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We study the connectedness of solution set for set-valued weak vector variational inequality in unbounded closed convex subsets of
finite dimensional spaces, when the mapping involved is scalar C-pseudomonotone. Moreover, the path connectedness of solution
set for set-valued weak vector variational inequality is established, when themapping involved is strictly scalarC-pseudomonotone.
The results presented in this paper generalize some known results by Cheng (2001), Lee et al. (1998), and Lee and Bu (2005).

1. Introduction

The concept of vector variational inequality (𝑉𝑉𝐼), which
was first introduced by Giannessi [1] in 1980, has wide appli-
cations in many problems such as finance and economics,
transportation and optimization, operations research, and
engineering sciences. Many authors have devoted to the
study of 𝑉𝑉𝐼 and its various extensions. The main topic of
these papers is to establish existence theorems of solution
for (𝑉𝑉𝐼), see, for example, [1–5] and the references therein.
Another important and interesting problem for (𝑉𝑉𝐼) is
to study the topological properties of solutions set. Among
them, the connectedness property of the solution set is
quite of interest as it provides the possibility of continuously
moving from one solution to any other solution.

Some authors have discussed the connectedness of solu-
tion set for single-valued weak vector variational inequalities
(𝑊𝑉𝑉𝐼𝑠) under the assumption that the mapping involved
is monotone and the constrained set involved is com-
pact. In [6], Chen discussed the connectedness of solution
set for a single-valued 𝑊𝑉𝑉𝐼 in compact subsets of 𝑅

𝑛,
when the mapping involved is strictly pseudomonotone.
Gong [7] and Gong and Yao [8] studied the connectedness of
solution sets for vector equilibriumproblems and generalized
system in compact subsets of infinite dimensional spaces,
when the mapping involved is monotone. For more related
work, we refer the readers to [9] and references therein.

It is noted that in the works mentioned above, a compact-
ness assumption of the constrained set is necessary. As for the
noncompactness case, we observe that only few papers in the
literature have dealt with this. In [10], Lee et al. established the
connectedness of the solution set for a single-valued strongly
monotone𝑊𝑉𝑉𝐼 on unbounded closed convex sets. Lee and
Bu [11] discussed the connectedness of solution set for affine
vector variational inequalities with noncompact polyhedral
constraint sets and positive semidefinite (or monotone)
matrices.

Inspired and motivated by the work in [6, 10, 11], we
further study the connectedness properties of solution set
for set-valued𝑊𝑉𝑉𝐼 in noncompact subsets of finite dimen-
sional spaces. We establish the connectedness and path-
connectedness results of solution set for set-valued 𝑊𝑉𝑉𝐼

when the mapping involved is scalar 𝐶-pseudomonotone
and strictly scalar 𝐶-pseudomonotone, which is weaker
than monotone mapping and strictly monotone (strongly
monotone) mapping, respectively. Compared with the pre-
vious connectedness results, we establish our results without
putting the compactness assumption on the constrained
set, and the mapping involved is set-valued. Moreover, we
would like to point out that the image space associated with
the problem discussed is infinite dimensional. The results
presented in this paper generalize the corresponding results
in [6, 10, 11].
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The paper is organized as follows. In Section 2, we
introduce some basic notations and preliminary results.
In Section 3, we establish the connectedness and path-
connectedness result of the solution set for set-valued𝑊𝑉𝑉𝐼.

2. Preliminaries

Let 𝑋 be a finite-dimensional norm space and 𝑌 a normed
space with its dual space of 𝑌∗. Let 𝐾 be a nonempty closed
convex subset of 𝑋 and 𝑇 : 𝐾 → 2𝐿(𝑋,𝑌) a set-valued
mapping with nonempty values, where 𝐿(𝑋, 𝑌) denotes the
space of all continuous linear mappings from 𝑋 to 𝑌. Let 𝐶
be a closed convex pointed cone in𝑌with int 𝐶 ̸= 0.The cone
𝐶 induces a partial ordering in 𝑌, which was defined by

𝑧
1
≤
𝐶
𝑧
2

iff 𝑧
2
− 𝑧
1
∈ 𝐶. (1)

Let 𝐶∗ := {𝑥∗ ∈ 𝑌∗ : ⟨𝑥∗, 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝐶} be the dual cone
of 𝐶. It is clear that

𝑥 ∈ 𝐶 ⇐⇒ ⟨𝑥
∗

, 𝑥⟩ ≥ 0, ∀𝑥
∗

∈ 𝐶
∗

, (2)

𝑥 ∈ int𝐶 ⇐⇒ ⟨𝑥
∗

, 𝑥⟩ > 0, ∀𝑥
∗

∈ 𝐶
∗

\ {0} . (3)

Let 𝑒 ∈ int𝐶 be fixed and

𝐶
∗0

:= {𝑥
∗

∈ 𝑌
∗

: ⟨𝑥
∗

, 𝑒⟩ = 1} . (4)

The dual cone 𝐶∗ is said to admit a 𝑤∗-compact base if and
only if there exists a 𝑤∗-compact set 𝑆

1
⊂ 𝐶∗ such that 0 ∉

𝑆
1
and 𝐶∗ ⊂ ∪

𝑡≥0
𝑡𝑆
1
. From [12], we know that 𝐶∗0 is a 𝑤∗-

compact base of 𝐶∗.
The recession cone of 𝐾, denoted by 𝐾

∞
, is defined by

𝐾
∞

= {𝑑 ∈ 𝑋 : ∃𝑡
𝑘
→ +∞, 𝑥

𝑘
∈ 𝐾

such that 𝑑 = lim
𝑘→+∞

𝑥
𝑘

𝑡
𝑘

} .

(5)

The negative polar cone of 𝐾, denoted by 𝐾−, is defined by

𝐾
−

= {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥
∗

, 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝐾} . (6)

LetL ⊂ 𝐿(𝑋, 𝑌) be a nonempty set. The weak and strong 𝐶-
polar cones ofL, which were introduced in [13], are defined,
respectively, by

𝐿
𝑤∘

𝐶
:= {𝑥 ∈ 𝑋 : ⟨𝑙, 𝑥⟩ ̸≥int𝐶 0, ∀𝑙 ∈ L} ,

𝐿
𝑠∘

𝐶
:= {𝑥 ∈ 𝑋 : ⟨𝑙, 𝑥⟩ ≤

𝐶
0, ∀𝑙 ∈ L} .

(7)

In this paper, we consider the following set-valued weak
vector variational inequality, denoted by (𝑊𝑉𝑉𝐼), which is to
find 𝑥∗ ∈ 𝐾 and 𝑢∗ ∈ 𝑇(𝑥∗) such that

⟨𝑢
∗

, 𝑥 − 𝑥
∗

⟩ ∉ − int𝐶, ∀𝑥 ∈ 𝐾. (8)

Let 𝜉 ∈ 𝐶∗0 be any given point. It is known that (𝑊𝑉𝑉𝐼)

is closely related to the following scalar variational inequality

problem, denoted by (𝑉𝐼)
𝜉
, which is to find 𝑥∗ ∈ 𝐾 and 𝑢∗ ∈

𝑇(𝑥∗) such that

⟨𝜉 (𝑢
∗

) , 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐾. (9)

Here, 𝜉(𝑢∗) means the composition of 𝜉 ∈ 𝑌∗ and 𝑢∗ ∈

𝐿(𝑋, 𝑌). Hence, ⟨𝜉(𝑢∗), 𝑥⟩ = ⟨𝜉 ∘ 𝑢∗, 𝑥⟩ = ⟨𝜉, ⟨𝑢∗, 𝑥⟩⟩, for
all 𝑥 ∈ 𝐾.

The solution sets of (𝑊𝑉𝑉𝐼) and (𝑉𝐼)
𝜉
are denoted by

𝑆𝑤(𝑇,𝐾) and 𝑆
𝜉
(𝑇,𝐾), respectively. From [10], the following

relationship between 𝑆𝑤(𝑇,𝐾) and 𝑆
𝜉
(𝑇,𝐾) holds:

𝑆
𝑤

(𝑇,𝐾) = ⋃

𝜉∈𝐶
∗0

𝑆
𝜉
(𝑇,𝐾) . (10)

Although the representation is stated in [10] for single-valued
map, the statement and the proof are also valid when 𝑇 is
multivalued without any assumption on the values of 𝑇.

We now recall some definitions for set-valued monotone
and pseudomonotone mapping.

Definition 1. A set-valued mapping 𝑇 : 𝐾 → 2
𝐿(𝑋,𝑌) is said

to be as follows.

(i) 𝐶-monotone (resp. strictly 𝐶-monotone) on 𝐾 if for
all 𝑥, 𝑦 ∈ 𝐾 (resp., 𝑥 ̸= 𝑦), for all 𝑢∗ ∈ 𝑇(𝑥), V∗ ∈ 𝑇(𝑦),

⟨V
∗

− 𝑢
∗

, 𝑦 − 𝑥⟩ ∈ 𝐶 (resp. int𝐶) . (11)

(ii) 𝐶-pseudomonotone (resp., strictly 𝐶-monotone) on
𝐾 if for all 𝑥, 𝑦 ∈ 𝐾 (resp., 𝑥 ̸= 𝑦), for all 𝑢∗ ∈ 𝑇(𝑥),
V∗ ∈ 𝑇(𝑦),

⟨𝑢
∗

, 𝑦 − 𝑥⟩ ∉ − int𝐶

⇒ ⟨V
∗

, 𝑦 − 𝑥⟩ ∈ 𝐶 (resp., int𝐶) .
(12)

Definition 2. A set-valued mapping 𝑇 : 𝐾 → 2𝐿(𝑋,𝑌) is
said to be scalar 𝐶-pseudomonotone (resp., strictly scalar 𝐶-
pseudomonotone) on𝐾 if and only if for any 𝜉 ∈ 𝐶

∗ \ {0}, for
any 𝑥, 𝑦 ∈ 𝐾 (resp., 𝑥 ̸= 𝑦), 𝑢∗ ∈ 𝑇(𝑥), V∗ ∈ 𝑇(𝑦), we have

⟨𝜉 (𝑢
∗

) , 𝑦 − 𝑥⟩ ≥ 0 ⇒ ⟨𝜉 (V
∗

) , 𝑦 − 𝑥⟩ ≥ 0 (resp., > 0) .

(13)

Example 3 is to clarify Definition 2.

Example 3. Let

𝐾 = 𝑅, 𝐶 = 𝑅
2

+
,

𝑓
1
(𝑥) = [1, 2.5 + sin𝑥] ,

𝑓
2
(𝑥) = [1, 2.5 + cos𝑥] , 𝑇 = (𝑓

1
, 𝑓
2
) .

(14)

Clearly, 𝑇 = (𝑓
1
, 𝑓
2
) is strictly scalar 𝐶-pseudomonotone on

𝐾 and so scalar 𝐶-pseudomonotone.

Remark 4. (i) If 𝑇 is 𝐶-monotone (resp., strictly 𝐶-
monotone) on𝐾, then 𝑇 is scalar 𝐶-pseudomonotone (resp.,
strictly scalar 𝐶-pseudomonotone) on𝐾.
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(ii) The scalar 𝐶-pseudomonotonicity in Definition 2 is
weaker than 𝐶-pseudomonotonicity in Definition 1(ii). In
fact, for any 𝜉 ∈ 𝐶

∗ \ {0}, 𝑥, 𝑦 ∈ 𝑋, if ⟨𝜉(𝑢∗), 𝑦 − 𝑥⟩ ≥ 0, then
we have ⟨𝑢∗, 𝑦 − 𝑥⟩ ∉ − int𝐶. Then, it follows from the 𝐶-
pseudomonotonicity of 𝑇 that ⟨V∗, 𝑦 − 𝑥⟩ ∈ 𝐶, which implies
that ⟨𝜉(V∗), 𝑦 − 𝑥⟩ ≥ 0.

Definition 5. The topological space 𝐸 is said to be connected
if there do not exist nonempty open subsets 𝑉

𝑖
of 𝐸, 𝑖 = 1, 2,

such that 𝑉
1
∪ 𝑉
2
= 𝑋 and 𝑉

1
∩ 𝑉
2
= 0.

Moreover, 𝐸 is said to be path connected if for each pair
of points 𝑥 and 𝑦 in 𝐸, there exists a continuous mapping 𝜙 :

[0, 1] → 𝐸 such that 𝜙(0) = 𝑥 and 𝜙(1) = 𝑦.

Definition 6. Let 𝐸, 𝐹 be two topological spaces. A set-valued
mapping 𝐺 : 𝐸 → 2𝐹 is said to be

(i) closed if graph𝐺 = {(𝑥, 𝑦) ∈ 𝐸 × 𝐹 : 𝑦 ∈ 𝐺(𝑥)} is
closed in 𝐸 × 𝐹,

(ii) upper semicontinuous, if for every 𝑥 ∈ 𝐸 and every
open set 𝑉 satisfying 𝐺(𝑥) ⊂ 𝑉, there exists a
neighborhood 𝑈 of 𝑥 such that 𝐺(𝑈) ⊂ 𝑉.

Lemma 7 follows directly fromTheorem 3.1 of [14].

Lemma 7. Let 𝐾 be a closed convex subset of𝑋 and 𝑇 : 𝐾 →

2𝐿(𝑋,𝑌) scalar pseudomonotone and upper semicontinuous with
nonempty compact convex values. If for any 𝜉 ∈ 𝐶∗0, 𝑆

𝜉
(𝑇,𝐾)

is nonempty and compact, then 𝑆𝑤(𝑇,𝐾) is nonempty and
compact.

Remark 8. It is pointed out in [14] that if𝐾
∞
∩(𝑇(𝐾))

𝑤∘

= {0},
then 𝑆

𝜉
(𝑇,𝐾) is nonempty and compact for any 𝜉 ∈ 𝐶∗0, and

so 𝑆𝑤(𝑇,𝐾) is nonempty and compact.

FromTheorem 2 of [15], we have the following lemma.

Lemma 9. Let𝐾 be a closed convex subset of𝑋 and 𝑇 : 𝐾 →

2
𝐿(𝑋,𝑌) scalar pseudomonotone and upper semicontinuous with
nonempty compact convex values. Then, for any 𝜉 ∈ 𝐶∗0,
𝑆
𝜉
(𝑇,𝐾) is nonempty and compact if and only if 𝐾

∞
∩

[𝜉(𝑇(𝐾))]
−

= {0}.

Lemma 10 (see [16]). Let 𝐸, 𝐹 be two topological spaces. If the
set-valued mapping 𝐺 : 𝐸 → 2𝐹 is closed and 𝐹 is compact,
then 𝐺 is upper semicontinuous.

Lemma 11 (see [17]). Let 𝐸, 𝐹 be two topological spaces.
Assume that 𝐸 is connected and the set-valued mapping 𝐺 :

𝐸 → 2
𝐹 is upper semicontinuous. If for every 𝑥 ∈ 𝐸, the

set 𝐺(𝑥) is nonempty and connected, then the set 𝐺(𝑋) is
connected.

Lemma 11 follows immediately from the definition of path
connectedness.

Lemma 12. Let 𝐸, 𝐹 be two topological spaces. Assume that 𝐸
is path connected and the mapping 𝐴 : 𝐸 → 𝐹 is continuous.
Then, the set 𝐴(𝐸) is path connected.

Lemma 13. Let 𝑌 be a normed space with its dual space of
𝑌
∗. Let {𝑦

𝛽
} a net in 𝑌 and {𝑦∗

𝛽
} be a net in 𝑌∗. Suppose that

𝑦
𝛽
converges to 𝑦 in the norm topology of 𝑌 and 𝑦∗

𝛽
weak∗-

converges to 𝑦∗. Then, ⟨𝑦∗
𝛽
, 𝑦
𝛽
⟩ → ⟨𝑦∗, 𝑦⟩.

Proof. Indeed, we have

⟨𝑦
∗

𝛽
, 𝑦
𝛽
⟩ − ⟨𝑦

∗

, 𝑦⟩ = ⟨𝑦
∗

𝛽
, 𝑦
𝛽
− 𝑦⟩ + ⟨𝑦

∗

𝛽
− 𝑦
∗

, 𝑦⟩ . (15)

Since𝑦∗
𝛽
weak∗-converges𝑦∗, it holds that ⟨𝑦∗

𝛽
−𝑦∗, 𝑦⟩ → 0.

Moreover, by the triangle inequality, we have |⟨𝑦∗
𝛽
, 𝑦
𝛽
− 𝑦⟩| ≤

‖𝑦∗
𝛽
‖‖𝑦
𝛽
− 𝑦‖. Note that {𝑦∗

𝛽
} is bounded and 𝑦

𝛽
converges to

𝑦 in the norm topology of 𝑌, this yields that ⟨𝑦∗
𝛽
, 𝑦
𝛽
− 𝑦⟩ →

0. Consequently, we obtain that ⟨𝑦∗
𝛽
, 𝑦
𝛽
⟩ → ⟨𝑦∗, 𝑦⟩. This

completes the proof.

3. Connectedness of Solution Sets for WVVI

In this section, we establish the connectedness of solution
set for the set-valued 𝑊𝑉𝑉𝐼, when the mapping is scalar
𝐶-pseudomonotone. Furthermore, when the mapping is
strictly scalar 𝐶-pseudomonotone, we establish the path-
connectedness result for the set-valued𝑊𝑉𝑉𝐼.

Theorem 14. Let 𝐾 be a closed convex subset of 𝑋 and
𝑇 : 𝐾 → 2

𝐿(𝑋,𝑌) scalar 𝐶-pseudomonotone and upper
semicontinuous with nonempty compact convex values, where
𝐿(𝑋, 𝑌) is equipped with the norm topology. Suppose that𝐾

∞
∩

[𝜉(𝑇(𝐾))]
−

= {0} for any 𝜉 ∈ 𝐶∗0.Then, 𝑆𝑤(𝑇,𝐾) is connected.

Proof. From Lemma 9, we know that 𝑆
𝜉
(𝑇,𝐾) is nonempty

and compact for any 𝜉 ∈ 𝐶∗0. Then, it follows from Lemma 7
that 𝑆𝑤(𝑇,𝐾) is nonempty and compact.

Now, we show that 𝑆𝑤(𝑇,𝐾) is connected. First, we
claim that 𝑆

𝜉
(𝑇,𝐾) is convex. Indeed, by the scalar 𝐶-

pseudomonotonicity of 𝑇, it follows from Proposition 1
of [15] that

𝑆
𝜉
(𝑇,𝐾) = {𝑥

0
∈ 𝐾 : ⟨𝜉 (𝑥

∗

) , 𝑥 − 𝑥
0
⟩ ≥ 0,

∀𝑥 ∈ 𝐾, 𝑥
∗

∈ 𝑇 (𝑥)} .
(16)

Clearly, the set {𝑥
0
∈ 𝐾 : ⟨𝜉(𝑥∗), 𝑥 − 𝑥

0
⟩ ≥ 0, ∀𝑥 ∈ 𝐾, 𝑥∗ ∈

𝑇(𝑥)} is convex, and so 𝑆
𝜉
(𝑇,𝐾) is convex.

Setting 𝐹 = 𝑆𝑤(𝑇,𝐾), then 𝐹 is compact. Define a set-
valued mapping 𝐺 : 𝐶

∗0

→ 2
𝐹 as follows:

𝐺 (𝜉) := 𝑆
𝜉
(𝑇,𝐾) , ∀𝜉 ∈ 𝐶

∗0

. (17)

We now show that 𝐺 : 𝐶∗0 → 2𝐹 is closed, where 𝐶∗0
is equipped with the weak∗ topology. Take 𝑥𝛼 ∈ 𝐺(𝜉𝛼) with
𝑥𝛼 → 𝑥0 and 𝜉𝛼 → 𝜉0. The fact 𝑥𝛼 ∈ 𝐺(𝜉𝛼) implies that
there exists 𝑢𝛼 ∈ 𝑇(𝑥𝛼) such that

⟨𝜉
𝛼

(𝑢
𝛼

) , 𝑥 − 𝑥
𝛼

⟩ ≥ 0, ∀𝑥 ∈ 𝐾. (18)

Since 𝐹 = 𝑆𝑤(𝑇,𝐾) is compact and 𝑇 : 𝐾 → 2𝐿(𝑋,𝑌) is upper
semicontinuous, we have 𝑇(𝐹) that is compact. Moreover,
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since 𝑥𝛼 ∈ 𝐹 and 𝑢𝛼 ∈ 𝑇(𝑥𝛼) ⊂ 𝑇(𝐹), there exists a subnet
{𝑢𝛽} of {𝑢𝛼} such that 𝑢𝛽 → 𝑢0. Clearly, 𝑢0 ∈ 𝑇(𝑥0). From
(18), we have

⟨𝜉
𝛽

(𝑢
𝛽

) , 𝑥 − 𝑥
𝛽

⟩ ≥ 0, 1 ∀𝑥 ∈ 𝐾. (19)

Setting 𝑦
𝛽
= ⟨𝑢𝛽, 𝑥 − 𝑥𝛽⟩ and 𝑦∗

𝛽
= 𝜉𝛽, then it follows from

Lemma 13 that

⟨𝜉
0

(𝑢
0

) , 𝑥 − 𝑥
0

⟩ ≥ 0, ∀𝑥 ∈ 𝐾. (20)

This implies that 𝑥0 ∈ 𝐺(𝜉0) and so 𝐺 : 𝐶∗0 → 2𝐹

is closed. Then, from Lemma 10, we know that 𝐺 is upper
semicontinuous. This together with Lemma 11 yields that
𝑆
𝑤(𝑇,𝐾) is connected. This completes the proof.

Remark 15. (i) If 𝐶 = 𝑅𝑃
+
, 𝑇 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑝
) and 𝑓

𝑖
=

𝑀
𝑖
𝑥 + 𝑞
𝑖
, where 𝑀

𝑖
∈ 𝑅𝑛×𝑛 and 𝑞

𝑖
∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑝, then

(𝑊𝑉𝑉𝐼) reduces to an affine vector variational inequality. Lee
and Bu [11] obtained the corresponding result of Theorem 14
for affine vector variational inequalities, seeTheorems 2.1 and
2.2 of [11].

(ii) If 𝐾 is compact, 𝐶 = 𝑅
𝑃

+
and 𝑓

𝑖
, 𝑖 = 1, 2, . . . , 𝑝, are

single-valued and continuous; Cheng [6] obtained the corre-
sponding result of Theorem 17, see Theorem 1 of [6]. Similar
results can be founded in Gong [7] and Gong and Yao [8] for
the connectedness of solution sets for vector equilibrium
problems. Compared with these results, we do not need to
assume that𝐾 is compact but only a unbounded close convex
set.

Example 16 is to clarify Theorem 14.

Example 16. Consider problem (𝑊𝑉𝑉𝐼), where

𝐾 = 𝑅
1

+
, 𝐶 = 𝑅

2

+
, 𝑇 = (𝑓

1
, 𝑓
2
) ,

𝑓
1
(𝑥) = 𝑓

2
(𝑥) =

{{

{{

{

0, 𝑥 ∈ [0, 1) ,

[0, 1] , 𝑥 = 1,

𝑥2, 𝑥 > 1.

(21)

Clearly, 𝑓
𝑖
, 𝑖 = 1, 2, are upper semicontinuous, and 𝑇 =

(𝑓
1
, 𝑓
2
) is scalar 𝐶-pseudomonotone on 𝐾, 𝐾

∞
= 𝑅1
+
. Then,

all the assumptions of Theorem 14 are satisfied. By a simple
computation, we obtain that 𝑆𝑤(𝑓,𝐾) = [0, 1] and so 𝑆𝑤(𝑓,𝐾)

is connected.

When 𝑇 is strictly scalar 𝐶-pseudomonotone, we further
obtain the following path-connectedness result for set-valued
𝑊𝑉𝑉𝐼.

Theorem 17. Let 𝐾 be a closed convex subset of 𝑋 and 𝑇 :

𝐾 → 2𝐿(𝑋,𝑌) strictly scalar 𝐶-pseudomonotone and upper
semicontinuous with nonempty compact convex values, where
𝐿(𝑋, 𝑌) is equipped with the norm topology. Suppose that𝐾

∞
∩

[𝜉(𝑇(𝐾))]
−

= {0} for any 𝜉 ∈ 𝐶∗0. Then, 𝑆𝑤(𝑇,𝐾) is path
connected.

Proof. The nonemptiness of 𝑆
𝑤(𝑇,𝐾) is obvious. We now

claim that for every 𝜉 ∈ 𝐶∗0, 𝑆
𝜉
(𝑓,𝐾) is unique. Let 𝑥∗, 𝑦∗ ∈

𝐾with 𝑥∗ ̸= 𝑦∗ be the solutions of (𝑉𝐼)
𝜉
. Since 𝑥∗ is a solution

of (𝑉𝐼)
𝜉
, then there exists 𝑢∗ ∈ 𝑇(𝑥∗) such that

⟨𝜉 (𝑢
∗

) , 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐾. (22)

Taking 𝑥 = 𝑦∗ in the above inequality, we have

⟨𝜉 (𝑢
∗

) , 𝑦
∗

− 𝑥
∗

⟩ ≥ 0. (23)

By the strictly scalar 𝐶-pseudomonotonicity of 𝑇, it follows
that

⟨𝜉 (V) , 𝑦
∗

− 𝑥
∗

⟩ > 0, ∀V ∈ 𝑇 (𝑦
∗

) , (24)

and so

⟨𝜉 (V) , 𝑥
∗

− 𝑦
∗

⟩ < 0. (25)

This contradicts the fact that 𝑦∗ is a solution of (𝑉𝐼)
𝜉
. Thus,

for every 𝜉 ∈ 𝐶∗0, (𝑉𝐼)
𝜉
has a unique solution 𝑥(𝜉) in 𝐾.

Then, from the proof of Theorem 14, we know that 𝑥(⋅)
is a single-valued and upper semicontinuous mapping and so
continuous. Since𝐶∗0 is path connected, from Lemma 12, the
solution set 𝑆𝑤(𝑇,𝐾) = ∪

𝜉∈𝐶
∗0{𝑥(𝜉)} = 𝑥(𝐶∗0) is also path

connected. This completes the proof.

Remark 18. Note that a stronglymonotonemapping is strictly
monotone and hence strictly pseudomonotone; Theorem 17
generalized Theorem 4.2 of [10] from single-valued map-
pings to set-valued mappings under a weaker monotonicity
assumption.

Example 19 is to clarify Theorem 17.

Example 19. Consider problems (𝑊𝑉𝑉𝐼) and (𝑉𝑉𝐼), where

𝐾 = 𝑅
1

+
, 𝐶 = 𝑅

2

+
,

𝑇 = (𝑓
1
, 𝑓
2
) with 𝑓

1
(𝑥) = 𝑥 + 1, 𝑓

2
(𝑥) ≡ 1.

(26)

Clearly, 𝑓
𝑖
, 𝑖 = 1, 2, are upper semicontinuous, and 𝑇 =

(𝑓
1
, 𝑓
2
) is strictly 𝐶-pseudomonotone on𝐾,𝐾

∞
= 𝑅
1

+
. Then,

all the assumptions of Theorem 17 are satisfied. By a simple
computation, we obtain that 𝑆𝑤(𝑓,𝐾) = {0} and so 𝑆𝑤(𝑓,𝐾)

is path connected.
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