − 𝑟) 1 − 2𝛼

2
(𝑏 + 𝑒

2
) 𝑞
∗

2
(1 − 𝑟)

] .

(15)

The characteristic equation is

𝑃 (𝜆) = 𝜆
2
− Tr 𝜆 + Det = 0, (16)

where Tr is the trace and Det is the determinant, and

Tr = 2 − 2𝑓
1
𝛼
1
− 2𝑓
2
𝛼
2
,

Det = 1 − 2𝑓
1
𝛼
1
− 2𝑓
2
𝛼
2
+ 𝑓
3
𝛼
1
𝛼
2
,

(17)

where 𝑓
1
= (𝑏 + 𝑒

1
)𝑞
∗

1
(1 − 𝑟) is positive, 𝑓

2
= (𝑏 + 𝑒

2
)𝑞
∗

2
(1 − 𝑟)

is positive, and 𝑓
3
equals 4𝑓

1
𝑓
2
+ 𝑏
2
𝑞
∗

1
𝑞
∗

2
(1 − 𝑟)

2, is positive.
Since

Tr2 − 4Det

= 4[𝑓
2
𝛼
2
− 𝑓
1
𝛼
1
]
2
+ 4 (4𝑓

1
𝑓
2
− 𝑓
3
) 𝛼
1
𝛼
2
> 0,

(18)

the eigenvalues of Nash equilibrium are real. The local
stability of Nash equilibrium is given by Jury’s condition (see
[2, 3, 6, 7]), which are

(a) 1 − Tr+Det = 𝑓
3
𝛼
1
𝛼
2
> 0,

(b) 1 + Tr+Det > 0.

The first condition is satisfied and the second condition
becomes

4𝑓
1
𝛼
1
+ 4𝑓
2
𝛼
2
− 𝑓
3
𝛼
1
𝛼
2
− 4 < 0. (19)

This equation defines a region of stability in the plane
of the speeds of adjustment (𝛼

1
, 𝛼
2
). The stability region is

bounded by the portion of hyperbola with positive 𝛼
1
and 𝛼

2
,

whose equation is

4𝑓
1
𝛼
1
+ 4𝑓
2
𝛼
2
− 𝑓
3
𝛼
1
𝛼
2
− 4 = 0. (20)

For the values of (𝛼
1
, 𝛼
2
) inside the stability region, the

Nash equilibrium 𝐸
∗ is stable and loses its stability through
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a period doubling (flip) bifurcation. The bifurcation curve
determined by (20) intersects the axes 𝛼

1
and 𝛼
2
, respectively,

whose coordinates are given by

𝑆
1
= (

1

𝑓
1

, 0) , 𝑆
2
= (0,

1

𝑓
2

) . (21)

Therefore, from the previously mentioned derivation,
we have following theorem illustrating the local stability of
equilibrium 𝐸

∗.

Theorem 2. The stable region of equilibrium 𝐸
∗ is enclosed by

hyperbola defined by (20) and the axes 𝛼
1
and 𝛼

2
.

Theorem 2 and (6) indicate that when the adjusting speed
of 𝛼
1
and 𝛼
2
of the two firms’ production is in the area defined

by (20) and the axes 𝛼
1
, 𝛼
2
, the output of the two firms will

tend towards the equilibrium point 𝐸∗. The maximum profit
will be obtained at this point, just as

Π
∗

𝑖
= [𝑞
∗

𝑖
(𝑎 − 𝑏𝑄

∗
) − (𝑐
𝑖
+ 𝑑
𝑖
𝑞
∗

𝑖
+ 𝑒
𝑖
𝑞
2

𝑖
)]

× (1 − 𝑟) , 𝑖 = 1, 2,

(22)

where 𝑄∗ = 𝑞∗
1
+ 𝑞
∗

2
.

It is noticeable that the game is based on the bounded
rationality. The two firms cannot reach the Nash equilibrium
at once. They may reach the equilibrium point after rounds
of games. But once one player or both players adjust the
production too fast and push 𝛼

1
, 𝛼
2
beyond the bifurcation

curve (defined by (20)), the system becomes unstable.
Similar argument applies if the parameters 𝛼

1
and 𝛼

2
are

fixed parameters and the parameters 𝑑
1
, 𝑑
2
are varied.

2.2. Numerical Simulation. We can show the stability of the
Nash equilibrium point 𝐸∗ through the numerical experi-
ments and show the way of the system to the chaos through
period doubling bifurcation. The parameters have taken the
values 𝛼

1
= 0.1, 𝑎 = 10, 𝑏 = 1, 𝑐

1
= 1.1, 𝑐

2
= 1,

𝑑
1
= 1, 𝑑

2
= 1, 𝑒

1
= 1, 𝑒

2
= 1.1, and 𝑟 = 0.3. Figure 1(a)

shows that the bifurcation diagram of the system (6) is
convergent to Nash equilibrium for 𝛼

2
< 0.3901. Then if 𝛼

2
>

0.3901, Nash equilibrium becomes unstable. Period doubling
bifurcations appears, and finally chaotic behaviors occur.
Also the maximum Lyapunov exponent (Lyap.) is plotted.
Positive values of Lyapunov exponent show that the solution
has chaotic behavior. Taking the corresponding output on the
output trace in (4), the profit trace bifurcation diagram can be
drawn (as shownby Figure 1(b)). In Figure 1(b),Π

1
represents

the profit of the 𝑖 = first firm, and Π
2
represents the profit of

the 𝑖= second firm.We can see the change of profit is the same
as the output of the player with the variance of parameter
𝛼
1
. Figures 1(a) and 1(b) also show that if the firm does the

decisionmakingmore carefully, the output and the profit will
be more stable. Figure 1(c) shows strange attractor for the
values of the parameters 𝑎 = 10, 𝑏 = 1, 𝑑

1
= 1, 𝑑

2
= 1, 𝑒
1
= 1,

𝑒
2
= 1.1, 𝑟 = 0.3, 𝛼

1
= 0.1, and 𝛼

2
= 0.54. Strange attractors

of the system (6) exhibit a fractal structure. Figure 1(d) shows
the region of stability of theNash equilibrium for the values of
the parameters 𝑎 = 10, 𝑏 = 1, 𝑑

1
= 1, 𝑑

2
= 1, 𝑒
1
= 1, 𝑒
2
= 1.1,

and 𝑟 = 0.3. Equation (20) and the economical significance
of parameters (which is positive here) define the regions of
stability in the plane of adjustment (𝛼

1
, 𝛼
2
).

3. The Output Duopoly Game Having Output
Lower Limiters

Next, we assume that the 𝑖th firm will impose lower limiter
𝑞
min
𝑖

on output for economies of scale, and (6) becomes

𝑞
𝑖 (
𝑡 + 1) = Max [𝑓

𝑖
(𝑞
1 (
𝑡) , 𝑞2 (

𝑡)) , 𝑞
min
𝑖

] ,

𝑖 = 1, 2,

(23)

where 𝑞min
𝑖

> 0 and

𝑓
𝑖
(𝑞
1
, 𝑞
2
) = 𝑞
𝑖
+ 𝛼
𝑖
𝑞
𝑖
[𝑎 − 𝑏𝑄 − (𝑏 + 2𝑒

𝑖
) 𝑞
𝑖
− 𝑑
𝑖
] (1 − 𝑟) ,

𝑖 = 1, 2.

(24)

Limiting the output is economically justified in the real
world. It can be explained by capacity constraints, financial
constraints, breakeven, and steadiness.

3.1. Equilibrium Points. In order to study the qualitative
behavior of the solutions of the nonlinearmap (23), we define
the equilibrium points of the dynamic duopoly game by
letting

𝑞
𝑖 (
𝑡 + 1) = 𝑞𝑖 (

𝑡) , 𝑖 = 1, 2, (25)

where 𝑞
𝑖
(𝑡 + 1) is determined by (23). Comparing

𝑓
𝑖
(𝑞
1
(𝑡), 𝑞
2
(𝑡)) (in brief, 𝑓

𝑖
(𝑡), defined by (24)) with 𝑞

min
𝑖

,
𝑖 = 1, 2, there are four cases.

(a) 𝑓
1
(𝑡) ≥ 𝑞

min
1

and 𝑓
2
(𝑡) ≥ 𝑞

min
2

. When 𝑞min
1

≤ 𝑞
∗

1
and

𝑞
min
2

≤ 𝑞
∗

2
, the solution of the system (23) gives one

fixed point:

𝐸
∗
= (𝑞
∗

1
, 𝑞
∗

2
) , (26)

where 𝑞∗
1
= ((𝑎 − 𝑑

1
)(2𝑏 + 2𝑒

2
) − 𝑏(𝑎 − 𝑑

2
))/(3𝑏

2
+

4𝑏𝑒
1
+ 4𝑏𝑒
2
+ 4𝑒
1
𝑒
2
), 𝑞∗
2
= ((𝑎 − 𝑑

2
)(2𝑏 + 2𝑒

1
) − 𝑏(𝑎 −

𝑑
1
))/(3𝑏

2
+ 4𝑏𝑒
1
+ 4𝑏𝑒
2
+ 4𝑒
1
𝑒
2
), and 𝐸∗ is the unique

Nash equilibrium when (10) is satisfied.
(b) 𝑓
1
(𝑡) < 𝑞

min
1

and 𝑓
2
(𝑡) > 𝑞

min
2

. When 𝑞min
1

> 𝑞
∗

1
and

𝑞
min
2

≤ 𝑞
∗

20
, we can obtain a fixed point:

𝐹
1
= (𝑞

min
1

, 𝑞
∗

20
) , (27)

where 𝑞∗
20
= (𝑎 − 𝑏𝑞

min
1

− 𝑑
2
)/(2𝑏 + 2𝑒

2
).

(c) 𝑓
1
(𝑡) > 𝑞

min
1

and 𝑓
2
(𝑡) < 𝑞

min
2

. When 𝑞min
1

≤ 𝑞
∗

10
and

𝑞
min
2

> 𝑞
∗

2
, we have one fixed point:

𝐹
2
= (𝑞
∗

10
, 𝑞

min
2

) , (28)

where 𝑞∗
10
= (𝑎 − 𝑏𝑞

min
2

− 𝑑
1
)/(2𝑏 + 2𝑒

1
).
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Figure 1: Partial numerical simulation of the system (6). (a)The bifurcation diagram of the evolution of output. (b)The bifurcation diagram
of the evolution of after-tax profit. (c) The strange attractor. (d) The stable region of Nash equilibrium of duopoly game in the phase plane of
speed of adjustment.

(d) 𝑓
1
(𝑡) < 𝑞

min
1

and 𝑓
2
(𝑡) < 𝑞

min
2

. When 𝑎 − 𝑏(𝑞
min
1

+

𝑞
min
2

) − (𝑏 + 2𝑒
𝑖
)𝑞

min
𝑖

− 𝑑
𝑖
≤ 0, 𝑖 = 1, 2, the solution of

the system (23) gives one fixed point:

𝐹
3
= (𝑞

min
1

, 𝑞
min
2

) . (29)

From the previously mentioned analysis, we can see
that the existence of equilibriums 𝐸

∗, 𝐹
1
, 𝐹
2
, or 𝐹

3
has

relation to the size of lower limiters 𝑞min
1

and 𝑞min
2

, so we call
them conditional equilibrium points. The relations between
existence of equilibrium and lower limiters are summarized
in Figure 2. In Figure 2, EF (𝑎 − 𝑏𝑞min

1
− 𝑏𝑞

min
2

= 0) denotes
the maximal capacity of market, where the price of the good
comes up to zero. When (𝑞min

1
, 𝑞

min
2

) is located in region I,
which is enclosed by horizontal line BN (𝑞min

2
= 𝑞
∗

2
), vertical

line AN (𝑞min
1

= 𝑞
∗

1
), and the axes 𝑞min

𝑖
, 𝑖 = 1, 2, the system

(23) has Nash equilibrium 𝐸
∗. If (𝑞min

1
, 𝑞

min
2

) falls in region

II, which is surrounded by line AN, line NC (𝑎 − 𝑏(𝑞
min
1

+

𝑞
min
2

) − (𝑏 + 2𝑒
2
)𝑞

min
2

− 𝑑
2
= 0), and the axis 𝑞min

1
, the system

(23) gives the conditional equilibrium 𝐹
1
. If it is located in

region III, which is enclosed by line NC, line EF, line DN
(𝑎 − 𝑏(𝑞min

1
+ 𝑞

min
2

) − (𝑏 + 2𝑒
1
)𝑞

min
1

− 𝑑
1
= 0), and the axes

𝑞
min
𝑖

, 𝑖 = 1, 2, equilibrium point of the system (23) is 𝐹
3
. If

it is situated in region IV surrounded with line BN, line DN,
and the axis 𝑞min

2
, conditional equilibrium point of the system

(23) becomes 𝐹
2
.

It is very interesting that conditional equilibrium 𝐹
1

perches on line NC, 𝐹
2
stands on line DN, and 𝐹

3
is situated

in region III. Furthermore, the feasible region of conditional
equilibrium points consists of region III, and its boundary is
convex. What is more, Nash equilibrium 𝐸

∗ (namely, 𝑁 in
Figure 2) is one of the vertices of the region. So the equilibria
of the system (23) are different from those of the system (6)
which only has boundary equilibria and Nash equilibrium.
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Figure 2: The distributions of conditional equilibrium points
of the system (23), at parameter values (𝑎, 𝑏, 𝑑

1
, 𝑑
2
, 𝑒
1
, 𝑒
2
) =

(10, 1, 1, 1, 1, 1.1).

3.2. Stability. Using the method similar to Section 2.1, we can
draw the conclusion that Nash equilibrium 𝐸

∗ of the system
(23) has the same stable region in the plane of the speeds of
adjustment (𝛼

1
, 𝛼
2
) as system (6). That is to say, its region of

stability is bounded by (20) and axes 𝛼
𝑖
, 𝑖 = 1, 2. Although

the equilibrium of the system (23) may still be looked as
a result of “learning” and “evolution,” the adjustment of
production is restrained due to lower limiter. Moreover, size
of limiters influences existence of Nash equilibrium.

In the following, we will explore the stability of condi-
tional equilibrium points 𝐹

1
, 𝐹
2
, or 𝐹

3
of the system (23),

respectively.
As for conditional equilibrium 𝐹

3
of the system (23), the

following result can be made.

Theorem 3. The conditional equilibrium 𝐹
3
of the system (23)

is globally stable in the plane of the speeds of adjustment
(𝛼
1
, 𝛼
2
).

Proof. Because 𝑞
min
𝑖

, 𝑖 = 1, 2 are positive and the lower
limiters of output,

𝑞
𝑖 (
𝑡) ≥ 𝑞

min
𝑖

, 𝑖 = 1, 2, 𝑡 = 0, 1, 2, . . . . (30)

As Section 3.1 shows, when conditional equilibrium 𝐹
3

exists, 𝑞min
𝑖

, 𝑖 = 1, 2must satisfy

𝑎 − 𝑏 (𝑞
min
1

+ 𝑞
min
2

) − (𝑏 + 2𝑒
𝑖
) 𝑞

min
𝑖

− 𝑑
𝑖
≤ 0,

𝑖 = 1, 2.

(31)

Note that 𝑏, 𝑑
1
, 𝑑
2
, 𝑒
1
, and 𝑒

2
are positive; also note that

when 𝑞
𝑖
(𝑡) ≥ 𝑞

min
𝑖

, we have
(a) 𝑎 − 𝑏(𝑞

1
(𝑡) + 𝑞

2
(𝑡)) − (𝑏 + 2𝑒

1
)𝑞
1
(𝑡) − 𝑑

1
≤ 0,

(b) 𝑎 − 𝑏(𝑞
1
(𝑡) + 𝑞

2
(𝑡)) − (𝑏 + 2𝑒

2
)𝑞
2
(𝑡) − 𝑑

2
≤ 0.

Now, when one of the previously mentioned two inequal-
ities (a) and (b) becomes an equation, we prove that

𝑞
𝑖 (
𝑡) = 𝑞

min
𝑖

, 𝑖 = 1, 2. (32)

Using themethod of reduction to absurdity can prove this
conclusion. We now assume that there is one strict inequality
at least for 𝑞

1
(𝑡) ≥ 𝑞

min
1

and 𝑞
2
(𝑡) ≥ 𝑞

min
2

, for example 𝑞
1
(𝑡) >

𝑞
min
1

. If 𝑎 − 𝑏(𝑞
1
(𝑡) + 𝑞

2
(𝑡)) − (𝑏 + 2𝑒

𝑖
)𝑞
𝑖
(𝑡) − 𝑑

𝑖
= 0, 𝑖 = 1 or 2,

then

𝑎 − 𝑏 (𝑞
min
1

+ 𝑞
min
2

) − (𝑏 + 2𝑒
𝑖
) 𝑞

min
𝑖

− 𝑑
𝑖
> 0,

𝑖 = 1 or 2,
(33)

which is impossible. Hence if there is an equation in

𝑎 − 𝑏 (𝑞
1 (
𝑡) + 𝑞2 (

𝑡)) − (𝑏 + 2𝑒𝑖
) 𝑞
𝑖 (
𝑡) − 𝑑𝑖

≤ 0,

𝑖 = 1, 2.

(34)

then 𝑞
𝑖
(𝑡) = 𝑞

min
𝑖

, 𝑖 = 1, 2.
If 𝑎− 𝑏(𝑞

1
(𝑡) + 𝑞

2
(𝑡)) − (𝑏 + 2𝑒

𝑖
)𝑞
𝑖
(𝑡) − 𝑑

𝑖
< 0, 𝑖 = 1 and 2,

according to condition (a), condition (b), and the map (23),
we can obtain two series 𝑞

1
(𝑡) and 𝑞

2
(𝑡) (𝑡 = 0, 1, 2, . . .,) which

descend monotonously and have lower bound 𝑞min
1

and 𝑞min
2

,
respectively. Therefore, they have limits when 𝑡 → +∞. We
assume that the limits are 𝑞𝑙

𝑖0
, 𝑖 = 1, 2, then 𝑞𝑙

𝑖0
≥ 𝑞

min
𝑖

, 𝑖 = 1, 2.
When there is an inequality at least in 𝑞𝑙

𝑖0
≥ 𝑞

min
𝑖

, 𝑖 = 1, 2, we
assume that 𝑞𝑙

10
> 𝑞

min
1

and 𝑞𝑙
11
is the image of 𝑞𝑙

10
following

the map (23). Note that

𝑎− 𝑏 (𝑞
𝑙

10
(𝑡) + 𝑞

𝑙

20
(𝑡)) − (𝑏 + 2𝑒𝑖

) 𝑞
𝑙

𝑖0
(𝑡) − 𝑑𝑖

< 0,

𝑖 = 1, 2.

(35)

Then 𝑞𝑙
11
< 𝑞
𝑙

10
, which is a conflict with the fact that 𝑞𝑙

10
is

the limit of series 𝑞
1
(𝑡).

Hence, 𝑞
𝑖
(𝑡) → 𝑞

min
𝑖

, 𝑖 = 1, 2. We can know that
Theorem 3 is true.

The global stability of 𝐹
3
indicates that when lower

limiters increase to a certain extent, chaotic state of the output
game disappears. In real business world, firms may suppress
chaos and reduce volatility of output and profit by imposing
lower limiter.

Considering the symmetry of the system (23), and condi-
tional equilibrium points 𝐹

1
and 𝐹

2
, we only need to discuss

the stability of𝐹
1
. It is very difficult to infer the stable region of

𝐹
1
. Here, we use numerical experiment to show the impact of

lower limiters on regions of stability of 𝐹
1
, which is illustrated

in Figure 3. The parameter setting is in Figure 1(d). Figure 3
displays that magnitudes of lower limiters and size of initial
output all have great influence on stability of 𝐹

1
. As initial

output lessens, the stable region of 𝐹
1
reduces.

In Figures 3(a) and 3(c), scope of 𝛼
1
is drawn partly. In

fact, we have the following theorem illustrating this.

Theorem 4. In the plane of the speeds of adjustment (𝛼
1
, 𝛼
2
),

when initial output of the 𝑖 = second firm satisfies 𝑞
2
(0) ≥ (𝑎 −

(2𝑏 + 2𝑒
1
)𝑞

min
1

− 𝑑
1
)/𝑏, the scope of 𝛼

1
in the stable region of

conditional equilibrium 𝐹
1
of the system (23) is 𝛼

1
> 0.
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Figure 3: The stable region of conditional equilibrium 𝐹
1
of the system (23).

Proof. Because 𝑞min
1

> 𝑞
∗

1
= ((𝑎 − 𝑑

1
)(2𝑏 + 2𝑒

2
) − 𝑏(𝑎 −

𝑑
2
))/(3𝑏

2
+ 4𝑏𝑒
1
+ 4𝑏𝑒
2
+ 4𝑒
1
𝑒
2
), so

𝑎 − 𝑏𝑞
min
1

− 𝑑
2

2𝑏 + 2𝑒
2

>

𝑎 − (2𝑏 + 2𝑒
1
) 𝑞

min
1

− 𝑑
1

𝑏

. (36)

Note that the trajectories of output converge to (𝑞min
1

, (𝑎−

𝑏𝑞
min
1

−𝑑
2
)/(2𝑏 + 2𝑒

2
)). If 𝑞

2
(0) ≥ (𝑎 − (2𝑏 + 2𝑒

1
)𝑞

min
1

−𝑑
1
)/𝑏,

as long as the speed of adjustment of the 𝑖 = second firm, 𝛼
2

is small enough, after finite iterative time, we can obtain

𝑞
2 (
𝑡) >

𝑎 − (2𝑏 + 2𝑒
1
) 𝑞

min
1

− 𝑑
1

𝑏

. (37)

That is to say, 𝑎 − (2𝑏 + 2𝑒
1
)𝑞

min
1

− 𝑏𝑞
2
(𝑡) − 𝑑

1
< 0.

Note that 𝑞
1
(𝑡) ≥ 𝑞

min
1

. Therefore, given 𝛼
1
> 0 at will, we

have

𝑎 − (2𝑏 + 2𝑒
1
) 𝑞
1 (
𝑡) − 𝑏𝑞2 (

𝑡) − 𝑑1
< 0. (38)

According to the system (23), we can obtain a series of
𝑞
1
(𝑡) (𝑡 = 0, 1, 2, . . . , ) which descend monotonously and

have lower bound 𝑞min
1

except initial finite terms. Thus, they
have limit when 𝑡 → +∞. We assume that the limit is 𝑞𝑙

10
;

then 𝑞𝑙
10
≥ 𝑞

min
1

. If 𝑞𝑙
10
> 𝑞

min
1

, we assume that 𝑞𝑙
11
is the image

of 𝑞𝑙
10
following the map (23). Note that

𝑎 − 𝑏 (𝑞
𝑙

10
(𝑡) + 𝑞2 (

𝑡)) − (𝑏 + 2𝑒1
) 𝑞
𝑙

10
(𝑡) − 𝑑1

< 0. (39)

Then 𝑞𝑙
11

< 𝑞
𝑙

10
, which is a conflict with the fact that 𝑞𝑙

10
is

the limit of series 𝑞
1
(𝑡). Hence, 𝑞𝑙

10
= 𝑞

min
1

. That is to say, if
𝑞
2
(0) ≥ (𝑎 − (2𝑏 + 2𝑒

1
)𝑞

min
1

− 𝑑
1
)/𝑏, the speed of adjustment

of the 𝑖 = first firm has no effect on the stability of conditional
equilibrium 𝐹

1
. The proof is complete.

By the same way, we can obtain the following.

Theorem 5. In the plane of the speeds of adjustment (𝛼
1
, 𝛼
2
),

when initial output of the 𝑖 = first firm satisfies 𝑞
1
(0) ≥ (𝑎 −
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Figure 4: Bifurcation diagrams of the system (23) with output lower limiters (𝑞
min
1
, 𝑞

min
2
) = (0.4, 0.6), at parameter values

(𝑎, 𝑏, 𝑐
1
, 𝑐
2
, 𝑑
1
, 𝑑
2
, 𝑒
1
, 𝑒
2
, 𝑟, 𝛼
1
, ) = (10, 1, 1.1, 1, 1, 1, 1, 1.1, 0.3, 0.1).
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Figure 5: The strange attractor of the system (23) with out-
put lower limiters (𝑞min

1
, 𝑞

min
2
) = (0.4, 0.6), at parameter values

(𝑎, 𝑏, 𝑑
1
, 𝑑
2
, 𝑒
1
, 𝑒
2
, 𝑟, 𝛼
1
, 𝛼
2
) = (10, 1, 1, 1, 1, 1.1, 0.3, 0.1, 0.54).

(2𝑏 + 2𝑒
2
)𝑞

min
2

− 𝑑
2
)/𝑏, the scope of 𝛼

2
in the stable region of

conditional equilibrium 𝐹
2
of the system (23) is 𝛼

2
> 0.

3.3. Numerical Simulation. Numerical experiments are sim-
ulated to show the influence of lower limiters on the stability

of Nash equilibrium, which are based on the same parameter
setting as Figures 1(a) and 1(b).

Figure 4(a) reveals that the trajectories of output con-
verges to the Nash equilibrium when 𝛼

2
< 0.3901; for

𝛼
2

> 0.3901, the Nash equilibrium becomes unstable,
period doubling bifurcations appear, and chaotic behavior
occurs. However, the dynamics of themapwith lower limiters
(𝑞min
1

= 0.4, 𝑞min
2

= 0.6) is different from that of the map
without limiter. When 𝛼

2
> 0.6, the period behaviors come

forth again. Also the maximum Lyapunov exponent (lyap.)
is plotted, where positive values indicate that the system has
chaotic behaviors. Figure 4(b) based on the same parameter
setting shows the impact of lower limiters on the evolution of
profit. Comparing Figures 4(a) and 4(b) with Figures 1(a) and
1(b), respectively, we can see that imposing lower limiters can
reduce fluctuations of production and profit.

Figure 5 shows the influence of production limiters on
the strange attractor of the duopoly game. Comparing it with
Figure 4(c), we can find the difference between the attractor
of the system (6) and that of the system (23).

4. Conclusions

This paper is concerned with complex dynamics of duopoly
game without and with output lower limiters. We discussed
that if the behavior of producer is characterized by relatively
low speeds of adjustment, the local production adjustment
process without limiters converges to the unique Nash
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equilibrium. Complex behaviors such as cycles and chaos
occur for higher values of speeds of adjustment.

Furthermore, we investigate how output lower limiters,
which function identically to a recently explored chaos
control method: phase space compression, and the limiter
method, affect the output dynamics. The existence of Nash
equilibrium becomes conditional. The distribution of the
conditional equilibrium points is displayed in this paper,
and their relation with lower limiter is studied. It is funny
that the feasible region of conditional equilibrium points is
convex and Nash equilibrium is one of the vertices of the
region. We find that simple output lower limiters may (a)
reduce the fluctuation of production and profit; (b) make
chaos of the original duopoly game disappear; (c) help the
firms to avoid the explosion of the economic system. The
size of lower limiters and initial output also has relation with
the stable region of conditional equilibrium points 𝐹

1
and

𝐹
2
, and the relation is explored analytically and numerically.

The conditional equilibrium points (𝑞min
1

, 𝑞
min
2

) are globally
stable in the plane of speeds of adjustment. The stability of
the conditional points gives a theoretical basis for the phase
space compression and the limiter method to control chaos
in a special case.
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