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We construct the 𝑁th order nonlinear ordinary differential equation related to the generating function of 𝑞-Euler numbers with
weight 0. From this, we derive some identities on 𝑞-Euler numbers and polynomials of higher order with weight 0.

1. Introduction

As a well-known definition, the Euler polynomial 𝐸
𝑛
(𝑥) is

given by

2

𝑒𝑡 + 1
𝑒
𝑥𝑡

=

∞

∑

𝑛=0

𝐸
𝑛
(𝑥)

𝑡
𝑛

𝑛!
. (1)

In the special case, 𝑥 = 0, 𝐸
𝑛
(0) = 𝐸

𝑛
is the 𝑛th Euler number.

From (1), we note that

𝐸
0
= 1, (𝐸 + 1)

𝑛

+ 𝐸
𝑛
= 0, if 𝑛 > 0, (2)

with the usual convention of replacing 𝐸𝑛 by 𝐸
𝑛
(see [1–16]).

In the viewpoint of the 𝑞-extension of (1) and (2), let us
consider the following 𝑞-Euler number and polynomial:

2

𝑞𝑒𝑡 + 1
𝑒
𝑥𝑡

=

∞

∑

𝑛=0

𝐸
𝑛,𝑞
(𝑥)

𝑡
𝑛

𝑛!
, (3)

𝐸
0,𝑞
=

2

1 + 𝑞
, 𝑞(𝐸

𝑞
+ 1)
𝑛

+ 𝐸
𝑛,𝑞
= 0, if 𝑛 > 0, (4)

with the usual convention of replacing 𝐸𝑛
𝑞
by 𝐸
𝑛,𝑞
.

Equation (3) is called the generating function of 𝑞-Euler
polynomial with weight 0. In the case 𝑥 = 0, 𝐸

𝑛,𝑞
(0) = 𝐸

𝑛,𝑞
is

the 𝑛th 𝑞-Euler number with weight 0 (see [5, 11]).
Throughout this paper, let 𝑞 be a complex number with

|𝑞| < 1. As 𝑞 → 1, we obtain (1) and (2) from (3) and (4).

The generating function of Eulerian polynomial 𝐻
𝑛
(𝑥 |

𝑢) is defined by

1 − 𝑢

𝑒𝑡 − 𝑢
𝑒
𝑥𝑡

=

∞

∑

𝑛=0

𝐻
𝑛
(𝑥 | 𝑢)

𝑡
𝑛

𝑛!
, (5)

where 𝑢 ∈ C with 𝑢 ̸= 1. In the special case, 𝑥 = 0, 𝐻
𝑛
(0 |

𝑢) = 𝐻
𝑛
(𝑢) is called the 𝑛th Eulerian number (see [1–3]).

Sometimes that is called the 𝑛th Frobenius-Euler number (see
[9–11, 15]).

From (1) and (5), we note that𝐻
𝑛
(𝑥 | −1) = 𝐸

𝑛
(𝑥). From

(5), we have

𝐻
0
(𝑢) = 1, 𝐻

𝑛
(1 | 𝑢) − 𝑢𝐻

𝑛
(𝑢) = (1 − 𝑢) 𝛿

0,𝑛
, (6)

where 𝛿
𝑛,𝑘

is Kronecker symbol (see [9–11]).
For𝑁 ∈ N, the 𝑞-Euler polynomial of order𝑁 is defined

by the generating function as follows:

𝐺
𝑁

𝑞
(𝑡, 𝑥) = (

2

𝑞𝑒𝑡 + 1
) × ⋅ ⋅ ⋅ × (

2

𝑞𝑒𝑡 + 1
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁-times

𝑒
𝑥𝑡

=

∞

∑

𝑛=0

𝐸
(𝑁)

𝑛,𝑞
(𝑥)

𝑡
𝑛

𝑛!
.

(7)

In the special case, 𝑥 = 0, 𝐸(𝑁)
𝑛,𝑞
(0) = 𝐸

(𝑁)

𝑛,𝑞
is called the 𝑛th

𝑞-Euler number of order𝑁 with weight 0 (see [5, 11]).



2 Abstract and Applied Analysis

In [9], Kim derived some identities between the sums
of products of Frobenius-Euler polynomials and Frobenius-
Euler polynomials of higher order. The main idea is to con-
struct nonlinear ordinary differential equations with respect
to 𝑡 which are closely related to the generating function
of Frobenius-Euler polynomial. In [3], Choi considered
nonlinear ordinary differential equations with respect to 𝑢
not 𝑡.

In this paper, we construct nonlinear ordinary differential
equations with respect to 𝑞. The purpose of this paper is to
give some new identities on the high order 𝑞-Euler numbers
and polynomials with weight 0 by using the differential
equations of 𝑞.

2. Construction of Nonlinear
Differential Equations

We define

𝐺 = 𝐺 (𝑞) =
1

𝑞𝑒𝑡 + 1
,

𝐺
𝑁

(𝑡, 𝑥) = 𝐺 × ⋅ ⋅ ⋅ × 𝐺⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁-times
𝑒
𝑥𝑡 for 𝑁 ∈ N.

(8)

From (7) and (8), we note that

𝐺
𝑁

𝑞
(𝑡, 𝑥) = 2

𝑁

𝐺
𝑁

(𝑡, 𝑥) = 2
𝑁

𝐺
𝑁

𝑒
𝑥𝑡

. (9)

By differentiating (8) with respect to 𝑞, we get

𝐺
(1)

=
𝑑𝐺

𝑑𝑞
= −

𝑞𝑒
𝑡

+ 1 − 1

𝑞(𝑞𝑒𝑡 + 1)
2
= −

𝐺

𝑞
+
𝐺
2

𝑞
,

𝑞𝐺
(1)

+ 𝐺 = 𝐺
2

.

(10)

By differentiating (10) with respect to 𝑞, we get

𝑞
2

𝐺
(2)

+ 4𝑞𝐺
(1)

+ 2𝐺 = 2!𝐺
3

, (11)

where 𝐺(𝑁) = 𝑑𝑁𝐺/𝑑𝑞𝑁.
By the derivative of (11) with respect to 𝑞, we have

𝑞
3

𝐺
(3)

+ 9𝑞
2

𝐺
(2)

+ 18𝑞𝐺
(1)

+ 3!𝐺 = 3!𝐺
4

. (12)

Continuing this process, we get

(𝑁 − 1)!𝐺
𝑁

=

𝑁−1

∑

𝑘=0

𝑎
𝑘
(𝑁) 𝑞
𝑘

𝐺
(𝑘)

. (13)

Let us consider the derivative of (13) with respect to 𝑞 to
find the coefficient 𝑎

𝑘
(𝑁) in (13).

By (10), we get

𝑞
𝑑

𝑑𝑞
((𝑁 − 1)! 𝐺

𝑁

) = 𝑁!𝐺
𝑁−1

𝑞𝐺
(1)

= 𝑁!𝐺
𝑁−1

(−𝐺 + 𝐺
2

)

= 𝑁!𝐺
𝑁+1

− 𝑁 (𝑁 − 1)!𝐺
𝑁

.

(14)

From (13) and (14), we get

𝑁!𝐺
𝑁+1

= 𝑁 (𝑁 − 1)!𝐺
𝑁

+

𝑁−1

∑

𝑘=0

𝑘𝑎
𝑘
(𝑁) 𝑞
𝑘

𝐺
(𝑘)

+

𝑁

∑

𝑘=1

𝑎
𝑘−1
(𝑁) 𝑞
𝑘

𝐺
(𝑘)

,

(15)

where𝑁!𝐺𝑁+1 = ∑𝑁
𝑘=0
𝑎
𝑘
(𝑁 + 1)𝑞

𝑘

𝐺
(𝑘).

By comparing coefficients on both sides of (15), we obtain
the following recurrence relations:

𝑎
0
(𝑁 + 1) = 𝑁𝑎

0
(𝑁) , 𝑎

𝑁
(𝑁 + 1) = 𝑎

𝑁−1
(𝑁) , (16)

𝑎
𝑘
(𝑁 + 1) = 𝑁𝑎

𝑘
(𝑁) + 𝑘𝑎

𝑘
(𝑁) + 𝑎

𝑘−1
(𝑁) , (17)

for 1 ≤ 𝑘 ≤ 𝑁 − 1 and 𝑎
𝑘
(𝑁) = 0.

From the first part of (16), we have

𝑎
0
(𝑁 + 1) = 𝑁𝑎

0
(𝑁)

= 𝑁 (𝑁 − 1) 𝑎
0
(𝑁 − 1)

= ⋅ ⋅ ⋅ = 𝑁!𝑎
0
(2) .

(18)

By (10) and (13), we have

𝑞𝐺
(1)

+ 𝐺 = 𝐺
2

=

1

∑

𝑘=0

𝑎
𝑘
(2) 𝑞
𝑘

𝐺
(𝑘)

= 𝑎
0
(2) 𝐺 + 𝑎

1
(2) 𝑞𝐺

(1)

.

(19)

From (18) and (19), we get

𝑎
0
(2) = 1, 𝑎

1
(2) = 1, 𝑎

0
(𝑁) = (𝑁 − 1)!. (20)

From the second part of (16), we have

𝑎
𝑁
(𝑁 + 1) = 𝑎

𝑁−1
(𝑁) = ⋅ ⋅ ⋅ = 𝑎

1
(2) = 1. (21)

To find 𝑎
𝑘
(𝑁) in (13) from (17), we set

𝑔 (𝑡, 𝑠) = ∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

𝑎
𝑘
(𝑁)

𝑡
𝑁

𝑁!
𝑠
𝑘

, (22)

where |𝑡| < 1 (see [9]).
From (17) and (22), we have

∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

𝑎
𝑘+1
(𝑁 + 1)

𝑡
𝑁

𝑁!
𝑠
𝑘

= ∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

𝑁𝑎
𝑘−1
(𝑁)

𝑡
𝑁

𝑁!
𝑠
𝑘

+ ∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

(𝑘 + 1) 𝑎
𝑘+1
(𝑁)

𝑡
𝑁

𝑁!
𝑠
𝑘

+ 𝑔 (𝑡, 𝑠) .

(23)
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From the left hand side of (23), we have

∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

𝑎
𝑘+1
(𝑁 + 1)

𝑡
𝑁

𝑁!
𝑠
𝑘

=
1

𝑠
∑

𝑁≥2

∑

1≤𝑘≤𝑁−1

𝑎
𝑘
(𝑁)

𝑡
𝑁−1

(𝑁 − 1)!
𝑠
𝑘

=
1

𝑠
∑

𝑁≥2

( ∑

0≤𝑘≤𝑁−1

𝑎
𝑘
(𝑁)

𝑡
𝑁−1

(𝑁 − 1)!
𝑠
𝑘

− 𝑎
0
(𝑁)

𝑡
𝑁−1

(𝑁 − 1)!
)

=
1

𝑠
(∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

𝑎
𝑘
(𝑁)

𝑡
𝑁−1

(𝑁 − 1)!
𝑠
𝑘

− 𝑎
0
(1) − ∑

𝑁≥2

𝑡
𝑁−1

)

=
1

𝑠
(𝑔
𝑡
+

1

𝑡 − 1
) ,

(24)

where 𝑔
𝑡
= 𝜕𝑔/𝜕𝑡. From the first term of the right hand side

of (23), we have

∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

𝑁𝑎
𝑘+1
(𝑁)

𝑡
𝑁

𝑁!
𝑠
𝑘

=
𝑡

𝑠
∑

𝑁≥1

∑

1≤𝑘≤𝑁−1

𝑎
𝑘
(𝑁)

𝑡
𝑁−1

(𝑁 − 1)!
𝑠
𝑘

=
𝑡

𝑠
(∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

𝑎
𝑘
(𝑁)

𝑡
𝑁−1

(𝑁 − 1)!
𝑠
𝑘

−∑

𝑁≥1

𝑎
0
(𝑁)

(𝑁 − 1)!
𝑡
𝑁−1

)

=
𝑡

𝑠
(𝑔
𝑡
+

1

𝑡 − 1
) .

(25)

From the second term of the right hand side of (23), we have

∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

(𝑘 + 1) 𝑎
𝑘+1
(𝑁)

𝑡
𝑁

𝑁!
𝑠
𝑘

= ∑

𝑁≥1

∑

1≤𝑘≤𝑁

𝑘𝑎
𝑘
(𝑁)

𝑡
𝑁

𝑁!
𝑠
𝑘−1

= ∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

𝑘𝑎
𝑘
(𝑁)

𝑡
𝑁

𝑁!
𝑠
𝑘−1

= 𝑔
𝑠
,

(26)

where 𝑔
𝑠
= 𝜕𝑔/𝜕𝑠.

From (22)–(26), we obtain the following initial value
problem quasilinear first-order partial differential equation:

(𝑡 − 1) 𝑔
𝑡
+ 𝑠𝑔
𝑠
= −𝑠𝑔 − 1, |𝑡| < 1,

𝑔 (0, 𝑠) = 0, 𝑠 ∈ R.
(27)

We consider Cauchy problem for the following first-order
quasilinear partial differential equation:

𝑃 (𝑥, 𝑦, 𝑧) 𝑧
𝑥
+ 𝑄 (𝑥, 𝑦, 𝑧) 𝑧

𝑦

= 𝑅 (𝑥, 𝑦, 𝑧) ,

𝑧 (𝑥
0
(𝑡) , 𝑦
0
(𝑡)) = 𝑧

0
(𝑡) , 𝑡 ∈ 𝐼,

(28)

where 𝐼 is some interval.
We know that (28) has a unique solution under some

conditions as follows.

Theorem A (see [17, page 65]). Suppose that 𝑃,𝑄, and 𝑅 are
of class𝐶1 in a domainΩ ofR3 containing the point (𝑥

0
, 𝑦
0
, 𝑧
0
)

and suppose that

𝑃 (𝑥
0
, 𝑦
0
, 𝑧
0
)
𝑑𝑦
0
(𝑡
0
)

𝑑𝑡
− 𝑄 (𝑥

0
, 𝑦
0
, 𝑧
0
)
𝑑𝑥
0
(𝑡
0
)

𝑑𝑡
̸= 0. (29)

Then in a neighborhood 𝑈 of (𝑥
0
, 𝑦
0
) there exists a unique

solution of (28) at every point of initial curve contained in 𝑈.

Since (27) satisfies (29) and regularity conditions, there
exists a unique solution of (27).

It is customary to write (27) in the form

𝑑𝑡

𝑡 − 1
=
𝑑𝑠

𝑠
=

𝑑𝑔

−𝑠𝑔 − 1
, (30)

𝑡 = 0, 𝑠 = 𝑝, 𝑔 = 0. (31)

Since 𝑑𝑡/(𝑡 − 1) = 𝑑𝑠/𝑠 is separable, we get

𝑢
1
(𝑡, 𝑠, 𝑔) =

1 − 𝑡

𝑠
. (32)

𝑢
1
is a solution of partial differential equation of (27).
From (30), we get the linear equation

𝑑𝑔

𝑑𝑠
= −𝑔 −

1

𝑠
. (33)

By the integrating factor method, we have

𝑢
2
(𝑡, 𝑠, 𝑔) = 𝑒

𝑠

𝑔 + 𝐸
𝑖
(𝑠) . (34)

The exponential integral 𝐸
𝑖
(𝑠) is defined by

𝐸
𝑖
(𝑠) = ∫

𝑠

−∞

𝑒
𝑟

𝑟
𝑑𝑟

= 𝛾 + ln |𝑠| +
∞

∑

𝑛=1

𝑠
𝑛

𝑛 ⋅ 𝑛!
, (𝑠 ∈ R, 𝑠 ̸= 0) ,

(35)

where 𝛾 is Euler constant.
𝑢
2
is another solution of partial differential equation of

(27), and 𝑢
1
and 𝑢

2
are linearly independent.

From the parameterized initial conditions (31), (33), and
(34), we get

𝑢
2
= 𝐸
𝑖
(
1

𝑢
1

) , 𝑒
𝑠

𝑔 + 𝐸
𝑖
(𝑥) = 𝐸

𝑖
(
𝑠

1 − 𝑡
) . (36)
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Thus, from (35) and (36), we obtain the following unique
solution of (27):

𝑔 (𝑡, 𝑠) = 𝑒
−𝑠

(− ln |1 − 𝑡| +
∞

∑

𝑛=1

𝑠
𝑛

𝑛 ⋅ 𝑛!
((

1

1 − 𝑡
)

𝑛

− 1)) .

(37)

Moreover, if we choose another initial condition

𝑔 (𝑡, 0) =

∞

∑

𝑁≥1

𝑎
0
(𝑁)

𝑡
𝑁

𝑁!
=

∞

∑

𝑁≥1

𝑡
𝑁

𝑁
(38)

from (20) and (22), then (37) satisfies it.
We note that

(
1

1 − 𝑡
)

𝑛

− 1 = (∑

𝑙
1
≥0

𝑡
𝑙
1) × ⋅ ⋅ ⋅ × (∑

𝑙
𝑛
≥0

𝑡
𝑙
𝑛)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛-times

− 1

= ∑

𝑁≥1

( ∑

𝑙
1
+⋅⋅⋅+𝑙
𝑛
=𝑁

𝑡
𝑁

)

= ∑

𝑁≥1

(
𝑛 + 𝑁 − 1

𝑁
) 𝑡
𝑁

.

(39)

By (37) and (39), we get

𝑔 (𝑡, 𝑠) = (∑

𝑘≥0

(−1)
𝑘

𝑘!
𝑠
𝑘

)(∑

𝑁≥1

𝑡
𝑁

𝑁
)

+ (∑

𝑘≥0

(−1)
𝑘

𝑘!
𝑠
𝑘

)

× (∑

𝑛≥1

𝑠
𝑛

𝑛 ⋅ 𝑛!
∑

𝑁≥1

(
𝑛 + 𝑁 − 1

𝑁
) 𝑡
𝑁

)

= ∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

(−1)
𝑘

𝑁 ⋅ 𝑘!
𝑡
𝑁

𝑠
𝑘

+ ∑

𝑁≥1

∑

𝑘≥𝑁

(−1)
𝑘

𝑁 ⋅ 𝑘!
𝑡
𝑁

𝑠
𝑘

+ ∑

𝑁≥1

∑

1≤𝑘≤𝑁−1

(

𝑘

∑

𝑙=1

(−1)
𝑘−𝑙

(𝑘 − 𝑙)! 𝑙 ⋅ 𝑙!
(
𝑙 + 𝑁 − 1

𝑁
)) 𝑡
𝑁

𝑠
𝑘

+ ∑

𝑁≥1

∑

𝑘≥𝑁

(

𝑘

∑

𝑙=1

(−1)
𝑘−𝑙

(𝑘 − 𝑙)! 𝑙 ⋅ 𝑙!
(
𝑙 + 𝑁 − 1

𝑁
)) 𝑡
𝑁

𝑠
𝑘

.

(40)

It is known that

(−1)
𝑙

(
𝑙 + 𝑁 − 1

𝑁
) =

𝑙

𝑁
(
−𝑁

𝑙
) ,

𝑘

∑

𝑙=0

(
𝑘

𝑙
)(
𝑁

𝑙
) = (

𝑘 + 𝑁

𝑘
) .

(41)

In the case of 𝑘 ≥ 𝑁 in (40), from (41), we get

(−1)
𝑘

𝑁 ⋅ 𝑘!
+

𝑘

∑

𝑙=1

(−1)
𝑘−𝑙

(𝑘 − 𝑙)!𝑙 ⋅ 𝑙!
(
𝑙 + 𝑁 − 1

𝑁
)

= (−1)
𝑘

(
1

𝑁 ⋅ 𝑘!
+

1

𝑁 ⋅ 𝑘!

𝑘

∑

𝑙=1

(
𝑘

𝑙
)(
−𝑁

𝑙
))

= (−1)
𝑘
1

𝑁 ⋅ 𝑘!
(1 + (

𝑘 − 𝑁

𝑘
) − 1) = 0.

(42)

By (40) and (41), we get

𝑔 (𝑡, 𝑠) = ∑

𝑁≥1

∑

1≤𝑘≤𝑁−1

(−1)
𝑘 (𝑁 − 1)!

𝑘!
(
𝑘 − 𝑁

𝑘
)
𝑡
𝑁

𝑁!
𝑠
𝑘

+ ∑

𝑁≥1

(𝑁 − 1)!
𝑡
𝑁

𝑁!

= ∑

𝑁≥1

∑

0≤𝑘≤𝑁−1

(𝑁 − 𝑘 − 1)!(
𝑁 − 1

𝑘
)

2

𝑡
𝑁

𝑁!
𝑠
𝑘

,

(43)

where ( 𝑘−𝑁
𝑘
) = (−1)

𝑘

(
𝑁−1

𝑘
). Thus, by (22) and (43), we get

𝑎
𝑘
(𝑁) = (𝑁 − 𝑘 − 1)!(

𝑁 − 1

𝑘
)

2

. (44)

Therefore, by (13) and (44), we obtain the following theorem.

Theorem 1. For 𝑞 ∈ C with |𝑞| < 1 and 𝑁 ∈ N, one can
consider the following nonlinear (𝑁 − 1)th order ordinary
differential equation with respect to 𝑞:

𝐺
𝑁

(𝑞) =
1

(𝑁 − 1)!

𝑁−1

∑

𝑘=0

(𝑁 − 𝑘 − 1)!(
𝑁 − 1

𝑘
)

2

𝑞
𝑘

𝐺
(𝑘)

=

𝑁−1

∑

𝑘=0

1

𝑘!
(
𝑁 − 1

𝑘
) 𝑞
𝑘

𝐺
(𝑘)

,

(45)

where 𝐺(𝑘) = 𝑑
𝑘

𝐺
(𝑞)

/𝑑𝑞
𝑘 and 𝐺𝑁(𝑞) = 𝐺(𝑞) × ⋅ ⋅ ⋅ × 𝐺(𝑞)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁-times
.

Then 𝐺(𝑞) = 1/(𝑞𝑒𝑡 + 1) is a solution of (45).

Let us define 𝐺(𝑘)(𝑡, 𝑥) = 𝐺(𝑘)(𝑞)𝑒𝑥𝑡. Then we obtain the
following corollary.

Corollary 2. For𝑁 ∈ N, one considers

𝐺
𝑁

(𝑡, 𝑥) =
1

(𝑁 − 1)!

𝑁−1

∑

𝑘=0

(𝑁 − 𝑘 − 1)!(
𝑁 − 1

𝑘
)

2

𝑞
𝑘

𝐺
(𝑘)

(𝑡, 𝑥)

=

𝑁−1

∑

𝑘=0

1

𝑘!
(
𝑁 − 1

𝑘
) 𝑞
𝑘

𝐺
(𝑘)

(𝑡, 𝑥) .

(46)

Then 𝐺(𝑡, 𝑥) = 𝑒𝑥𝑡/(𝑞𝑒𝑡 + 1) is a solution of (46).
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3. Identities on the High-Order
𝑞-Euler Numbers and
Polynomials with Weight 0

From (3), (7), and (8), we get

𝐺
𝑁

(𝑞) =
1

2𝑁
(

2

𝑞𝑒𝑡 + 1
) × ⋅ ⋅ ⋅ × (

2

𝑞𝑒𝑡 + 1
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁-times

=
1

2𝑁

∞

∑

𝑛=0

𝐸
(𝑁)

𝑛,𝑞

𝑡
𝑛

𝑛!
,

𝐺 (𝑞) =
1

2

2

𝑞𝑒𝑡 + 1
=
1

2

∞

∑

𝑛=0

𝐸
𝑛,𝑞

𝑡
𝑛

𝑛!
.

(47)

From (47), we note that

𝐺
(𝑘)

=
𝑑
𝑘

𝐺 (𝑞)

𝑑𝑞𝑘
=
1

2

∞

∑

𝑛=0

𝑑
𝑘

𝐸
𝑛,𝑞

𝑑𝑞𝑘

𝑡
𝑛

𝑛!
. (48)

Therefore, by (47), (48), and (45), we obtain the following
theorem.

Theorem 3. For𝑁 ∈ N and 𝑛 ∈ N ∪ {0}, one has

𝐸
(𝑁)

𝑛,𝑞
= 2
𝑁−1

𝑁−1

∑

𝑘=0

1

𝑘!
(
𝑁 − 1

𝑘
) 𝑞
𝑘
𝑑
𝑘

𝐸
𝑛,𝑞

𝑑𝑞𝑘
. (49)

From (48), we get

𝐺
(𝑘)

(𝑡, 𝑥) = 𝐺
(𝑘)

(𝑞) 𝑒
𝑥𝑡

= (
1

2

∞

∑

𝑛=0

𝑑
𝑘

𝐸
𝑛,𝑞

𝑑𝑞𝑘

𝑡
𝑛

𝑛!
)(

∞

∑

𝑛=0

𝑥
𝑛

𝑡
𝑛

𝑛!
)

=

∞

∑

𝑛=0

(

𝑛

∑

𝑙=0

1

2
(
𝑛

𝑙
) 𝑥
𝑛−𝑙
𝑑
𝑘

𝐸
𝑙,𝑞

𝑑𝑞𝑘
)
𝑡
𝑛

𝑛!
.

(50)

Therefore, by (7), (47), and (50), we obtain the following
corollary.

Corollary 4. For𝑁 ∈ N and 𝑛 ∈ N ∪ {0}, one has

𝐸
(𝑁)

𝑛,𝑞
(𝑥) = 2

𝑁−1

𝑁−1

∑

𝑘=0

1

𝑘!
(
𝑁 − 1

𝑘
) 𝑞
𝑘

𝑛

∑

𝑙=0

(
𝑛

𝑙
) 𝑥
𝑛−𝑙
𝑑
𝑘

𝐸
𝑙,𝑞

𝑑𝑞𝑘
. (51)

From (3) and (7), we get

∞

∑

𝑛=0

𝐸
(𝑁)

𝑛,𝑞

𝑡
𝑛

𝑛!
= (

2

𝑞𝑒𝑡 + 1
) × ⋅ ⋅ ⋅ × (

2

𝑞𝑒𝑡 + 1
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁-times

= (

∞

∑

𝑙
1
=0

𝐸
𝑙
1
,𝑞

𝑡
𝑙
1

𝑙
1
!
) × ⋅ ⋅ ⋅ × (

∞

∑

𝑙
𝑁
=0

𝐸
𝑙
𝑁
,𝑞

𝑡
𝑙
𝑁

𝑙
𝑁
!
)

=

∞

∑

𝑛=0

( ∑

𝑙
1
+⋅⋅⋅+𝑙
𝑁
=𝑛

𝑛!𝐸
𝑙
1
,𝑞
⋅ ⋅ ⋅ 𝐸
𝑙
𝑁
,𝑞

𝑙
1
! ⋅ ⋅ ⋅ 𝑙
𝑁
!
)
𝑡
𝑛

𝑛!

=

∞

∑

𝑛=0

( ∑

𝑙
1
+⋅⋅⋅+𝑙
𝑁
=𝑛

(
𝑛

𝑙
1
, . . . , 𝑙
𝑁

)𝐸
𝑙
1
,𝑞
⋅ ⋅ ⋅ 𝐸
𝑙
𝑁
,𝑞
)
𝑡
𝑛

𝑛!
.

(52)

Therefore, by (49) and (52), we obtain the following corollary.

Corollary 5. For𝑁 ∈ N and 𝑛 ∈ N ∪ {0}, one has

∑

𝑙
1
+⋅⋅⋅+𝑙
𝑁
=𝑛

(
𝑛

𝑙
1
, . . . , 𝑙
𝑁

)𝐸
𝑙
1
,𝑞
⋅ ⋅ ⋅ 𝐸
𝑙
𝑁
,𝑞

= 2
𝑁−1

𝑁−1

∑

𝑘=0

1

𝑘!
(
𝑁 − 1

𝑘
) 𝑞
𝑘
𝑑
𝑘

𝐸
𝑛,𝑞

𝑑𝑞𝑘
.

(53)
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