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We study the global asymptotic stability of the following difference equation: 𝑥
𝑛+1

= 𝑓(𝑥
𝑛−𝑘1

, 𝑥
𝑛−𝑘2

, . . . , 𝑥
𝑛−𝑘𝑠

; 𝑥
𝑛−𝑚1

, 𝑥
𝑛−𝑚2

, . . . ,

𝑥
𝑛−𝑚𝑡

), 𝑛 = 0, 1, . . . , where 0 ≤ 𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑠
and 0 ≤ 𝑚

1
< 𝑚
2
< ⋅ ⋅ ⋅ < 𝑚

𝑡
with {𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑠
}⋂{𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑡
} = 0, the

initial values are positive, and 𝑓 ∈ 𝐶(𝐸𝑠+𝑡, (0, +∞)) with 𝐸 ∈ {(0, +∞), [0, +∞)}. We give sufficient conditions under which the
unique positive equilibrium 𝑥 of that equation is globally asymptotically stable.

1. Introduction

In this note, we consider a nonlinear difference equation
and deal with the question of whether the unique positive
equilibrium 𝑥 of that equation is globally asymptotically
stable. Recently, there has been much interest in studying the
global attractivity, the boundedness character, and the peri-
odic nature of nonlinear difference equations; for example,
see [1–22].

Amleh et al. [1] studied the characteristics of the differ-
ence equation:

𝑥
𝑛+1

= 𝑝 +

𝑥
𝑛−1

𝑥
𝑛

. (E1)

They confirmed a conjecture in [13] and showed that the
unique positive equilibrium 𝑥 = 𝑝 + 1 of (E1) is globally
asymptotically stable provided 𝑝 > 1.

Fan et al. [8] investigated the following difference equa-
tion:

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑥
𝑛−𝑘
) . (E2)

They showed that the length of finite semicycle of (E2) is
less than or equal to 𝑘 and gave sufficient conditions under
which every positive solution of (E2) converges to the unique
positive equilibrium.

Kulenović et al. [11] investigated the periodic nature, the
boundedness character, and the global asymptotic stability of
solutions of the nonautonomous difference equation

𝑥
𝑛+1

= 𝑝
𝑛
+

𝑥
𝑛−1

𝑥
𝑛

, 𝑛 = 0, 1, 2, . . . , (E3)

where the initial values 𝑥
−1
, 𝑥
0
∈ 𝑅
+
≡ (0, +∞) and 𝑝

𝑛
is the

period-two sequence

𝑝
𝑛
= {

𝛼, if 𝑛 is even,
𝛽, if 𝑛 is odd,

with 𝛼, 𝛽 ∈ 𝑅
+
. (1)

Sun and Xi [20] studied the more general equation

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛−𝑠
, 𝑥
𝑛−𝑡
) , 𝑛 = 0, 1, 2, . . . , (E4)

where 𝑠, 𝑡 ∈ {0, 1, 2, . . .} with 𝑠 < 𝑡, the initial values
𝑥
−𝑡
, 𝑥
−𝑡+1

, . . . , 𝑥
0
∈ 𝑅
+
and gave sufficient conditions under

which every positive solution of (E4) converges to the unique
positive equilibrium.

In this paper, we study the global asymptotic stability of
the following difference equation:

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛−𝑘
1

, 𝑥
𝑛−𝑘
2

, . . . , 𝑥
𝑛−𝑘
𝑠

; 𝑥
𝑛−𝑚
1

, 𝑥
𝑛−𝑚
2

, . . . , 𝑥
𝑛−𝑚
𝑡

) ,

𝑛 = 0, 1, . . . ,

(2)
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where 0 ≤ 𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑠
and 0 ≤ 𝑚

1
< 𝑚
2
<

⋅ ⋅ ⋅ < 𝑚
𝑡
with {𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑠
}⋂{𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑡
} = 0, the

initial values are positive and 𝑓 ∈ 𝐶(𝐸
𝑠+𝑡

, (0, +∞)) with
𝐸 ∈ {(0, +∞), [0, +∞)} and 𝑎 = inf

(𝑢
1
,𝑢
2
,...,𝑢
𝑠
,V
1
,V
2
,...,V
𝑡
)∈𝐸
𝑠+𝑡 ×

𝑓(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑠
; V
1
, V
2
, . . . , V

𝑡
) ∈ 𝐸 satisfies the following

conditions:

(𝐻
1
) 𝑓(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑠
; V
1
, V
2
, . . . , V

𝑡
) is decreasing in 𝑢

𝑖

for any 𝑖 ∈ {1, 2, . . . , 𝑠} and increasing in V
𝑗
for any

𝑗 ∈ {1, 2, . . . , 𝑡}.

(𝐻
2
) Equation (2) has the unique positive equilib-

rium, denoted by 𝑥.

(𝐻
3
) The function 𝑓(𝑎, 𝑎, . . . , 𝑎; 𝑥, 𝑥, . . . , 𝑥) has only

fixed point in the interval (𝑎, +∞), denoted by 𝐴.

(𝐻
4
) For any 𝑦 ∈ 𝐸, 𝑓(𝑦, . . . , 𝑦; 𝑥, . . . , 𝑥)/𝑥 is

nonincreasing in 𝑥 ∈ (0, +∞).

(𝐻
5
) If (𝑥, 𝑦) ∈ 𝐸 × 𝐸 is a solution of the system

𝑦 = 𝑓 (𝑥, . . . , 𝑥; 𝑦, . . . , 𝑦) ,

𝑥 = 𝑓 (𝑦, . . . , 𝑦; 𝑥, . . . , 𝑥) ,

(3)

then 𝑥 = 𝑦.

2. Main Result

Theorem 1. Assume that (𝐻
1
)–(𝐻
5
) hold. Then the unique

positive equilibrium 𝑥 of (2) is globally asymptotically stable.

Proof. Let 𝑙 = max{𝑚
𝑡
, 𝑘
𝑠
}. Since

𝑎 = inf
(𝑢
1
,𝑢
2
,...,𝑢
𝑠
,V
1
,V
2
,...,V
𝑡
)∈𝐸
𝑠+𝑡𝑓 (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑠
; V
1
, V
2
, . . . , V

𝑡
)

∈ 𝐸,

(4)

we have

𝑥 = 𝑓 (𝑥, 𝑥, . . . , 𝑥) > 𝑓 (𝑥 + 1, 𝑥, . . . , 𝑥) ≥ 𝑎. (5)

Claim 1.𝑓(𝐴, . . . , 𝐴; 𝑎, . . . , 𝑎) < 𝑥 < 𝐴.

Proof of Claim 1. Assume on the contrary that 𝑥 ≥ 𝐴. Then it
follows from (𝐻

1
), (𝐻
3
), and (𝐻

4
) that

𝐴 = 𝑓 (𝑎, . . . , 𝑎; 𝐴, . . . , 𝐴) > 𝑓 (𝑥, . . . , 𝑥; 𝐴, . . . , 𝐴)

=

𝑓 (𝑥, . . . , 𝑥; 𝐴, . . . , 𝐴)

𝐴

𝐴 ≥

𝑓 (𝑥, . . . , 𝑥)

𝑥

𝐴

= 𝐴.

(6)

This is a contradiction. Therefore 𝑥 < 𝐴. Obviously

𝑓 (𝐴, . . . , 𝐴; 𝑎, . . . , 𝑎) < 𝑓 (𝑥, . . . , 𝑥; 𝑥, . . . , 𝑥) = 𝑥. (7)

Claim 1 is proven.

Claim 2. For any𝑀 ≥ 𝐴, 𝐽 = [𝑎,𝑀] is an invariable interval
of (2).

Proof of Claim 2. For any 𝑥
0
, 𝑥
−1
, . . . , 𝑥

−𝑙
∈ 𝐽, we have from

(𝐻
4
) that

𝑎 ≤ 𝑥
1

= 𝑓 (𝑥
−𝑘
1

, 𝑥
−𝑘
2

, . . . , 𝑥
−𝑘
𝑠

; 𝑥
−𝑚
1

, 𝑥
−𝑚
2

, . . . , 𝑥
−𝑚
𝑡

)

≤

𝑓 (𝑎, . . . , 𝑎;𝑀, . . . ,𝑀)

𝑀

𝑀 ≤

𝑓 (𝑎, . . . , 𝑎; 𝐴, . . . , 𝐴)

𝐴

𝑀

= 𝑀.

(8)

By induction, wemay show that 𝑥
𝑛
∈ 𝐽 for any 𝑛 ≥ 1. Claim 2

is proven.

Let𝑚
0
= 𝑎,𝑀

0
= 𝑀 ≥ 𝐴 and for any 𝑖 ≥ 0,

𝑚
𝑖+1
= 𝑓 (𝑀

𝑖
, . . . ,𝑀

𝑖
; 𝑚
𝑖
, . . . , 𝑚

𝑖
) ,

𝑀
𝑖+1
= 𝑓 (𝑚

𝑖
, . . . , 𝑚

𝑖
;𝑀
𝑖
, . . . ,𝑀

𝑖
) .

(9)

Claim 3. For any 𝑛 ≥ 0, we have

𝑚
𝑛
≤ 𝑚
𝑛+1

< 𝑥 < 𝑀
𝑛+1

≤ 𝑀
𝑛
,

lim
𝑛→∞

𝑀
𝑛
= lim
𝑛→∞

𝑚
𝑛
= 𝑥.

(10)

Proof of Claim 3. From Claim 2, we obtain

𝑚
0
≤ 𝑚
1
= 𝑓 (𝑀

0
, . . . ,𝑀

0
; 𝑚
0
, . . . , 𝑚

0
)

< 𝑓 (𝑥, . . . , 𝑥) = 𝑥

< 𝑓 (𝑚
0
, . . . , 𝑚

0
;𝑀
0
, . . . ,𝑀

0
)

= 𝑀
1
≤ 𝑀
0
,

𝑚
1
= 𝑓 (𝑀

0
, . . . ,𝑀

0
; 𝑚
0
, . . . , 𝑚

0
)

≤ 𝑓 (𝑀
1
, . . . ,𝑀

1
; 𝑚
1
, . . . , 𝑚

1
) = 𝑚

2

< 𝑓 (𝑥, . . . , 𝑥) = 𝑥

< 𝑓 (𝑚
1
, . . . , 𝑚

1
;𝑀
1
, . . . ,𝑀

1
) = 𝑀

2

≤ 𝑓 (𝑚
0
, . . . , 𝑚

0
;𝑀
0
, . . . ,𝑀

0
)

= 𝑀
1
.

(11)

By induction, we have that for 𝑛 ≥ 0,

𝑚
𝑛
≤ 𝑚
𝑛+1

< 𝑥 < 𝑀
𝑛+1

≤ 𝑀
𝑛
. (12)

Set

𝛽 = lim
𝑛→∞

𝑚
𝑛

𝑎𝑛𝑑 𝛼 = lim
𝑛→∞

𝑀
𝑛
. (13)



Abstract and Applied Analysis 3

Then

𝛽 = 𝑓 (𝛼, . . . , 𝛼; 𝛽, . . . , 𝛽) ,

𝛼 = 𝑓 (𝛽, . . . , 𝛽; 𝛼, . . . , 𝛼) .

(14)

Thiswith (𝐻
2
) and (𝐻

5
) implies𝛼 = 𝛽 = 𝑥. Claim 3 is proven.

Claim 4.The equilibrium 𝑥 of (2) is locally stable.

Proof of Claim 4. Let 𝑀 = 𝐴 and 𝑚
𝑛
,𝑀
𝑛
be the same as

Claim 3. For any 𝜀 > 0 with 0 < 𝜀 < min{𝐴 − 𝑥, 𝑥 − 𝑎},
there exists 𝑛 > 0 such that

𝑥 − 𝜀 < 𝑚
𝑛
< 𝑥 < 𝑀

𝑛
< 𝑥 + 𝜀. (15)

Set 0 < 𝛿 = min{𝑥 − 𝑚
𝑛
,𝑀
𝑛
− 𝑥}. Then for any

𝑥
0
, 𝑥
−1
, . . . , 𝑥

−𝑙
∈ (𝑥 − 𝛿, 𝑥 + 𝛿), we have

𝑥
1
= 𝑓 (𝑥

−𝑘
1

, . . . , 𝑥
−𝑘
𝑠

; 𝑥
−𝑚
1

, . . . , 𝑥
−𝑚
𝑡

)

≤ 𝑓 (𝑚
𝑛
, . . . , 𝑚

𝑛
;𝑀
𝑛
, . . . ,𝑀

𝑛
)

= 𝑀
𝑛+1

≤ 𝑀
𝑛
,

𝑥
1
= 𝑓 (𝑥

−𝑘
1

, . . . , 𝑥
−𝑘
𝑠

; 𝑥
−𝑚
1

, . . . , 𝑥
−𝑚
𝑡

)

≥ 𝑓 (𝑀
𝑛
, . . . ,𝑀

𝑛
; 𝑚
𝑛
, . . . , 𝑚

𝑛
)

= 𝑚
𝑛+1

≥ 𝑚
𝑛
.

(16)

In similar fashion,we can show that for any 𝑘 ≥ 1,

𝑥
𝑘
∈ [𝑚
𝑛
,𝑀
𝑛
] ⊂ (𝑥 − 𝜀, 𝑥 + 𝜀) . (17)

Claim 4 is proven.

Claim 5. 𝑥 is the global attractor of (2).

Proof of Claim 5. Let {𝑥
𝑛
}
∞

𝑛=−𝑙
be a positive solution of (2),

and let 𝑀 = max{𝑥
1
, . . . , 𝑥

𝑙+1
, 𝐴} and 𝑚

𝑛
,𝑀
𝑛
be the same

as Claim 3. From Claim 2, we have 𝑥
𝑛
∈ [𝑚
0
,𝑀
0
] = [𝑎,𝑀]

for any 𝑛 ≥ 1. Moreover, we have

𝑥
𝑙+2

= 𝑓 (𝑥
𝑙+1−𝑘

1

, . . . , 𝑥
𝑙+1−𝑘

𝑠

; 𝑥
𝑙+1−𝑚

1

, . . . , 𝑥
𝑙+1−𝑚

𝑡

)

≤ 𝑓 (𝑚
0
, . . . , 𝑚

0
;𝑀
0
, . . . ,𝑀

0
) = 𝑀

1
,

𝑥
𝑙+2

= 𝑓 (𝑥
𝑙+1−𝑘

1

, . . . , 𝑥
𝑙+1−𝑘

𝑠

; 𝑥
𝑙+1−𝑚

1

, . . . , 𝑥
𝑙+1−𝑚

𝑡

)

≥ 𝑓 (𝑀
0
, . . . ,𝑀

0
; 𝑚
0
, . . . , 𝑚

0
) = 𝑚

1
.

(18)

In similar fashion, we may show 𝑥
𝑛
∈ [𝑚
1
,𝑀
1
] for any 𝑛 ≥

𝑙 + 2. By induction, we obtain

𝑥
𝑛
∈ [𝑚
𝑘
,𝑀
𝑘
] for 𝑛 ≥ 𝑘 (𝑙 + 1) + 1. (19)

It follows from Claim 3 that lim
𝑛→∞

𝑥
𝑛
= 𝑥. Claim 5 is

proven.

From Claims 4 and 5, Theorem 1 follows.

3. Applications

In this section, we will give two applications of Theorem 1.

Example 2. Consider equation

𝑥
𝑛+1

= 𝑝 +

∑
𝑡

𝑖=1
𝑎
𝑖
𝑥
𝑛−𝑚
𝑖

∑
𝑠

𝑘=1
𝑏
𝑘
𝑥
𝑛−𝑛
𝑘

+ √

∑
𝑡

𝑖=1
𝑎
𝑖
𝑥
𝑛−𝑚
𝑖

∑
𝑠

𝑘=1
𝑏
𝑘
𝑥
𝑛−𝑛
𝑘

, 𝑛 = 0, 1, . . . ,

(20)

where 0 ≤ 𝑛
1
< 𝑛
2
< ⋅ ⋅ ⋅ < 𝑛

𝑠
and 0 ≤ 𝑚

1
< 𝑚
2
< ⋅ ⋅ ⋅ < 𝑚

𝑡

with {𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑠
}⋂{𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑡
} = 0, 𝑝 > 0, 𝑎

𝑖
> 0

for any 𝑖 ∈ {1, 2, . . . , 𝑡} and 𝑏
𝑘
> 0 for any 𝑘 ∈ {1, 2, . . . , 𝑠},

and the initial conditions 𝑥
−𝑙
, . . . , 𝑥

0
∈ (0,∞) with 𝑙 =

max{𝑚
𝑡
, 𝑛
𝑠
}. Write 𝐴 = ∑

𝑡

𝑖=1
𝑎
𝑖
and 𝐵 = ∑𝑠

𝑘=1
𝑏
𝑘
. If 𝑝𝐵 > 𝐴,

then the unique positive equilibrium 𝑥 of (20) is globally
asymptotically stable.

Proof. Let 𝐸 = (0, +∞). It is easy to verify that
(𝐻
1
), (𝐻

2
), and (𝐻

4
) hold for (20). Note that 𝑎 =

inf
(𝑢
1
,𝑢
2
,...,𝑢
𝑠
,V
1
,V
2
,...,V
𝑡
)∈𝐸
𝑠+𝑡𝑓(𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑠
; V
1
, V
2
, . . . , V

𝑡
) = 𝑝.

Then

𝑥 = 𝑓 (𝑎, 𝑎, . . . , 𝑎; 𝑥, 𝑥, . . . , 𝑥) = 𝑝 +

𝐴𝑥

𝐵𝑝

+ √

𝐴𝑥

𝐵𝑝

(21)

has only solution

𝑥 = √[√𝑝𝐴𝐵 + √𝑝𝐴𝐵 + 4𝑝
2
𝐵 (𝐵𝑝 − 𝐴)] /2 (𝐵𝑝 − 𝑎)

(22)

in the interval (𝑝, +∞), which implies that (𝐻
3
) holds for

(20). In addition, let

𝑥 = 𝑝 +

𝑥𝐴

𝑦𝐵

+ √

𝑥𝐴

𝑦𝐵

,

𝑦 = 𝑝 +

𝑦𝐴

𝑥𝐵

+ √
𝑦𝐴

𝑥𝐵

,

(23)

then

𝑥

𝑦

=

𝑝 + 𝑥𝐴/𝑦𝐵 + √𝑥𝐴/𝑦𝐵

𝑝 + 𝑦𝐴/𝑥𝐵 + √𝑦𝐴/𝑥𝐵

. (24)

Therefore 𝑥/𝑦 = 1, which implies that (23) has unique
solution

𝑥 = 𝑦 = 𝑥 = 𝑝 +

𝐴

𝐵

+ √𝐴/𝐵. (25)

Thus (𝐻
5
) holds for (20). It follows from Theorem 1 that

the equilibrium 𝑥 = 𝑝 + 𝐴/𝐵 + √𝐴/𝐵 of (20) is globally
asymptotically stable.
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Example 3. Consider equation

𝑥
𝑛+1

=

𝑞 + ∑
𝑡

𝑖=1
𝑎
𝑖
𝑥
𝑛−𝑚
𝑖

𝑝 + ∑
𝑠

𝑘=1
𝑏
𝑘
𝑥
𝑛−𝑛
𝑘

, 𝑛 = 0, 1, . . . , (26)

where 0 ≤ 𝑛
1
< 𝑛
2
< ⋅ ⋅ ⋅ < 𝑛

𝑠
and 0 ≤ 𝑚

1
< 𝑚
2
<

⋅ ⋅ ⋅ < 𝑚
𝑡
with {𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑠
}⋂{𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑡
} = 0, 𝑝 >

0, 𝑞 > 0, 𝑎
𝑖
> 0 for any 1 ≤ 𝑖 ≤ 𝑡 and 𝑏

𝑗
> 0 for any

1 ≤ 𝑗 ≤ 𝑠, and the initial conditions 𝑥
−𝑙
, . . . , 𝑥

0
∈ (0,∞)

with 𝑙 = max{𝑚
𝑡
, 𝑛
𝑠
}. Write 𝐴 = ∑

𝑡

𝑖=1
𝑎
𝑖
and 𝐵 = ∑

𝑠

𝑘=1
𝑏
𝑘
.

If 𝑝 > 𝐴, then the unique positive equilibrium 𝑥 of (26) is
globally asymptotically stable.

Proof. Let 𝐸 = [0, +∞). It is easy to verify that (𝐻
1
)–(𝐻
4
)

hold for (26). In addition, the following equation

𝑥 =

𝑞 + 𝑥𝐴

𝑝 + 𝑦𝐵

,

𝑦 =

𝑞 + 𝑦𝐴

𝑝 + 𝑥𝐵

(27)

has unique solution

𝑥 = 𝑦 = 𝑥 =

𝐴 − 𝑝 + √(𝑝 − 𝐴)
2

+ 4𝐵𝑞

2𝐵

,
(28)

which implies that (𝐻
5
) holds for (26). It follows

from Theorem 1 that the equilibrium 𝑥 = (𝐴 − 𝑝 +

√(𝑝 − 𝐴)
2

+ 4𝐵𝑞)/2𝐵 of (26) is globally asymptotically
stable.
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