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In 1991, Chen and Ishikawa initially studied biharmonicmarginally trapped surfaces in neutral pseudo-Euclidean 4-space. Recently,
biharmonic and quasi-biharmonic marginally trapped Lagrangian surfaces in Lorentzian complex space forms were studied by
Sasahara in 2007 and 2011, respectively. In this paper we extend Sasahara’s results to the case of slant surfaces in Lorentzian complex
space forms. By results, we completely classify biharmonic marginally trapped slant surfaces and quasi-biharmonic marginally
trapped slant surfaces in Lorentzian complex space forms.

1. Introduction

Let ̃

𝑀

𝑛

𝑖
(4𝑐) be a simply connected Lorentzian complex space

form of complex dimension 𝑛 and complex index 𝑖 (𝑖 ≥ 0),
where the complex index is defined as the complex dimension
of the largest complex negative definite subspace of the
tangent space. In particular, if 𝑖 = 1, we say that ̃

𝑀

𝑛

1
(4𝑐) is

Lorentzian. The curvature tensor ̃

𝑅 of ̃

𝑀

𝑛

𝑖
(4𝑐) is given by

̃

𝑅 (𝑋, 𝑌) 𝑍 = 𝑐 {⟨𝑌, 𝑍⟩ 𝑋 − ⟨𝑋, 𝑍⟩ 𝑌 + ⟨𝐽𝑌, 𝑍⟩ 𝐽𝑋

− ⟨𝐽𝑋, 𝑍⟩ 𝐽𝑌 + 2 ⟨𝑋, 𝐽𝑌⟩ 𝐽𝑍} .

(1)

LetC𝑛 denote the complex number 𝑛-space with complex
coordinates 𝑧

1
, . . . , 𝑧

𝑛
. The C𝑛 endowed with 𝑔

𝑠,𝑛
, that is, the

real part of the Hermitian form

𝑏

𝑠,𝑛
(𝑧, 𝜔) = −

𝑠

∑

𝑘=1

𝑧

𝑘
𝜔

𝑘
+

𝑛

∑

𝑗=𝑠+1

𝑧

𝑗
𝜔

𝑗
, 𝑧, 𝜔 ∈ C

𝑛

, (2)

defines a flat indefinite complex space form with complex
index 𝑠. Denote the pair (C𝑛

, 𝑔

𝑠,𝑛
) by C𝑛

𝑠
briefly, which is the

flat Lorentzian complex 𝑛-space. In particular, C2

1
is the flat

Lorentzian complex plane.
Let us consider the differentiable manifold:

𝑆

2𝑛+1

2
(𝑐) = {𝑧 ∈ C

𝑛+1

1
; 𝑏

1,𝑛+1
(𝑧, 𝑧) = 𝑐

−1

> 0} , (3)

which is an indefinite real space form of constant sectional
curvature 𝑐. The Hopf fibration

𝜋 : 𝑆

2𝑛+1

2
(𝑐) → 𝐶𝑃

𝑛

1
(4𝑐) : 𝑧 → 𝑧 ⋅ C

∗ (4)

is a submersion and there exists a unique pseudo-Riemannian
matrix of complex index one on 𝐶𝑃

𝑛

1
(4𝑐) such that 𝜋 is a

Riemannian submersion.
The pseudo-Riemannian manifold 𝐶𝑃

𝑛

1
(4𝑐) is a

Lorentzian complex space form of positive holomorphic
sectional curvature 4𝑐.

Analogously, if 𝑐 < 0, consider

𝐻

2𝑛+1

2
(𝑐) = {𝑧 ∈ C

𝑛+1

2
; 𝑏

1,𝑛+1
(𝑧, 𝑧) = 𝑐

−1

< 0} , (5)

which is an indefinite real space form of constant sectional
curvature 𝑐. The Hopf fibration

𝜋 : 𝐻

2𝑛+1

2
(𝑐) → 𝐶𝐻

𝑛

1
(4𝑐) : 𝑧 → 𝑧 ⋅ C

∗ (6)

is a submersion and there exists a unique pseudo-Riemannian
matrix of complex index one on 𝐶𝐻

𝑛

1
(4𝑐) such that 𝜋 is a

Riemannian submersion.
The pseudo-Riemannian manifold 𝐶𝐻

𝑛

1
(4𝑐) is a

Lorentzian complex space form of negative holomorphic
sectional curvature 4𝑐.

It is well known that a complete simply connected
complex space form ̃

𝑀

𝑛

𝑖
(4𝑐) is holomorphic isometric to C𝑛

1
,
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𝐶𝑃

𝑛

1
(4𝑐), or 𝐶𝐻

𝑛

1
(4𝑐), according to 𝑐 = 0, 𝑐 > 0, or 𝑐 < 0,

respectively.
A real surface in a Kähler surface with almost complex

structure 𝐽 is called slant if its Wirtinger angle is constant
(see [1–3]). From 𝐽-action point of views, slant surfaces are
the simplest and the most natural surfaces of a Lorentzian
Kähler surface (

̃

𝑀, �̃�, 𝐽). It should be pointed out that slant
surfaces arise naturally and play important roles in the studies
of surfaces of Kähler surfaces in the complex space forms; see
[4].

In last years, the geometry of Lorentzian surfaces in
Lorentzian complex space forms has been studied by a
series of papers given by Chen and other geometers, for
instance, [1, 3, 5–13]. Lorentzian geometry is a vivid field
of mathematical research that represents the mathematical
foundation of the general theory of relativity—which is
probably one of the most successful and beautiful theories
of physics. For Lorentzian surfaces immersed in Lorentzian
complex space forms, Chen [7] proved that Ricci equation
is a consequence of Gauss and Codazzi equations, which
indicates that Lorentzian surfaces in Lorentzian complex
space forms have many interesting properties.

During the last decade, the theory of biharmonic sub-
manifolds has advanced greatly. By definition, a submanifold
is called biharmonic if the bitension field of the isometric
immersion defining the submanifold vanishes identically.
There are a lot classification results and nonexistence results,
(see, e.g., [4, 14, 15]). Recently, Sasahara introduces the notion
of quasi-biharmonic submanifold in [16], which is defined
with the property that the bitension field of the isometric
immersion defining the submanifold is lightlike at each
point. It is shown in [16] that the class of quasi-biharmonic
submanifolds is quite different from the class of biharmonic
submanifolds.

A surface of a pseudo-Riemannian manifold is called
marginally trapped (or quasiminimal) if its mean curvature
vector field is lightlike. In the theory of cosmic black holes, a
marginally trapped surface in a space-time plays an extremely
important role. From the viewpoint of differential geometry,
some classification results on marginally trapped surfaces
have been obtained by some geometers (see [1, 3, 9–12]). In
particular, Chen and Dillen [9] gave a complete classification
of marginally trapped Lagrangian surfaces in Lorentzian
complex space forms.

In this paper, we investigate the bitension field of mar-
ginally trapped slant surfaces in Lorentzian complex space
forms. In particular, we completely classify biharmonic
marginally trapped slant surfaces and quasi-biharmonic
marginally trapped slant surfaces in Lorentzian complex
space forms, respectively (seeTheorems 12 and 13). Our clas-
sification results extend Sasahara’s results from Lagrangian
case to the slant case in Lorentzian complex space forms.

2. Preliminaries

2.1. Basic Notation, Formulas, and Definitions. Let 𝑀 be
a Lorentzian surface of a Lorentzian Kähler surface ̃

𝑀

2

1

equipped with an almost structure 𝐽 and metric �̃�. Let ⟨, ⟩

denote the inner product associated with �̃�.
We denote the Levi-Civita connections of𝑀 and ̃

𝑀

2

1
by∇

and ̃

∇, respectively. Gauss formula and Weingarten formula
are given, respectively, by (see [1, 2])

̃

∇

𝑋
𝑌 = ∇

𝑋
𝑌 + ℎ (𝑋, 𝑌) , (7)

̃

∇

𝑋
𝜉 = −𝐴

𝜉
𝑋 + 𝐷

𝑋
𝜉, (8)

for vector fields 𝑋, 𝑌 tangent to 𝑀 and 𝜉 normal to 𝑀, where
ℎ, 𝐴, and 𝐷 are the second fundamental form, the shape
operator, and the normal connection. It is well known that
the second fundamental form ℎ and the shape operator 𝐴 are
related by

⟨ℎ (𝑋, 𝑌) , 𝜉⟩ = ⟨𝐴

𝜉
𝑋, 𝑌⟩ , (9)

for 𝑋, 𝑌 tangent to 𝑀 and 𝜉 normal to 𝑀.
A vector V is called spacelike (timelike) if ⟨V, V⟩ > 0 or

⟨V, V⟩ = 0(⟨V, V⟩ < 0). A vector V is called lightlike if it is
nonzero and it satisfies ⟨V, V⟩ = 0.

We define the light coneLC ⊂ C2

1
by {𝑤 ∈ C2

1
| ⟨𝑤, 𝑤⟩ =

0}. A curve 𝑤(𝑡) is called null if 𝑤

 is lightlike for any 𝑡.
For each normal vector 𝜉 of 𝑀 at 𝑥 ∈ 𝑀, the shape

operator 𝐴

𝜉
is a symmetric endomorphism of the tangent

space 𝑇

𝑥
𝑀. The mean curvature vector is defined by

𝐻 =

1

2

trace ℎ. (10)

A Lorentzian surface 𝑀 in ̃

𝑀

2

1
is called minimal if its mean

curvature vector 𝐻 vanishes at each point on 𝑀. And a
Lorentzian surface 𝑀 in ̃

𝑀

2

1
is called marginally trapped (or

quasiminimal) if its mean curvature vector is lightlike at each
point on 𝑀.

For a Lorentzian surface𝑀 in a Lorentzian complex space
form ̃

𝑀

2

1
, the Gauss and Codazzi and Ricci equations are

given, respectively, by

⟨𝑅 (𝑋, 𝑌) 𝑍, 𝑊⟩ = ⟨

̃

𝑅 (𝑋, 𝑌) 𝑍, 𝑊⟩

+ ⟨ℎ (𝑌, 𝑍) , ℎ (𝑋, 𝑊)⟩

− ⟨ℎ (𝑋, 𝑍) , ℎ (𝑌, 𝑊)⟩,

(

̃

𝑅 (𝑋, 𝑌) 𝑍)

⊥

= (∇ℎ) (𝑋, 𝑌, 𝑍) − (∇ℎ) (𝑌, 𝑋, 𝑍) ,

⟨𝑅

𝐷

(𝑋, 𝑌) 𝜉, 𝜂⟩ = ⟨𝑅 (𝑋, 𝑌) 𝜉, 𝜂⟩

+ ⟨[𝐴

𝜉
, 𝐴

𝜂
] 𝑋, 𝑌⟩ ,

(11)

where 𝑋, 𝑌, 𝑍, and 𝑊 are vectors tangent to 𝑀 and ∇ℎ is
defined by

(∇ℎ) (𝑋, 𝑌, 𝑍) = 𝐷

𝑋
ℎ (𝑌, 𝑍) − ℎ (∇

𝑋
𝑌, 𝑍) − ℎ (𝑌, ∇

𝑋
𝑍) .

(12)
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2.2. Bitension Field. For smooth maps 𝜙 : (𝑀

𝑛

, 𝑔) → (

̃

𝑀

𝑚,
⟨, ⟩), the tension field 𝜏(𝜙) is a section of the vector bun-
dle 𝜙

∗

𝑇

̃

𝑀 defined by

𝜏 (𝜙) = trace∇d𝜙 =

𝑛

∑

𝑖=1

⟨𝑒

𝑖
, 𝑒

𝑖
⟩ {∇

𝜙

𝑒𝑖

𝑑𝜙 (𝑒

𝑖
) − 𝑑𝜙 (∇

𝑒𝑖
𝑒

𝑖
)} ,

(13)

where ∇

𝜙 is the induced connection by 𝜙 on the bundle
𝜙

∗

𝑇

̃

𝑀, which is the pullback of ̃

∇. If 𝜙 is an isometric
immersion, then 𝜏(𝜙) and the mean curvature vector field 𝐻

of 𝑀 are related by
𝜏 (𝜙) = 𝑛𝐻. (14)

If 𝜏(𝜙) = 0 at each point on 𝑀, then 𝜙 is called a harmonic
map. The harmonic maps between two Riemannian mani-
folds are critical points of the energy functional

𝐸 (𝜙) =

1

2

∫

𝑀









𝑑𝜙









2

V
𝑔
, (15)

for smooth maps 𝜙 : (𝑀

𝑛

, 𝑔) → (

̃

𝑀

𝑚

, ⟨, ⟩).
The bitension field is defined by

𝜏

2
(𝜙) =

𝑛

∑

𝑖=1

⟨𝑒

𝑖
, 𝑒

𝑖
⟩ {(∇

𝜙

𝑒𝑖

∇

𝜙

𝑒𝑖

− ∇

𝜙

∇𝑒𝑖
𝑒𝑖

) 𝜏

+ 𝑅

𝑁

(𝜏, 𝑑𝜙 (𝑒

𝑖
)) 𝑑𝜙 (𝑒

𝑖
) } ,

(16)

where 𝑅

�̃� is the curvature tensor of ̃

𝑀.
If𝜙 is an isometric immersion and ̃

𝑀 is the complex space
form ̃

𝑀

𝑛

𝑖
(4𝑐), it follows from (1), (14), and (16) that

𝜏

2
(𝜙) = −𝑛Δ𝐻 + 5𝑛𝑐𝐻, (17)

where Δ = − ∑

𝑛

𝑖=1
⟨𝑒

𝑖
, 𝑒

𝑖
⟩(

̃

∇

𝑒𝑖

̃

∇

𝑒𝑖
−

̃

∇

∇𝑒𝑖
𝑒𝑖

).
A smooth map 𝜙 is called biharmonic if 𝜏

2
(𝜙) = 0 at each

point on 𝑀. It is easy to see that harmonic maps are always
biharmonic.

Biharmonic maps 𝜙 : (𝑀

𝑛

, 𝑔) → (

̃

𝑀

𝑚

, ⟨, ⟩) between
Riemannian manifolds are critical points of the bienergy
functional

𝐸

2
(𝜙) =

1

2

∫

𝑀









𝜏 (𝜙)









2

V
𝑔
. (18)

Sasahara proposed the notion of quasi-biharmonic subman-
ifolds as follows.

Definition 1. A pseudo-Riemannian submanifold isometri-
cally immersed in a pseudo-Riemannian manifold by 𝜙 is
called quasi-biharmonic if 𝜏

2
is lightlike at each point on the

submanifold.

3. Basic Results on Lorentzian Slant Surfaces

Let 𝑀 be a Lorentzian surface in a Lorentzian Kähler surface
(

̃

𝑀

2

1
, 𝑔, 𝐽). For each tangent vector 𝑋 of 𝑀, we put

𝐽𝑋 = 𝑃𝑋 + 𝐹𝑋, (19)

where 𝑃𝑋 and 𝐹𝑋 are the tangential and the normal compo-
nents of 𝐽𝑋.

On the Lorentzian surface 𝑀 there exists a pseudoor-
thonormal local frame {𝑒

1
, 𝑒

2
} such that

⟨𝑒

1
, 𝑒

1
⟩ = ⟨𝑒

2
, 𝑒

2
⟩ = 0, ⟨𝑒

1
, 𝑒

2
⟩ = −1. (20)

It follows from (19), (20), and ⟨𝐽𝑋, 𝐽𝑌⟩ = ⟨𝑋, 𝑌⟩ that

𝑃𝑒

1
= (sinh 𝜃) 𝑒

1
, 𝑃𝑒

2
= − (sinh 𝜃) 𝑒

2
, (21)

for some function 𝜃. This function 𝜃 is called the Wirtinger
angle of 𝑀.

When the Wirtinger angle 𝜃 is constant on 𝑀, the
Lorentzian surface 𝑀 is called a slant surface (cf. [2, 3]). In
this case, 𝜃 is called the slant angle; the slant surface is then
called 𝜃-slant.

A 𝜃-slant surface is called Lagrangian if 𝜃 = 0 and proper
slant if 𝜃 ̸= 0.

If we put

𝑒

3
= (sech 𝜃) 𝐹𝑒

1
, 𝑒

4
= (sech 𝜃) 𝐹𝑒

2
, (22)

then we find from (19)–(22) that

𝐽𝑒

1
= sinh 𝜃𝑒

1
+ cosh 𝜃𝑒

3
, 𝐽𝑒

2
= − sinh 𝜃𝑒

2
+ cosh 𝜃𝑒

4
,

(23)

𝐽𝑒

3
=− cosh 𝜃𝑒

1
−sinh 𝜃𝑒

3
, 𝐽𝑒

4
=− cosh 𝜃𝑒

2
+sinh 𝜃𝑒

4
,

(24)

⟨𝑒

3
, 𝑒

3
⟩ = ⟨𝑒

4
, 𝑒

4
⟩ = 0, ⟨𝑒

3
, 𝑒

4
⟩ = −1. (25)

We call such a frame {𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
} an adapted pseu-

doorthonormal frame for the Lorentzian surface 𝑀 in ̃

𝑀

2

1
.

Lemma 2. If 𝑀 is a slant surface in a Lorentzian Kähler sur-
face ̃

𝑀

2

1
, then with respect to an adapted pseudoorthonormal

frame one has

∇

𝑋
𝑒

1
= 𝜔 (𝑋) 𝑒

1
, ∇

𝑋
𝑒

2
= −𝜔 (𝑋) 𝑒

2
, (26)

𝐷

𝑋
𝑒

3
= Φ (𝑋) 𝑒

3
, 𝐷

𝑋
𝑒

4
= −Φ (𝑋) 𝑒

4
, (27)

for some 1-forms 𝜔, Φ on 𝑀.

For a Lorentzian surface 𝑀 in ̃

𝑀

2

1
, we put

ℎ (𝑒

𝑖
, 𝑒

𝑗
) = ℎ

3

𝑖𝑗
𝑒

3
+ ℎ

4

𝑖𝑗
𝑒

4
, (28)

where {𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
} is an adapted pseudoorthonormal frame

and ℎ is the second fundamental form of 𝑀.

Lemma 3 (see [3]). If 𝑀 is a 𝜃-slant surface in a Lorentzian
Kähler surface ̃

𝑀

2

1
, then with respect to an adapted pseu-

doorthonormal frame one has

𝜔

𝑗
− Φ

𝑗
= 2ℎ

3

1𝑗
tanh 𝜃,

𝐴

𝐹𝑋
𝑌 = 𝐴

𝐹𝑌
𝑋,

𝐴

𝑒3
𝑒

𝑗
= ℎ

3

1𝑗
𝑒

1
+ ℎ

4

1𝑗
𝑒

2
, 𝐴

𝑒4
𝑒

𝑗
= ℎ

3

𝑗2
𝑒

1
+ ℎ

4

𝑗2
𝑒

2
,

(29)

for any 𝑋, 𝑌 ∈ 𝑇𝑀 and 𝑗 = 1, 2, where 𝜔

𝑗
= 𝜔(𝑒

𝑗
) and Φ

𝑗
=

Φ(𝑒

𝑗
).
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For Lorentzian slant surfaces in ̃

𝑀

2

1
(4𝑐), the author with

Hou has proved the following interesting result.

Theorem 4 (see [17]). Every slant surface in a nonflat Lor-
entzian complex space form ̃

𝑀

2

1
(4𝑐) must be Lagrangian.

According to Theorem 4, we need only to consider the
slant surfaces in Lorentzian complex plane C2

1
because the

case of Lagrangian marginally trapped surfaces has been
considered in [16, 18].

4. The Bitension Field of Marginally Trapped
Slant Surfaces

Let 𝑀 be a 𝜃-slant marginally trapped surface in a Lorentzian
complex planeC2

1
. There is a pseudoorthonormal local frame

field {�̂�

1
, �̂�

2
} such that

⟨�̂�

1
, �̂�

1
⟩ = ⟨�̂�

2
, �̂�

2
⟩ = 0, ⟨�̂�

1
, �̂�

2
⟩ = −1,

𝐻 = −ℎ (�̂�

1
, �̂�

2
) .

(30)

Since the mean curvature vector 𝐻 is lightlike at each point,
we put ℎ(�̂�

1
, �̂�

2
) = 𝛼𝐹�̂�

1
for some nonzero real-valued

function 𝛼. By putting 𝑒

1
= 𝛼�̂�

1
, 𝑒

2
= 𝛼

−1

�̂�

2
, we have

⟨𝑒

1
, 𝑒

1
⟩ = ⟨𝑒

2
, 𝑒

2
⟩ = 0, ⟨𝑒

1
, 𝑒

2
⟩ = −1, (31)

ℎ (𝑒

1
, 𝑒

2
) = 𝐹𝑒

1
. (32)

By applying (20) and the total symmetry of ⟨ℎ(𝑋, 𝑌), 𝐹𝑍⟩, we
obtain

ℎ (𝑒

1
, 𝑒

1
) = 𝜆𝐹𝑒

2
, ℎ (𝑒

1
, 𝑒

2
) = 𝐹𝑒

1
,

ℎ (𝑒

2
, 𝑒

2
) = 𝛾𝐹𝑒

1
+ 𝐹𝑒

2
,

(33)

for two smooth functions 𝜆, 𝛾. It follows from (9), (22), (25),
and (33) that

𝐴

𝐹𝑒1
= cosh2 𝜃 (

0 1

𝜆 0

) , 𝐴

𝐹𝑒2
= cosh2 𝜃 (

1 𝛾

0 1

) . (34)

By Lemma 2, (33), and differentiating the second fundamen-
tal form covariantly, we get

(∇

𝑒2
ℎ) (𝑒

1
, 𝑒

1
) = 𝑒

2
(𝜆) 𝐹𝑒

2
− 𝜆Φ

2
𝐹𝑒

2
− 2𝜔

2
𝜆𝐹𝑒

2
,

(∇

𝑒1
ℎ) (𝑒

1
, 𝑒

2
) = Φ

1
𝐹𝑒

1
,

(∇

𝑒2
ℎ) (𝑒

1
, 𝑒

2
) = Φ

2
𝐹𝑒

1
,

(∇

𝑒1
ℎ) (𝑒

2
, 𝑒

2
) = 𝑒

1
(𝛾) 𝐹𝑒

1
+ 𝛾Φ

1
𝐹𝑒

1
− Φ

1
𝐹𝑒

2

+ 2𝜔

1
𝛾𝐹𝑒

1
+ 2𝜔

1
𝐹𝑒

2
.

(35)

By the Codazzi equation, comparing coefficients gives

𝜔

1
= Φ

1
= 0, 𝑒

2
(𝜆) − 𝜆Φ

2
− 2𝜔

2
𝜆 = 0,

𝑒

1
(𝛾) − Φ

2
= 0.

(36)

On the other hand, from Lemma 3 and (33) we have

𝜔

2
− Φ

2
= 2 sinh 𝜃. (37)

Consequently, (36) becomes

𝜔

1
= 0, 𝑒

2
(𝜆) = 3𝜔

2
𝜆 − 2 sinh 𝜃𝜆,

𝑒

1
(𝛾) = 𝜔

2
− 2 sinh 𝜃.

(38)

In order to express the bitension field of marginally trapped
slant surfaces in C2

1
with respect to a pseudoorthonormal

frame (31), we need the following formula (cf. [1, 18]):

Δ𝐻 = Δ

𝐷

𝐻 − ℎ (𝑒

1
, 𝐴

𝐻
𝑒

2
) − ℎ (𝑒

2
, 𝐴

𝐻
𝑒

1
)

− 𝐴

𝐷𝑒1
𝐻

𝑒

2
− 𝐴

𝐷𝑒2
𝐻

𝑒

1
− (∇

𝑒1
𝐴

𝐻
) 𝑒

2
− (∇

𝑒2
𝐴

𝐻
) 𝑒

1
,

(39)

where Δ and Δ

𝐷 are, respectively, given by

Δ =

̃

∇

𝑒1

̃

∇

𝑒2
+

̃

∇

𝑒2

̃

∇

𝑒1
−

̃

∇

∇𝑒1
𝑒2

−

̃

∇

∇𝑒2
𝑒1

,

Δ

𝐷

= 𝐷

𝑒1
𝐷

𝑒2
+ 𝐷

𝑒2
𝐷

𝑒1
− 𝐷

∇𝑒1
𝑒2

− 𝐷

∇𝑒2
𝑒1

.

(40)

Lemma 5. Let 𝑀 be a marginally trapped slant surface in C2

1
.

Then, the Gauss curvatures 𝐾 and Δ

𝐷

𝐻 are related by

Δ

𝐷

𝐻 = −𝐾𝐻. (41)

Proof. It follows from (33) that the mean curvature vector 𝐻

is given by 𝐻 = −𝐹𝑒

1
. By (22), (26), (27), (36), and (37), we

have

𝐷

𝑒1
𝐷

𝑒2
𝐻 = −𝑒

1
(Φ

2
) 𝐹𝑒

1
= −𝑒

1
(𝜔

2
) 𝐹𝑒

1
,

𝐷

𝑒2
𝐷

𝑒1
𝐻 = 𝐷

∇𝑒1
𝑒2

𝐻 = 𝐷

∇𝑒2
𝑒1

𝐻 = 0.

(42)

Consequently, we obtain

Δ

𝐷

𝐻 = −𝑒

1
(𝜔

2
) 𝐹𝑒

1
. (43)

Recall the definition of the Gauss curvature 𝐾 =

−⟨𝑅(𝑒

1
, 𝑒

2
)𝑒

2
, 𝑒

1
⟩. It follows from Lemma 2 and 𝜔

1
= 0

that

𝐾 = −𝑒

1
(𝜔

2
) , (44)

which completes the proof of Lemma 5.

Remark 6. For marginally trapped Lagrangian surfaces
immersed into Lorentzian complex space forms, Sasahara
[15] has proved the formula Δ

𝐷

𝐻 = −𝐾𝐻. Hence, we know
from Lemma 5 that the formula Δ

𝐷

𝐻 = −𝐾𝐻 also holds for
slant surfaces in Lorentzian complex space forms.

Lemma 7. Let 𝑀 be a marginally trapped slant surface in C2

1
.

Then, the normal part of Δ𝐻 is expressed as

(Δ𝐻)

⊥

= 2 cosh2 𝜃𝜆 (𝛾𝐹𝑒

1
+ 𝐹𝑒

2
) . (45)
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Proof. On one hand, it follows from (34) that

𝐴

𝐻
𝑒

2
= −cosh2 𝜃𝑒

1
, 𝐴

𝐻
𝑒

1
= −cosh2 𝜃𝜆𝑒

2
. (46)

Combining (46) with (33) gives

ℎ (𝑒

1
, 𝐴

𝐻
𝑒

2
) + ℎ (𝑒

2
, 𝐴

𝐻
𝑒

1
) = −cosh2 𝜃 (𝜆𝛾𝐹𝑒

1
+ 2𝜆𝐹𝑒

2
) .

(47)

On the other hand, it follows from (33) and the Gauss
equation that the Gauss curvature is given by

𝐾 = cosh2 𝜃𝜆𝛾. (48)

By Lemma 5, we have Δ

𝐷

𝐻 = cosh2 𝜃𝜆𝛾𝐹𝑒

1
. Combining

these with the first section of (39) completes the proof.

Lemma 8. Let 𝑀 be a marginally trapped slant surface in C2

1
.

Then, the tangential part of Δ𝐻 is expressed as

(Δ𝐻)

⊤

= cosh2 𝜃 (𝑒

2
(𝜆) − 𝜆𝜔

2
− 2𝜆 sinh 𝜃) 𝑒

2
. (49)

Proof. By (27), (36), and (46), we obtain

−𝐴

𝐷𝑒1
𝐻

𝑒

2
− 𝐴

𝐷𝑒2
𝐻

𝑒

1
= −Φ

2
𝐴

𝐻
𝑒

1
= cosh2 𝜃Φ

2
𝜆𝑒

2
. (50)

It follows from (26), (38), and (46) that

(∇

𝑒1
𝐴

𝐻
) 𝑒

2
= ∇

𝑒1
(𝐴

𝐻
𝑒

2
) − 𝐴

𝐻
(∇

𝑒1
𝑒

2
)

= −2 cosh2 𝜃𝜔

1
𝑒

1
= 0,

(∇

𝑒2
𝐴

𝐻
) 𝑒

1
= ∇

𝑒2
(𝐴

𝐻
𝑒

1
) − 𝐴

𝐻
(∇

𝑒2
𝑒

1
)

= −cosh2 𝜃 (𝑒

2
(𝜆) − 2𝜆𝜔

2
) 𝑒

2
.

(51)

Combing (50)-(51) with (37) gives the conclusion.

Hence, by (17) and Lemmas 7 and 8, we get the expression
of the bitension field of marginally trapped slant surfaces in
Lorentzian complex plane C2

1
.

Lemma 9. Let 𝜙 : 𝑀 → C2

1
be a marginally trapped slant

immersed in C2

1
. Then the bitension field is given by

𝜏

2
(𝜙) = − 2 cosh2 𝜃 (𝑒

2
(𝜆) − 𝜆𝜔

2
− 2𝜆 sinh 𝜃) 𝑒

2

− 4 cosh2 𝜃𝜆 (𝛾𝐹𝑒

1
+ 𝐹𝑒

2
) .

(52)

5. Classification Results

From now on, let us consider the biharmonic and quasi-
biharmonic Marginally trapped slant surfaces in Lorentzian
complex plane C2

1
.

By the definition of biharmonic surfaces, we can conclude
the following from Lemma 9.

Lemma 10. Let 𝜙 : 𝑀 → C2

1
be a marginally trapped slant

immersed inC2

1
. Then the immersion is biharmonic if and only

if the function 𝜆 satisfies 𝜆 = 0.

Similarly, by the definition of quasi-biharmonic subman-
ifolds, the bitension field 𝜏

2
(𝜙) is lightlike. Therefore, we also

have the following.

Lemma 11. Let 𝜙 : 𝑀 → C2

1
be a marginally trapped slant

immersed in C2

1
. Then the immersion is quasi-biharmonic if

and only if the functions 𝜆 and 𝛾 satisfy 𝜆 ̸= 0 and 𝛾 = 0.

Since the Gauss curvature 𝐾 is given by (48), we deduce
from Lemmas 10 and 11 that 𝐾 = 0 in both cases. Moreover,
(44) implies that 𝑒

1
(𝜔

2
) = 0.

We deduce from (26) and (38) that [𝑒

1
, 𝑒

2
] = −𝜔

2
𝑒

1
.There

is a nonzero smooth function 𝛽 satisfying

𝑒

2
(𝛽) + 𝛽𝜔

2
= 0, (53)

such that [𝛽𝑒

1
, 𝑒

2
] = 0. Thus, there exist local coordinates

(𝑥, 𝑦) on 𝑀 such that 𝜕/𝜕𝑥 = 𝛽𝑒

1
and 𝜕/𝜕𝑦 = 𝑒

2
. Then the

metric tensor of 𝑀 is given by

𝑔 = −𝛽 (𝑑𝑥 ⊗ 𝑑𝑦 + 𝑑𝑦 ⊗ 𝑑𝑥) , (54)

and the Levi-Civita connection of 𝑔 satisfies

∇

𝜕/𝜕𝑥

𝜕

𝜕𝑥

=

𝛽

𝑥

𝛽

𝜕

𝜕𝑥

, ∇

𝜕/𝜕𝑥

𝜕

𝜕𝑦

= 0, ∇

𝜕/𝜕𝑦

𝜕

𝜕𝑦

=

𝛽

𝑦

𝛽

𝜕

𝜕𝑦

.

(55)

Moreover, it follows from (33) and (54) that

ℎ (

𝜕

𝜕𝑥

,

𝜕

𝜕𝑥

) = 𝜆𝛽

2

𝐹

𝜕

𝜕𝑦

, ℎ (

𝜕

𝜕𝑥

,

𝜕

𝜕𝑦

) = 𝐹

𝜕

𝜕𝑥

,

ℎ (

𝜕

𝜕𝑦

,

𝜕

𝜕𝑦

) = 𝛾𝛽

−1

𝐹

𝜕

𝜕𝑥

+ 𝐹

𝜕

𝜕𝑦

.

(56)

Since 𝑒

1
(𝜔

2
) = 0, it follows that 𝜔

2
is a function depending

only on 𝑦; that is, 𝜔

2
= 𝜔

2
(𝑦). Using local coordinates, (53)

becomes

𝛽

𝑦
+ 𝛽𝜔

2
(𝑦) = 0. (57)

Solving (57) gives

𝛽 = 𝑒

−∫𝜔2(𝑦)𝑑𝑦

.
(58)

Without loss of generality, we may assume that 𝛽 is only
depending on variable 𝑦.

By applying (23), (55), (56), (58), and Gauss formula (7),
we have the following PDE system:

𝐿

𝑥𝑥
= 𝜆𝛽

2

(𝑖 + sinh 𝜃) 𝐿

𝑦
, (59)

𝐿

𝑥𝑦
= (𝑖 − sinh 𝜃) 𝐿

𝑥
, (60)

𝐿

𝑦𝑦
= 𝛽

−1

𝛾 (𝑖 − sinh 𝜃) 𝐿

𝑥
+ (

𝛽

𝑦

𝛽

+ 𝑖 + sinh 𝜃) 𝐿

𝑦
. (61)

By solving (60), we obtain that

𝐿 (𝑥, 𝑦) = 𝑓 (𝑥) 𝑒

(𝑖−sinh 𝜃)𝑦

+ 𝑧 (𝑦) , (62)

for some vector-valued functions 𝑓(𝑥) and 𝑧(𝑦) in C2

1
.
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Theorem 12. Up to rigid motions of C2

1
, every biharmonic

marginally trapped 𝜃-slant surface inC2

1
is given by a flat slant

surface defined by

𝐿 (𝑥, 𝑦) = 𝑐

1
𝑥𝑒

(𝑖−sinh 𝜃)𝑦
+ 𝑤 (𝑦) , (63)

where 𝑐

1
is lightlike vector and 𝑤(𝑦) is a null curve in C2

1

satisfying

⟨𝑐

1
(𝑖 − sinh 𝜃) 𝑒

(𝑖−sinh 𝜃)𝑦

, 𝑤



(𝑦)⟩ = 0,

⟨𝑐

1
𝑒

(𝑖−sinh 𝜃)𝑦

, 𝑤



(𝑦)⟩ = −𝛽 (𝑦)

(64)

for some nonzero real-valued function 𝛽(𝑦).

Proof. Let 𝑀 be a biharmonic marginally trapped 𝜃-slant
surface in C2

1
. According to Lemma 10, we have 𝜆 = 0.

Substituting (62) into (59), we have

𝑓



(𝑥) = 0, (65)

which yields 𝑓(𝑥) = 𝑐

1
𝑥 + 𝑐

2
for two constant vectors 𝑐

1
and

𝑐

2
in C2

1
. Hence, the immersion becomes

𝐿 (𝑥, 𝑦) = 𝑐

1
𝑥𝑒

(𝑖−sinh 𝜃)𝑦

+ 𝑤 (𝑦) . (66)

Note that 𝑤(𝑦) = 𝑐

2
𝑒

(𝑖−sinh 𝜃)𝑦
+ 𝑧(𝑦) here. Moreover, (66)

yields

𝐿

𝑥
= 𝑐

1
𝑒

(𝑖−sinh 𝜃)𝑦

,

𝐿

𝑦
= 𝑐

1
(𝑖 − sinh 𝜃) 𝑥𝑒

(𝑖−sinh 𝜃)𝑦

+ 𝑤



(𝑦) .

(67)

It follows from (54) and (67) that

⟨𝑐

1
, 𝑐

1
⟩ = ⟨𝑤



(𝑦) , 𝑤



(𝑦)⟩

= ⟨𝑐

1
(𝑖 − sinh 𝜃) 𝑒

(𝑖−sinh 𝜃)𝑦

, 𝑤



(𝑦)⟩ = 0,

⟨𝑐

1
𝑒

(𝑖−sinh 𝜃)𝑦

, 𝑤



(𝑦)⟩ = −𝛽 (𝑦) .

(68)

This completes the proof of Theorem 12.

Theorem 13. Up to rigid motions of C2

1
, every quasi-

biharmonic marginally trapped 𝜃-slant surface in C2

1
is given

by a flat slant surface defined by

𝐿 (𝑥, 𝑦) = 𝑝 (𝑥) 𝑒

(𝑖−sinh 𝜃)𝑦

, (69)

where 𝑝(𝑥) is a null curve lying in the light coneLC satisfying

⟨𝑝 (𝑥) , 𝑝 (𝑥)⟩ = ⟨𝑝



(𝑥) , 𝑝



(𝑥)⟩ = 0,

⟨𝑝 (𝑥) , 𝑖𝑝



(𝑥)⟩ = 1.

(70)

Proof. Let 𝑀 be a quasi-biharmonic marginally trapped 𝜃-
slant surface in C2

1
. According to Lemma 11, we have 𝛾 = 0

and 𝜆 ̸= 0. In this case, the second and third equations of (38)
become

𝜔

2
= 2 sinh 𝜃, 𝜆

𝑦
= 4 sinh 𝜃𝜆. (71)

Solving 𝜆, we get

𝜆 = 𝑐

1
(𝑥) 𝑒

4 sinh 𝜃𝑦

. (72)

By applying (71), (58) yields

𝛽 = 𝑎𝑒

−2 sinh 𝜃𝑦 (73)

for some nonzero constant number 𝑎. Consequently, with the
previous information, the PDE system (59)–(61) becomes

𝐿

𝑥𝑥
= 𝑎𝑐

1
(𝑥) 𝐿

𝑦
, (74)

𝐿

𝑥𝑦
= (𝑖 − sinh 𝜃) 𝐿

𝑥
, (75)

𝐿

𝑦𝑦
= (𝑖 − sinh 𝜃) 𝐿

𝑦
. (76)

Substituting (62) into (76), we have

𝑧



(𝑦) = (𝑖 − sinh 𝜃) 𝑧



(𝑦) , (77)

which yields

𝑧 (𝑦) = 𝑐

2
𝑒

(𝑖−sinh 𝜃)𝑦

+ 𝑐

3
(78)

for two constant vectors 𝑐

2
and 𝑐

3
in C2

1
. We denote 𝑝(𝑥)

by 𝑝(𝑥) = 𝑓(𝑥) + 𝑐

2
. Hence, up to rigid motions of C2

1
the

immersion becomes

𝐿 (𝑥, 𝑦) = 𝑝 (𝑥) 𝑒

(𝑖−sinh 𝜃)𝑦

. (79)

Substituting (79) into (74), we obtain

𝑝



(𝑥) = −𝑎 cosh2 𝜃𝑐

1
(𝑥) 𝑝 (𝑥) . (80)

Moreover, (79) gives

𝐿

𝑥
=𝑝



(𝑥)𝑒

(𝑖−sinh 𝜃)𝑦

, 𝐿

𝑦
=(𝑖 − sinh 𝜃)𝑝 (𝑥) 𝑒

(𝑖−sinh 𝜃)𝑦

.

(81)

It follows from (54), (73), and (81) that

⟨𝑝 (𝑥) , 𝑝 (𝑥)⟩ = ⟨𝑝



(𝑥) , 𝑝



(𝑥)⟩ = 0,

⟨𝑝



(𝑥) , (𝑖 − sinh 𝜃) 𝑝 (𝑥)⟩ = −𝑎.

(82)

In view of (73), we can assume 𝑎 = 1. Hence, we get the
conclusion.

Remark 14. According to Theorem 4, combining Theorems
12 and 13 with Sasahara’s results in [16, 18], we finish the
complete classifications of biharmonic marginally trapped
slant surfaces and quasi-biharmonicmarginally trapped slant
surfaces in Lorentzian complex forms, respectively.
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