
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 420514, 6 pages
http://dx.doi.org/10.1155/2013/420514

Research Article
Existence and Exact Asymptotic Behavior of Positive Solutions
for a Fractional Boundary Value Problem

Habib Mâagli, Noureddine Mhadhebi, and Noureddine Zeddini

King Abdulaziz University, Rabigh Campus, College of Sciences and Arts, Department of Mathematics, P.O. Box 344,
Rabigh 21911, Saudi Arabia

Correspondence should be addressed to Noureddine Zeddini; noureddine.zeddini@ipein.rnu.tn

Received 4 November 2012; Accepted 25 December 2012

Academic Editor: Chuanzhi Bai
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We establish the existence and uniqueness of a positive solution 𝑢 for the fractional boundary value problem𝐷
𝛼

𝑢(𝑥) = −𝑎(𝑥)𝑢
𝜎

(𝑥),
𝑥 ∈ (0, 1) with the condition lim

𝑥→0
𝐷
𝛼−1

𝑢(𝑥) = 0, 𝑢(1) = 0, where 1 < 𝛼 ≤ 2, 𝜎 ∈ (−1, 1), and 𝑎 is a nonnegative continuous
function on (0, 1) that may be singular at 𝑥 = 0 or 𝑥 = 1.

1. Introduction

Fractional differential equations arise in various fields of
science and engineering such as control, porous media,
electrochemistry, viscoelasticity, and electromagnetism.They
also serve as an excellent tool for the description of hereditary
properties of various materials and processes (see[1–3]). In
consequence, the subject of fractional differential equations
is gaining much importance and attention. Motivated by the
surge in the development of this subject, we consider the
following problem:

𝐷
𝛼

𝑢 (𝑥) = −𝑎 (𝑥) 𝑢
𝜎

(𝑥) , 𝑥 ∈ (0, 1) ,

lim
𝑥→0

+

𝐷
𝛼−1

𝑢 (𝑥) = 0, 𝑢 (1) = 0,

(1)

where 1 < 𝛼 ≤ 2, −1 < 𝜎 < 1, 𝑎 is a nonnegative continuous
function on (0, 1) that may be singular at 𝑥 = 0 or 𝑥 = 1 and
𝐷
𝛼 is the Riemann-Liouville fractional derivative. Then we

study the existence and exact asymptotic behavior of positive
solutions for this problem.
We recall that for a measurable function V, the Riemann-
Liouville fractional integral 𝐼

𝛽
V and the Riemann-Liouville

derivative 𝐷
𝛽

V of order 𝛽 > 0 are, respectively, defined
by

𝐼
𝛽
V (𝑥) =

1

Γ (𝛽)

∫

𝑥

0

(𝑥 − 𝑡)
𝛽−1

V (𝑡) 𝑑𝑡,

𝐷
𝛽

V (𝑥) =
1

Γ (𝑛 − 𝛽)

(

𝑑

𝑑𝑥

)

𝑛

∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛽−1

V (𝑡) 𝑑𝑡

= (

𝑑

𝑑𝑥

)

𝑛

𝐼
𝑛−𝛽

V (𝑥) ,

(2)

provided that the right-hand sides are pointwise defined on
(0, 1]. Here 𝑛 = [𝛽] + 1 and [𝛽]means the integral part of the
number 𝛽 and Γ is the Euler Gamma function.

Moreover, we have the following well-known properties
(see [2, 4]):

(i) 𝐼
𝛽
𝐼
𝛾
V(𝑥) = 𝐼

𝛽+𝛾
V(𝑥) for 𝑥 ∈ [0, 1], V ∈ 𝐿

1

((0, 1]), 𝛽 +
𝛾 ≥ 1,

(ii) 𝐷𝛽𝐼
𝛽
V(𝑥) = V(𝑥) for a.e. 𝑥 ∈ [0, 1], where V ∈

𝐿
1

((0, 1]), 𝛽 > 0,
(iii) 𝐷𝛽V(𝑥) = 0 if and only if V(𝑥) = ∑

𝑛

𝑗=1
𝑐
𝑗
𝑡
𝛽−𝑗, where

𝑛 = [𝛽] + 1 and (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) ∈ R𝑛.

Several results are obtained for fractional differential equa-
tion with different boundary conditions (see [5–15] and the
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references therein), but none of them deals with the existence
of a positive solution for problem (1).

Our aim in this paper is to establish the existence and
uniqueness of a positive solution 𝑢 ∈ 𝐶

2−𝛼
([0, 1]) for problem

(1) with a precise asymptotic behavior, where 𝐶
2−𝛼

([0, 1]) is
the set of all functions𝑓 such that 𝑡 → 𝑡

2−𝛼

𝑓(𝑡) is continuous
on [0, 1]. Note that for 0 < 𝛼 < 2, the solution 𝑢 for problem
(1) blows up at 𝑥 = 0.

To state our result, we need some notations. We will use
K to denote the set of Karamata functions 𝐿 defined on (0, 𝜂]
by

𝐿 (𝑡) := 𝑐 exp(∫
𝜂

𝑡

𝑧 (𝑠)

𝑠

𝑑𝑠) , (3)

for some 𝜂 > 1, where 𝑐 > 0 and 𝑧 ∈ 𝐶([0, 𝜂]) such that
𝑧(0) = 0. It is clear that a function 𝐿 is inK if and only if 𝐿 is
a positive function in 𝐶1((0, 𝜂]) such that

lim
𝑡→0
+

𝑡𝐿


(𝑡)

𝐿 (𝑡)

= 0. (4)

For two nonnegative functions𝑓 and 𝑔 defined on a set 𝑆, the
notation 𝑓(𝑥) ≈ 𝑔(𝑥), 𝑥 ∈ 𝑆, means that there exists 𝑐 > 0

such that (1/𝑐)𝑓(𝑥) ≤ 𝑔(𝑥) ≤ 𝑐𝑓(𝑥), for all 𝑥 ∈ 𝑆. We denote
also 𝑥+ = max(𝑥, 0) for 𝑥 ∈ R.

Throughout this paper we assume that 𝑎 is nonnegative
on (0, 1) and satisfies the following condition.

(𝐻
0
) 𝑎 ∈ 𝐶((0, 1)) such that

𝑎 (𝑡) ≈ 𝑡
−𝜆

𝐿
1
(𝑡) (1 − 𝑡)

−𝜇

𝐿
2
(1 − 𝑡) , 𝑡 ∈ (0, 1) , (5)

where 𝜆 + (2 − 𝛼)𝜎 ≤ 1, 𝜇 ≤ 𝛼, 𝐿
1
, 𝐿
2
∈ K satisfying

∫

𝜂

0

𝐿
1
(𝑡)

𝑡
𝜆+(2−𝛼)𝜎

𝑑𝑡 < ∞, ∫

𝜂

0

𝐿
2
(𝑡)

𝑡
𝜇−𝛼+1

𝑑𝑡 < ∞. (6)

In the sequel, we introduce the function 𝜃 defined on (0, 1) by

𝜃 (𝑥) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1 − 𝑥 if 𝜇 < 𝜎 + 𝛼 − 1,

(1 − 𝑥) (∫

𝜂

1−𝑥

𝐿
2
(𝑠)

𝑠

𝑑𝑠)

1/(1−𝜎)

if 𝜇 = 𝜎 + 𝛼 − 1,

(1 − 𝑥)
(𝛼−𝜇)/(1−𝜎)

(𝐿
2
(1 − 𝑥))

1/(1−𝜎)

if 𝜎 + 𝛼 − 1 < 𝜇 < 𝛼,

(∫

1−𝑥

0

𝐿
2
(𝑠)

𝑠

𝑑𝑠)

1/(1−𝜎)

if 𝜇 = 𝛼.

(7)

Our main result is the following.

Theorem 1. Let 𝜎 ∈ (−1, 1) and assume that 𝑎 satisfies
(H
0
). Then problem (1) has a unique positive solution 𝑢 ∈

𝐶
2−𝛼

([0, 1]) satisfying for 𝑥 ∈ (0, 1)

𝑢 (𝑥) ≈ 𝑥
𝛼−2

𝜃 (𝑥) . (8)

This paper is organized as follows. Some preliminary lemmas
are stated and proved in the next section, involving some
already known results on Karamata functions. In Section 3,
we give the proof of Theorem 1.

2. Technical Lemmas

To keep the paper self-contained, we begin this section by
recapitulating some properties of Karamata regular variation
theory. The following is due to [16, 17].

Lemma 2. The following hold.

(i) Let 𝐿 ∈ K and 𝜀 > 0, then one has

lim
𝑡→0
+

𝑡
𝜀

𝐿 (𝑡) = 0. (9)

(ii) Let 𝐿
1
, 𝐿
2
∈ K and 𝑝 ∈ R.Then one has 𝐿

1
+𝐿
2
∈ K,

𝐿
1
𝐿
2
∈ K, and 𝐿𝑝

1
∈ K.

Example 3. Let𝑚 ∈ N∗. Let 𝑐 > 0, (𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑚
) ∈ R𝑚 and

let 𝑑 be a sufficiently large positive real number such that the
function

𝐿 (𝑡) = 𝑐

𝑚

∏

𝑘=1

(log
𝑘
(

𝑑

𝑡

))

−𝜇
𝑘

(10)

is defined and positive on (0, 𝜂], for some 𝜂 > 1, where
log
𝑘
𝑥 = log ∘ log ∘ ⋅ ⋅ ⋅ ∘ log𝑥 (𝑘 times). Then 𝐿 ∈ K.

Applying Karamata’s theorem (see [16, 17]), we get the
following.

Lemma 4. Let 𝜇 ∈ R and let 𝐿 be a function inK defined on
(0, 𝜂]. One has the following.

(i) If 𝜇 < −1, then ∫

𝜂

0

𝑠
𝜇

𝐿(𝑠)𝑑𝑠 diverges and
∫

𝜂

𝑡

𝑠
𝜇

𝐿(𝑠)𝑑𝑠∼
𝑡→0
+ − (𝑡
1+𝜇

𝐿(𝑡)/(𝜇 + 1)).

(ii) If 𝜇 > −1, then ∫

𝜂

0

𝑠
𝜇

𝐿(𝑠)𝑑𝑠 converges and
∫

𝑡

0

𝑠
𝜇

𝐿(𝑠)𝑑𝑠∼
𝑡→0
+(𝑡
1+𝜇

𝐿(𝑡)/(𝜇 + 1)).

Lemma 5. Let 𝐿 ∈ K be defined on (0, 𝜂]. Then one has

lim
𝑡→0
+

𝐿 (𝑡)

∫

𝜂

𝑡

(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (11)

If further ∫𝜂
0

(𝐿(𝑠)/𝑠)𝑑𝑠 converges, then one has

lim
𝑡→0
+

𝐿 (𝑡)

∫

𝑡

0

(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (12)

Proof. We distinguish two cases.
Case 1.We suppose that∫𝜂

0

(𝐿(𝑠)/𝑠)𝑑𝑠 converges. Since the
function 𝑡 → 𝐿(𝑡)/𝑡 is nonincreasing in (0, 𝜔], for some 𝜔 <

𝜂, it follows that, for each 𝑡 ≤ 𝜔, we have

𝐿 (𝑡) ≤ ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠. (13)

It follows that lim
𝑡→0
+𝐿(𝑡) = 0. So we deduce (11).

Now put

𝜑 (𝑡) =

𝐿 (𝑡)

𝑡

, for 𝑡 ∈ (0, 𝜂) . (14)
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Using that lim
𝑡→0
+(𝑡𝜑


(𝑡)/𝜑(𝑡)) = −1, we obtain

∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠∼
𝑡→0
+ − ∫

𝑡

0

𝑠𝜑


(𝑠) 𝑑𝑠 = −𝑡𝜑 (𝑡) + ∫

𝑡

0

𝜑 (𝑠) 𝑑𝑠.

(15)

This implies that

∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠∼
𝑡→0
+ − 𝐿 (𝑡) + ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠. (16)

So (12) holds.
Case 2. We suppose that ∫𝜂

0

(𝐿(𝑠)/𝑠)𝑑𝑠 diverges. We have,
for some 𝜔 < 𝜂,

∫

𝜔

𝑡

𝜑 (𝑠) 𝑑𝑠∼
𝑡→0
+𝑡𝜑 (𝑡) − 𝜔𝜑 (𝜔) + ∫

𝜔

𝑡

𝜑 (𝑠) 𝑑𝑠. (17)

This implies that

∫

𝜔

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠∼
𝑡→0
+𝐿 (𝑡) − 𝜔𝜑 (𝜔) + ∫

𝜔

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠. (18)

This proves (11) and completes the proof.

Remark 6. Let 𝐿 ∈ K defined on (0, 𝜂]; then, using (4) and
(11), we deduce that

𝑡 → ∫

𝜂

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (19)

If further ∫𝜂
0

(𝐿(𝑠)/𝑠)𝑑𝑠 converges, we have by (11) that

𝑡 → ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (20)

Lemma 7. Given 1 < 𝛼 ≤ 2 and 𝑓 is such that the function
𝑡 → (1− 𝑡)

𝛼−1

𝑓(𝑡) is continuous and integrable on (0, 1), then
the boundary value problem

𝐷
𝛼

𝑢 (𝑡) = −𝑓 (𝑡) , 𝑡 ∈ (0, 1) ,

lim
𝑥→0

𝐷
𝛼−1

𝑢 (𝑥) = 0, 𝑢 (1) = 0,

(21)

has a unique solution given by

𝑢 (𝑥) = 𝐺
𝛼
𝑓 (𝑥) := ∫

1

0

𝐺
𝛼
(𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝑡, (22)

where

𝐺
𝛼
(𝑥, 𝑡) =

1

Γ (𝛼)

[𝑥
𝛼−2

(1 − 𝑡)
𝛼−1

− ((𝑥 − 𝑡)
+

)

𝛼−1

] , (23)

is the Green function for the boundary value problem (21).

Proof. Since 𝑢
0
= −𝐼
𝛼
𝑓 is a solution of the equation 𝐷𝛼𝑢 =

−𝑓, then 𝐷
𝛼

(𝑢 + 𝐼
𝛼
𝑓) = 0. Consequently there exist two

constants 𝑐
1
, 𝑐
2
∈ R such that 𝑢(𝑥)+𝐼

𝛼
𝑓(𝑥) = 𝑐

1
𝑥
𝛼−1

+𝑐
2
𝑥
𝛼−2.

Using the fact that lim
𝑥→0

𝐷
𝛼−1

𝑢(𝑥) = 0 and 𝑢(1) = 0, we
obtain 𝑐

1
= 0 and 𝑐

2
= 𝐼
𝛼
𝑓(1). So

𝑢 (𝑥) =

1

Γ (𝛼)

𝑥
𝛼−2

∫

1

0

(1 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡

−

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡

= ∫

1

0

𝐺
𝛼
(𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝑡.

(24)

In the following, we give some estimates on the function 𝐺
𝛼
.

So, we need the following lemma.

Lemma 8. For 𝜆, 𝜇 ∈ (0,∞), and 𝑎, 𝑡 ∈ [0, 1], one has

min(1,
𝜇

𝜆

) (1 − 𝑎𝑡
𝜆

) ≤ 1 − 𝑎𝑡
𝜇

≤ max (1,
𝜇

𝜆

) (1 − 𝑎𝑡
𝜆

) .

(25)

Proposition 9. On (0, 1) × (0, 1), one has

𝐺
𝛼
(𝑥, 𝑡) ≈ 𝑥

𝛼−2

(1 − 𝑡)
𝛼−2

(1 −max (𝑥, 𝑡)) . (26)

Proof. For 𝑥, 𝑡 ∈ (0, 1) × (0, 1), we have

𝐺
𝛼
(𝑥, 𝑡) =

(1 − 𝑡)
𝛼−1

𝑥
𝛼−2

Γ (𝛼)

[1 − 𝑥(

(𝑥 − 𝑡)
+

𝑥 (1 − 𝑡)

)

𝛼−1

] . (27)

Since (𝑥− 𝑡)+/𝑥(1− 𝑡) ∈ (0, 1) for 𝑡 ∈ (0, 1), then, by applying
Lemma 8 with 𝜇 = 𝛼 − 1 and 𝜆 = 1, we obtain

𝐺
𝛼
(𝑥, 𝑡) ≈ 𝑥

𝛼−2

(1 − 𝑡)
𝛼−1

(1 −

(𝑥 − 𝑡)
+

1 − 𝑡

)

= 𝑥
𝛼−2

(1 − 𝑡)
𝛼−2

(1 −max (𝑥, 𝑡)) ,
(28)

which completes the proof.

In the sequel we put

𝑏 (𝑡) = 𝑡
−𝛽

𝐿
3
(𝑡) (1 − 𝑡)

−𝛾

𝐿
4
(1 − 𝑡) , (29)

where 𝐿
3
, 𝐿
4
∈ K and we aim to give some estimates on

𝑥
2−𝛼

𝐺
𝛼
𝑏(𝑥).

Proposition 10. Assume that 𝐿
3
, 𝐿
4
∈ K, 𝛽 ≤ 1, 𝛾 ≤ 𝛼 with

∫

𝜂

0

𝑡
−𝛽

𝐿
3
(𝑡) 𝑑𝑡 < ∞, ∫

𝜂

0

𝑡
𝛼−1−𝛾

𝐿
4
(𝑡) 𝑑𝑡 < ∞. (30)

Then for 𝑥 ∈ (0, 1),

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1 − 𝑥 if 𝛾 < 𝛼 − 1,

(1 − 𝑥)∫

𝜂

1−𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡 if 𝛾 = 𝛼 − 1,

(1 − 𝑥)
𝛼−𝛾

𝐿
4
(1 − 𝑥) if 𝛼 − 1 < 𝛾 < 𝛼,

∫

1−𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡 if 𝛾 = 𝛼.

(31)
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Proof. Using Proposition 9, we have

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈ (1 − 𝑥)∫

𝑥

0

(1 − 𝑡)
𝛼−2−𝛾

𝑡
−𝛽

𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

+ ∫

1

𝑥

(1 − 𝑡)
𝛼−1−𝛾

𝑡
−𝛽

𝐿
3
(𝑡) 𝐿
4
(1 − 𝑡) 𝑑𝑡

= (1 − 𝑥) 𝐼 (𝑥) + 𝐽 (𝑥) .

(32)

For 0 < 𝑥 ≤ 1/2, we use Lemma 4 and hypotheses (30) to
deduce that

𝐼 (𝑥) ≈

{

{

{

𝑥
1−𝛽

𝐿
3
(𝑥) if 𝛽 < 1,

∫

𝑥

0

𝐿
3
(𝑡)

𝑡

𝑑𝑡 if 𝛽 = 1,

𝐽 (𝑥) ≈ ∫

1

1/2

(1 − 𝑡)
𝛼−1−𝛾

𝐿
4
(1 − 𝑡) 𝑑𝑡 + ∫

1/2

𝑥

𝑡
−𝛽

𝐿
3
(𝑡) 𝑑𝑡

≈ 1 + ∫

1/2

𝑥

𝑡
−𝛽

𝐿
3
(𝑡) 𝑑𝑡

≈ 1.

(33)

Hence, it follows from Lemma 2 and hypothesis (30) that, for
0 < 𝑥 ≤ 1/2, we have

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈ 1. (34)

Now, for 1/2 ≤ 𝑥 < 1, we use again Lemma 4 and hypothesis
(30) to deduce that

𝐼 (𝑥) ≈ ∫

1/2

0

𝑡
−𝛽

𝐿
3
(𝑡) 𝑑𝑡 + ∫

𝑥

1/2

(1 − 𝑡)
𝛼−2−𝛾

𝐿
4
(1 − 𝑡) 𝑑𝑡

≈ 1 + ∫

1/2

1−𝑥

𝑡
𝛼−2−𝛾

𝐿
4
(𝑡) 𝑑𝑡

≈

{
{
{

{
{
{

{

1 if 𝛾 < 𝛼 − 1,

∫

𝜂

1−𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡 if 𝛾 = 𝛼 − 1,

(1 − 𝑥)
𝛼−1−𝛾

𝐿
4
(1 − 𝑥) if 𝛾 > 𝛼 − 1,

𝐽 (𝑥) ≈ ∫

1−𝑥

0

𝑡
𝛼−1−𝛾

𝐿
4
(𝑡) 𝑑𝑡

≈

{

{

{

(1 − 𝑥)
𝛼−𝛾

𝐿
4
(1 − 𝑥) if 𝛾 < 𝛼,

∫

1−𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡 if 𝛾 = 𝛼.

(35)

Hence, it follows from Lemmas 2 and 5 that, for 𝑥 ∈ [1/2, 1),
we have

𝑥
2−𝛼

𝐺
𝛼
𝑏 (𝑥) ≈

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1 − 𝑥 if 𝛾 < 𝛼 − 1,

(1 − 𝑥) ∫

𝜂

1−𝑥

𝐿
4
(𝑡)

𝑡

𝑑𝑡 if 𝛾 = 𝛼 − 1,

(1 − 𝑥)
𝛼−𝛾

𝐿
4
(1 − 𝑥) if 𝛼 − 1 < 𝛾 < 𝛼,

∫

1−𝑥

0

𝐿
4
(𝑡)

𝑡

𝑑𝑡 if 𝛾 = 𝛼.

(36)

This together with (34) implies that (36) holds on (0, 1).

3. Proof of Theorem 1

We begin this section by giving a preliminary result that will
play a crucial role in the proof of Theorem 1.

Proposition 11. Assume that the function 𝑎 satisfies (𝐻
0
) and

put 𝜔(𝑡) = 𝑎(𝑡)𝑡
(𝛼−2)𝜎

𝜃
𝜎

(𝑡) for 𝑡 ∈ (0, 1). Then one has, for
𝑥 ∈ (0, 1),

𝑥
2−𝛼

𝐺
𝛼
𝜔 (𝑥) ≈ 𝜃 (𝑥) . (37)

Proof. For 𝑡 ∈ (0, 1), we have

𝜔 (𝑡) = 𝑎 (𝑡) 𝑡
(𝛼−2)𝜎

𝜃
𝜎

(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

𝑡
−𝜆−(2−𝛼)𝜎

(1 − 𝑡)
−𝜇+𝜎

𝐿
1
(𝑡) 𝐿
2
(1 − 𝑡)

if 𝜇 < 𝜎 + 𝛼 − 1,

𝑡
−𝜆−(2−𝛼)𝜎

(1 − 𝑡)
−𝜇+𝜎

𝐿
1
(𝑡) 𝐿
2
(1 − 𝑡)

×(∫

𝜂

1−𝑡

𝐿
2
(𝑠)

𝑠

𝑑𝑠)

𝜎/(1−𝜎)

if 𝜇 = 𝜎 + 𝛼 − 1,

𝑡
−𝜆−(2−𝛼)𝜎

(1 − 𝑡)
−(𝜇−𝜎𝛼)/(1−𝜎)

𝐿
1
(𝑡)

×(𝐿
2
(1 − 𝑡))

𝜎/(1−𝜎) if 𝜎 + 𝛼 − 1 < 𝜇 < 𝛼,

𝑡
−𝜆−(2−𝛼)𝜎

(1 − 𝑡)
−𝜇

𝐿
1
(𝑡) 𝐿
2
(1 − 𝑡)

×(∫

1−𝑡

0

𝐿
2
(𝑠)

𝑠

𝑑𝑠)

𝜎/(1−𝜎)

if 𝜇 = 𝛼.

(38)

So, we can see that

𝜔 (𝑡) = 𝑡
−𝛽

(1 − 𝑡)
−𝛾

�̃�
1
(𝑡) �̃�
2
(1 − 𝑡) , (39)

where 𝛽 ≤ 1, 𝛾 ≤ 𝛼 and, according to Lemma 2, the functions
𝑡 → �̃�

1
(𝑡) and 𝑡 → �̃�

2
(𝑡) are in K. Moreover, using

Lemma 4, we have ∫𝜂
0

𝑡
−𝛽

�̃�
1
(𝑡)𝑑𝑡 < ∞ and ∫𝜂

0

𝑡
−𝛾

�̃�
2
(𝑡)𝑑𝑡 <

∞. So the result follows from Proposition 10.

Proof of Theorem 1. From Proposition 11, there exists 𝑀 > 1

such that for each 𝑥 ∈ (0, 1)

1

𝑀

𝜃 (𝑥) ≤ 𝑥
2−𝛼

𝐺
𝛼
𝜔 (𝑥) ≤ 𝑀𝜃 (𝑥) , (40)

where 𝜔(𝑡) = 𝑎(𝑡)𝑡
(𝛼−2)𝜎

𝜃
𝜎

(𝑡).
Put 𝑐
0
= 𝑀
1/(1−|𝜎|) and let

Λ = {V ∈ 𝐶 ([0, 1]) : 1
𝑐
0

𝜃 ≤ V ≤ 𝑐
0
𝜃} . (41)

In order to use a fixed point theorem, we denote �̃�(𝑡) =

𝑎(𝑡)𝑡
(𝛼−2)𝜎 and we define the operator 𝑇 on Λ by

𝑇V (𝑥) = 𝑥
2−𝛼

𝐺
𝛼
(�̃�V
𝜎

) (𝑥) . (42)

For this choice of 𝑐
0
, we can easily prove that for V ∈ Λ, we

have 𝑇V ≤ 𝑐
0
𝜃 and 𝑇V ≥ (1/𝑐

0
)𝜃.
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Now, we have

𝑇V (𝑥) =
𝑥
2−𝛼

Γ (𝛼)

∫

1

0

𝐺
𝛼
(𝑥, 𝑡) �̃� (𝑡) V

𝜎

(𝑡) 𝑑𝑡

=

1

Γ (𝛼)

∫

1

0

[(1 − 𝑡)
𝛼−1

− 𝑥
2−𝛼

((𝑥 − 𝑡)
+

)

𝛼−1

]

× �̃� (𝑡) V
𝜎

(𝑡) 𝑑𝑡.

(43)

Since the function (𝑥, 𝑡) → (1 − 𝑡)
𝛼−1

− 𝑥
2−𝛼

((𝑥 − 𝑡)
+

)
𝛼−1

is continuous on [0, 1] × [0, 1] and the function 𝑡 → (1 −

𝑡)
𝛼−1

�̃�(𝑡)𝜃
𝜎

(𝑡) is integrable on (0, 1), we deduce that the
operator 𝑇 is compact from Λ to itself. It follows by the
Schauder fixed point theorem that there exists V ∈ Λ such
that 𝑇V = V. Put 𝑢(𝑥) = 𝑥

𝛼−2

V(𝑥). Then 𝑢 ∈ 𝐶
2−𝛼

([0, 1]) and
𝑢 satisfies the equation

𝑢 (𝑥) = 𝐺
𝛼
(𝑎𝑢
𝜎

) (𝑥) . (44)

Since the function 𝑡 → (1 − 𝑡)
𝛼−1

𝑎(𝑡)𝑢
𝜎

(𝑡) is continuous
and integrable on (0, 1), then by Lemma 7 the function 𝑢 is
a positive continuous solution of problem (1).

Finally, let us prove that 𝑢 is the unique positive contin-
uous solution satisfying (8). To this aim, we assume that (1)
has two positive solutions 𝑢, V ∈ 𝐶

2−𝛼
([0, 1]) satisfying (8)

and consider the nonempty set 𝐽 = {𝑚 ≥ 1 : 1/𝑚 ≤ 𝑢/V ≤ 𝑚}

and put 𝑐 = inf 𝐽. Then 𝑐 ≥ 1 and we have (1/𝑐)V ≤ 𝑢 ≤ 𝑐V. It
follows that 𝑢𝜎 ≤ 𝑐

|𝜎|

V
𝜎 and consequently

−𝐷
𝛼

(𝑐
|𝜎|

V − 𝑢) = 𝑎 (𝑐
|𝜎|

V
𝜎

− 𝑢
𝜎

) ≥ 0,

lim
𝑡→0
+

𝐷
𝛼−1

(𝑐
|𝜎|

V − 𝑢) (𝑡) = 0, (𝑐
|𝜎|

V − 𝑢) (1) = 0.

(45)

Which implies by Lemma 7 that 𝑐|𝜎|V − 𝑢 = 𝐺
𝛼
(𝑎(𝑐
|𝜎|

V
𝜎

−

𝑢
𝜎

)) ≥ 0. By symmetry, we obtain also that V ≤ 𝑐
|𝜎|

𝑢. Hence
𝑐
|𝜎|

∈ 𝐽 and 𝑐 ≤ 𝑐
|𝜎|. Since |𝜎| < 1, then 𝑐 = 1 and

consequently 𝑢 = V.

Example 12. Let 𝜎 ∈ (−1, 1) and 𝑎 be a positive continuous
function on (0, 1) such that

𝑎 (𝑡) ≈ (1 − 𝑡)
−𝜇 log( 3

1 − 𝑡

)

−𝛽

, (46)

where 𝜇 < 𝛼 and 𝛽 ∈ R or 𝜇 = 𝛼 and 𝛽 > 1. Then, using
Theorem 1, problem (1) has a unique positive continuous
solution 𝑢 satisfying the following estimates.

(i) If 𝜇 < 𝜎 + 𝛼 − 1 or 𝜇 = 𝜎 + 𝛼 − 1 and 𝛽 > 1, then for
𝑥 ∈ (0, 1),

𝑢 (𝑥) ≈ 𝑥
𝛼−2

(1 − 𝑥) . (47)

(ii) If 𝜇 = 𝜎 + 𝛼 − 1 and 𝛽 = 1, then for 𝑥 ∈ (0, 1),

𝑢 (𝑥) ≈ 𝑥
𝛼−2

(1 − 𝑥) [log(log( 3

1 − 𝑥

))]

1/(1−𝜎)

. (48)

(iii) If 𝜇 = 𝜎 + 𝛼 − 1 and 𝛽 < 1, then for 𝑥 ∈ (0, 1),

𝑢 (𝑥) ≈ 𝑥
𝛼−2

(1 − 𝑥) [log( 3

1 − 𝑥

)]

(1−𝛽)/(1−𝜎)

. (49)

(iv) If 𝜎 + 𝛼 − 1 < 𝜇 < 𝛼, then for 𝑥 ∈ (0, 1),

𝑢 (𝑥) ≈ 𝑥
𝛼−2

(1 − 𝑥)
(𝛼−𝜇)/(1−𝜎)

[log( 3

1 − 𝑥

)]

−𝛽/(1−𝜎)

. (50)

(v) If 𝜇 = 𝛼 and 𝛽 > 1, then for 𝑥 ∈ (0, 1),

𝑢 (𝑥) ≈ 𝑥
𝛼−2

[log( 3

1 − 𝑥

)]

(1−𝛽)/(1−𝜎)

. (51)
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