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The joint lawof the total local times at two levels forℎ-paths of symmetric Lévy processes is shown to admit an explicit representation
in terms of the laws of the squared Bessel processes of dimensions two and zero. The law of the total local time at a single level for
bridges is also discussed.

1. Introduction

Markov processes associated to heat semigroups generated
by fractional derivatives are called symmetric stable Lévy
processes (cf., e.g., [1]) or Lévy flights (cf., e.g., [2]). The
purpose of the present paper is to study the laws of the
total local times for ℎ-paths and bridges of (one-dimensional)
symmetric Lévy processes.We give an explicit representation
(Theorem 16) of the joint law as a weighted sum of the law
of the squared Bessel process of dimension two and the
generalized excursionmeasure for the squared Bessel process
of dimension zero. We also give an expression (Theorem 20)
of the law of the total local time at a single level for bridges.

It is well known as one of the Ray-Knight theorems (see,
e.g., [3, Chapter XI] and [4, Chapter 3]) that the total local
time process with space parameter for a Bessel process of
dimension three is a squared Bessel process of dimension
two. Since the Bessel process of dimension three is the ℎ-path
process of a reflected Brownian motion, Theorem 16 may be
considered to be a slight generalization of this result.

Eisenbaum and Kaspi [5] have proved that the total local
time of a Markov process with discontinuous paths is no
longer Markov. As an analogue of Ray-Knight theorems,
Eisenbaum et al. [6] have recently characterized the law of the
local time process with space parameter at inverse local time
in terms of some Gaussian process whose covariance is given
by the resolvent density of the potential kernel. Moreover,

if the Lévy process is a symmetric stable process, then the
corresponding Gaussian process is a fractional Brownian
motion.Their results are based on a version of Feynman-Kac
formulae, which characterizes the Laplace transform of the
joint laws of total local times of Markov processes at several
levels.

In this paper we first focus on the ℎ-path process of a
symmetric Lévy process, which has been introduced in the
recent works [7–9] by Yano et al. The ℎ-path process may
be obtained as the process conditioned to avoid the origin
during the whole time (see [10]). We will also start from
a version of Feynman-Kac formulae and obtain an explicit
representation of the joint law of the total local times at two
levels. (For some discussions of the joint law of the total local
times, see Blumenthal-Getoor [11, pages 221–226] and Pitman
[12].) Unfortunately, we have no better result on the law of the
total local time process with space parameter. The difficulty
will be explained in Remark 3.

In comparisonwith the results by Pitman [13] and Pitman
and Yor [14] about the Brownian and Bessel bridges, we also
investigate the law of the total local time at a single point
for bridges of symmetric Lévy process, which we call Lévy
bridges in short, and also for bridges of the ℎ-paths, which we
call ℎ-bridges in short. We will prove a version of Feynman-
Kac formulae (Theorem 7) for Lévy bridges with the help
of the general theorems by Fitzsimmons et al. [15]. As an
application of the Feynman-Kac theorem, we will give an
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expression of the law of the total local time at a single level
for the Lévy bridges, while, unfortunately, we do not have any
nice formula for the ℎ-bridges.

The present paper is organized as follows. In Section 2, we
give two versions of Feynman-Kac formulae in general set-
tings. In Section 3, we recall several formulae about squared
Bessel processes and generalized excursion measures. In
Section 4, we recall several facts about symmetric Lévy
processes. In Section 5, we deal with the joint law of the total
local times at two levels for the ℎ-paths of symmetric Lévy
processes. In Section 6, we study the laws of the total local
times for the Lévy bridges and for the ℎ-bridges.

2. Feynman-Kac Formulae

In order to study the laws of total local times, we prepare
two versions of Feynman-Kac formulae, which describe their
Laplace transforms. One is for transient Markov processes,
and the other is for Markovian bridges.

Let D denote the space of càdlàg paths 𝜔 : [0,∞) →

R ∪ {Δ} with lifetime 𝜁 = 𝜁(𝜔):

∀𝑡 < 𝜁, 𝜔 (𝑡) ∈ R, ∀𝑡 ≥ 𝜁, 𝜔 (𝑡) = Δ. (1)

Let (𝑋
𝑡
) denote the canonical process:𝑋

𝑡
(𝜔) = 𝜔(𝑡). Let (F

𝑡
)

denote its natural filtration and F
∞

= 𝜎(∪
𝑡
F

𝑡
). For 𝑎 ∈ R,

we write 𝑇
{𝑎}

for the first hitting time of the point 𝑎:

𝑇
{𝑎}

= inf {𝑡 > 0 : 𝑋
𝑡
= 𝑎} . (2)

The set of all nonnegative Borel functions on R will be
denoted byB

+
(R).

Let (P
𝑥

: 𝑥 ∈ R) denote the laws on D of a right Markov
process. We assume that the transition kernels have jointly
measurable densities 𝑝

𝑡
(𝑥, 𝑦) with respect to a reference

measure 𝜇(𝑑𝑦):

P
𝑥
(𝑋

𝑡
∈ 𝑑𝑦) = 𝑝

𝑡
(𝑥, 𝑦) 𝜇 (𝑑𝑦) . (3)

We define

𝑢
𝑞
(𝑥, 𝑦) = ∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(𝑥, 𝑦) 𝑑𝑡, 𝑞 ≥ 0, (4)

which are resolvent densities if they are finite.We also assume
that there exists a local time (𝐿

𝑥

𝑡
) such that

∫

𝑡

0

𝑓 (𝑋
𝑠
) 𝑑𝑠 = ∫𝑓 (𝑦) 𝐿

𝑦

𝑡
𝜇 (𝑑𝑦) , 𝑡 > 0, 𝑓 ∈ B

+
(R) (5)

holds with P
𝑥
-probability one for any 𝑥 ∈ R.

2.1. Feynman-Kac Formula for TransientMarkov Processes. In
this section, we prove Feynman-Kac formula for transient
Markov processes. We assume the following conditions:

(i) the process is transient;
(ii) 𝑢

0
(𝑥, 𝑦) < ∞ for any 𝑥, 𝑦 ∈ R with 𝑥 ̸= 0 or 𝑦 ̸= 0.

Note that 𝑢
0
(0, 0) may be infinite. We note that

P
𝑥
(∀𝑦 ∈ R, 𝐿

𝑦

∞
< ∞) = 1 for any 𝑥 ∈ R. (6)

By formula (5), it is easy to see that

P
𝑥
[𝐿

𝑦

∞
] = 𝑢

0
(𝑥, 𝑦) , 𝑥 ∈ R, 𝑦 ∈ R \ {0} . (7)

We will prove a version of Feynman-Kac formulae following
Marcus-Rosen’s book [16] where it is assumed that 𝑢

0
(0, 0) <

∞.
For 𝑡 ≥ 0 and 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
∈ R \ {0}, we set

𝐽
𝑡
(x) = ∫

∞

𝑡

𝑑𝐿
𝑥
1

𝑡
1

∫

∞

𝑡
1

𝑑𝐿
𝑥
2

𝑡
2

⋅ ⋅ ⋅ ∫

∞

𝑡
𝑛−1

𝑑𝐿
𝑥
𝑛

𝑡
𝑛

, (8)

where x = (𝑥
1
, . . . , 𝑥

𝑛
).

Theorem 1 (Kac’s moment formula). Let 𝑥
0

∈ R and
𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
∈ R \ {0}. Then we has

P
𝑥
0

[𝐽
0
(x)] = 𝑢

0
(𝑥

0
, 𝑥

1
) 𝑢

0
(𝑥

1
, 𝑥

2
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

𝑛−1
, 𝑥

𝑛
) . (9)

The proof is essentially the same to that of [16, Theorem
2.5.3], but we give it for completeness of the paper.

Proof. Note that

𝐽
0
(x) = ∫

∞

0

𝐽
𝑡
(x) 𝑑𝐿

𝑥
1

𝑡
, (10)

where x = (𝑥
2
, . . . , 𝑥

𝑛
). Denote 𝜏

𝑥
1

𝑙
= inf{𝑡 > 0; 𝐿

𝑥
1

𝑡
> 𝑙}.

Since 𝐽
𝑡
(x) = 𝐽

0
(x) ∘ 𝜃

𝑡
, the strong Markov property yields

that

P
𝑥
0

[𝐽
0
(x)] = P

𝑥
0

[∫

∞

0

𝐽
0
(x) ∘ 𝜃

𝜏
𝑥1

𝑙

1
{𝜏
𝑥1

𝑙
<∞}

𝑑𝑙]

= P
𝑥
0

[∫

∞

0

1
{𝜏
𝑥1

𝑙
<∞}

𝑑𝑙] P
𝑥
1

[𝐽
0
(x)]

= P
𝑥
0

[𝐿
𝑥
1

∞
]P

𝑥
1

[𝐽
0
(x)] .

(11)

This yields (9) from (7).

Theorem 2 (Feynman-Kac formula). Let 𝑥
1
, . . . , 𝑥

𝑛
∈ R\{0}.

Set

Σ = (

𝑢
0
(𝑥

1
, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

1
, 𝑥

𝑛
)

...
. . .

...
𝑢
0
(𝑥

𝑛
, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

𝑛
, 𝑥

𝑛
)

) ,

Σ
0
= (

𝑢
0
(0, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(0, 𝑥

𝑛
)

...
. . .

...
𝑢
0
(0, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(0, 𝑥

𝑛
)

) .

(12)

Then, for any diagonal matrix Λ = (𝜆
𝑖
𝛿
𝑖,𝑗
)
𝑛

𝑖,𝑗=1
with nonnega-

tive entries, we have

P
0
[exp{−

𝑛

∑

𝑖=1

𝜆
𝑖
𝐿
𝑥
𝑖

∞
}] =

det (𝐼 + (Σ − Σ
0
)Λ)

det (𝐼 + ΣΛ)
. (13)

The proof is almost parallel to that of [16, Lemma 2.6.2],
but we give it for completeness of the paper.
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Proof. Let 𝜆
1
, . . . , 𝜆

𝑛
∈ R. For 𝑘 ∈ N, we have

P
0
[

[

(

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑥
𝑗

∞)

𝑘

]

]

=

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝜆
𝑗
1

⋅ ⋅ ⋅ 𝜆
𝑗
𝑘

P
0
[𝐿

𝑥
𝑗1

∞ ⋅ ⋅ ⋅ 𝐿
𝑥
𝑗
𝑘

∞ ]

(14)

= 𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝜆
𝑗
1

⋅ ⋅ ⋅ 𝜆
𝑗
𝑘

P
0
[𝐽
0
(𝑥

𝑗
1

, . . . , 𝑥
𝑗
𝑘

)] .

(15)

It follows fromTheorem 1 that

(15) = 𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝑢
0
(0, 𝑥

𝑗
1

) 𝜆
𝑗
1

⋅ 𝑢
0
(𝑥

𝑗
1

, 𝑥
𝑗
2

) 𝜆
𝑗
2

⋅ ⋅ ⋅ 𝑢
0
(𝑥

𝑗
𝑘−1

, 𝑥
𝑗
𝑘

) 𝜆
𝑗
𝑘

= 𝑘!{(Σ̃Λ̃)
𝑘

1}
0

,

(16)

where 1 =
⊤
(1, . . . , 1), {v}

0
= 𝑣

0
for v =

⊤
(𝑣
0
, 𝑣
1
, . . . , 𝑣

𝑛
),

Σ̃ = (

0 𝑢
0
(0, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(0, 𝑥

𝑛
)

0 𝑢
0
(𝑥

1
, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

1
, 𝑥

𝑛
)

...
...

. . .
...

0 𝑢
0
(𝑥

𝑛
, 𝑥

1
) ⋅ ⋅ ⋅ 𝑢

0
(𝑥

𝑛
, 𝑥

𝑛
)

) ,

Λ̃ = (

0 0 ⋅ ⋅ ⋅ 0

0 𝜆
1

⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ 𝜆
𝑛

).

(17)

Hence, for all 𝜆
1
, . . . , 𝜆

𝑛
∈ R such that |𝜆

𝑖
|’s are small enough,

we have

P
0
[exp{

𝑛

∑

𝑖=1

𝜆
𝑖
𝐿
𝑥
𝑖

∞
}]

=

∞

∑

𝑘=0

{(Σ̃Λ̃)
𝑘

1}
0

= {(𝐼 − Σ̃Λ̃)
−1

1}
0

.

(18)

By Cramer’s formula, we obtain

{(𝐼 − Σ̃Λ̃)
−1

1}
0

=

det ((𝐼 − Σ̃Λ̃)
(1)

)

det (𝐼 − Σ̃Λ̃)
=
det (𝐼 − (Σ − Σ

0
)Λ)

det (𝐼 − ΣΛ)
.

(19)

Here, for a matrix 𝐴, we denote by 𝐴
(1) the matrix which

is obtained by replacing each entry in the first column of 𝐴
by number 1. Since Σ is nonnegative definite, we obtain the
desired result (13) by analytic continuation.

Remark 3. Eisenbaum et al. [6] have proved an analogue of
Ray-Knight theorem for the total local time of a symmetric
Lévy process killed at an independent exponential time. We
may say that the key to the proof is that Σ − Σ

0 is a constant
matrix which is positive definite. The difficulty in the case of
the ℎ-path process of a symmetric Lévy process is that the
matrix Σ − Σ

0 no longer has such a nice property.

2.2. Feynman-Kac Formula for Markovian Bridges. In this
section, we show Feynman-Kac formula for Markovian
bridges. For this, we recall several theorems for Markovian
bridges from Fitzsimmons et al. [15]. See [15] for details.

For 𝑡 > 0, 𝑥, 𝑦 ∈ R, let P𝑡
𝑥,𝑦

denote the bridge law, which
serves as a version of the regular conditional distribution for
{𝑋

𝑠
; 0 ≤ 𝑠 ≤ 𝑡} under P

𝑥
given 𝑋

𝑡−
= 𝑦. In this section, we

assume the following condition:

(i) 0 < 𝑝
𝑡
(𝑥, 𝑦) < ∞ for any 𝑡 > 0, 𝑥, 𝑦 ∈ R.

We also assume that there exists a local time (𝐿
𝑥

𝑡
) such that

∫

𝑠

0

𝑓 (𝑋
𝑢
) 𝑑𝑢 = ∫𝑓 (𝑦) 𝐿

𝑦

𝑠
𝜇 (𝑑𝑦) , 0 ≤ 𝑠 ≤ 𝑡,

𝑓 ∈ B
+
(R)

(20)

holds with P𝑡
𝑥,𝑦

-probability one for any 𝑡 > 0 and 𝑥, 𝑦 ∈ R.

Theorem 4 (see [15, Lemma 1]). Let 𝑡 > 0, 𝑥, 𝑦, 𝑧 ∈ R. Then
one has

P𝑡
𝑥,𝑦

[∫

𝑡

0

𝑓 (𝑠, 𝑋
𝑠
) 𝑑𝐿

𝑧

𝑠
] = ∫

𝑡

0

𝑑𝑠
𝑝
𝑠
(𝑥, 𝑧) 𝑝

𝑡−𝑠
(𝑧, 𝑦)

𝑝
𝑡
(𝑥, 𝑦)

𝑓 (𝑠, 𝑧)

(21)

for any nonnegative Borel function 𝑓.

We will also use the following conditioning formula.

Theorem 5 (see [15, Proposition 3]). Let 𝑡 > 0, 𝑥, 𝑦, 𝑧 ∈ R.
Then one has

P𝑡
𝑥,𝑦

[∫

𝑡

0

𝑓 (𝑠, 𝑋
𝑠
)𝐻

𝑠
𝑑𝐿

𝑧

𝑠
]

= P𝑡
𝑥,𝑦

[∫

𝑡

0

𝑓 (𝑠, 𝑧)P𝑠
𝑥,𝑧

[𝐻
𝑠
] 𝑑𝐿

𝑧

𝑠
]

(22)

for any nonnegative Borel function 𝑓 and any nonnegative
predictable process 𝐻

𝑠
.

For 𝑠 ≥ 0 and 𝑧
1
, . . . , 𝑧

𝑛
∈ R, we define

𝐻
𝑠
(z(𝑛)) = ∫

𝑠

0

𝑑𝐿
𝑧
𝑛

𝑠
𝑛

∫

𝑠
𝑛

0

𝑑𝐿
𝑧
𝑛−1

𝑠
𝑛−1

⋅ ⋅ ⋅ ∫

𝑠
2

0

𝑑𝐿
𝑧
1

𝑠
1

, (23)

where z(𝑛) = (𝑧
1
, . . . , 𝑧

𝑛
). The following theorem is a version

of Kac’s moment formulae.
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Theorem 6. For any 𝑞 > 0, 𝑛 ∈ N and for any 𝑧
1
, . . . , 𝑧

𝑛
∈ R,

one has

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(𝑥, 𝑦)P𝑡

𝑥,𝑦
[𝐻

𝑡
(z(𝑛))] 𝑑𝑡

= 𝑢
𝑞
(𝑥, 𝑧

1
) ⋅

𝑛−1

∏

𝑗=1

𝑢
𝑞
(𝑧

𝑗
, 𝑧

𝑗+1
)

⋅ 𝑢
𝑞
(𝑧

𝑛
, 𝑦) .

(24)

Proof. Let us prove the claim by induction. For 𝑛 = 1, the
assertion follows fromTheorem 4. Suppose that formula (24)
holds for a given 𝑛 ≥ 2. Note that

𝐻
𝑡
(z(𝑛+1)) = ∫

𝑡

0

𝐻
𝑠
(z(𝑛)) 𝑑𝐿

𝑧
𝑛+1

𝑠
. (25)

Since𝐻
𝑠
(z(𝑛)) is a nonnegative predictable process,Theorems

5 and 4 show that

P𝑡
𝑥,𝑦

[𝐻
𝑡
(z(𝑛+1))]

= ∫

𝑡

0

𝑑𝑠
𝑝
𝑠
(𝑥, 𝑧

𝑛+1
) 𝑝

𝑡−𝑠
(𝑧

𝑛+1
, 𝑦)

𝑝
𝑡
(𝑥, 𝑦)

P𝑡
𝑥,𝑧
𝑛+1

[𝐻
𝑠
(𝑧

(𝑛)
)] .

(26)

Hence, we obtain

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(𝑥, 𝑦)P𝑡

𝑥,𝑦
[𝐻

𝑡
(𝑧

(𝑛+1)
)] 𝑑𝑡

= ∫

∞

0

𝑒
−𝑞𝑡

𝑑𝑡

× ∫

𝑡

0

𝑝
𝑠
(𝑥, 𝑧

𝑛+1
) 𝑝

𝑡−𝑠
(𝑧

𝑛+1
, 𝑦)P𝑠

𝑥,𝑧
𝑛+1

[𝐻
𝑠
(z(𝑛))] 𝑑𝑠

= ∫

∞

0

𝑒
−𝑞𝑠

𝑝
𝑠
(𝑥, 𝑧

𝑛+1
)P𝑠

𝑥,𝑧
𝑛+1

[𝐻
𝑠
(z(𝑛))] 𝑑𝑠

× ∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(𝑧

𝑛+1
, 𝑦) 𝑑𝑡

= 𝑢
𝑞
(𝑥, 𝑧

1
) ⋅

𝑛−1

∏

𝑗=1

𝑢
𝑞
(𝑧

𝑗
, 𝑧

𝑗+1
)

⋅ 𝑢
𝑞
(𝑧

𝑛
, 𝑧

𝑛+1
) ⋅ 𝑢

𝑞
(𝑧

𝑛+1
, 𝑦) ,

(27)

by the assumption of the induction. Nowwe have proved that
formula (24) is valid also for 𝑛+1, which completes the proof.

The following theorem is a version of Feynman-Kac
formulae.

Theorem 7. Let 𝑧
1
= 0, 𝑧

2
, . . . , 𝑧

𝑛
∈ R and let 𝜆

1
, . . . , 𝜆

𝑛
≥ 0.

Suppose that

𝑢
𝑞
(𝑧

𝑖
, 𝑧

𝑗
) < ∞, 𝑞 > 0, 𝑖, 𝑗 = 1, . . . , 𝑛. (28)

Let Σ(𝑞) be the matrix with elements Σ(𝑞)
𝑖,𝑗

= 𝑢
𝑞
(𝑧
𝑖
, 𝑧

𝑗
). Then, for

any diagonal matrix Λ = (𝜆
𝑖
𝛿
𝑖,𝑗
)
𝑛

𝑖,𝑗=1
with nonnegative entries,

one has

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[𝑒

−∑
𝑛

𝑗=1
𝜆
𝑗
𝐿
𝑧𝑗

𝑡 ] 𝑑𝑡

= {(𝐼 + Σ
(𝑞)

Λ)
−1

Σ
(𝑞)

}
1,1

.

(29)

Proof. We have

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[

[

(

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑧
𝑗

𝑡
)

𝑘

]

]

𝑑𝑡

= 𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝜆
𝑗
𝑘

⋅ ⋅ ⋅ 𝜆
𝑗
1

× ∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[𝐻

𝑡
(𝑧

𝑗
𝑘

, . . . , 𝑧
𝑗
1

)] 𝑑𝑡.

(30)

UsingTheorem 6, we see that the above quantity is equal to

𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝑢
𝑞
(𝑧

1
, 𝑧

𝑗
1

) 𝜆
𝑗
1

⋅

𝑘−1

∏

𝑖=1

𝑢
𝑞
(𝑧

𝑗
𝑖

, 𝑧
𝑗
𝑖+1

) 𝜆
𝑗
𝑖+1

⋅ 𝑢
𝑞
(𝑧

𝑗
𝑘

, 𝑧
1
) ,

(31)

which amounts to 𝑘!{(Σ
(𝑞)

Λ)
𝑘
Σ
(𝑞)

}
1,1
. Hence, for all 𝜆

1
, . . .,

𝜆
𝑛
> 0 sufficiently small, we obtain

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[

[

exp
{

{

{

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑧
𝑗

𝑡

}

}

}

]

]

𝑑𝑡

= 𝑢
𝑞
(0, 0) +

∞

∑

𝑘=1

{(Σ
(𝑞)

Λ)
𝑘

Σ
(𝑞)

}
1,1

= {(𝐼 − Σ
(𝑞)

Λ)
−1

Σ
(𝑞)

}
1,1

.

(32)

Since Σ
(𝑞) is nonnegative definite, we obtain the desired result

(29) by analytic continuation.

The following theorem is valid even if

𝑢
𝑞
(0, 𝑧

𝑗
) = 𝑢

𝑞
(𝑧

𝑗
, 0) = ∞, 𝑞 > 0, 𝑗 = 1, . . . , 𝑛. (33)

Theorem 8. Let 𝑧
1
, . . . , 𝑧

𝑛
∈ R \ {0} and let 𝜆

1
, . . . , 𝜆

𝑛
≥ 0.

Suppose that

𝑢
𝑞
(𝑧

𝑖
, 𝑧

𝑗
) < ∞, 𝑞 > 0, 𝑖, 𝑗 = 1, . . . , 𝑛. (34)

Let Σ(𝑞) be the matrix with elements Σ(𝑞)
𝑖,𝑗

= 𝑢
𝑞
(𝑧
𝑖
, 𝑧

𝑗
),

u(𝑞) = (

𝑢
𝑞
(0, 𝑧

1
)

...
𝑢
𝑞
(0, 𝑧

𝑛
)

) , v(𝑞) = (

𝑢
𝑞
(𝑧

1
, 0)

...
𝑢
𝑞
(𝑧

𝑛
, 0)

) , (35)
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and let Λ be the matrix with elements Λ
𝑖,𝑗

= 𝜆
𝑖
𝛿
𝑖,𝑗
. Then one

has

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[1 − 𝑒

−∑
𝑛

𝑗=1
𝜆
𝑗
𝐿
𝑧𝑗

𝑡 ] 𝑑𝑡

=
⊤u(𝑞)Λ(𝐼 + Σ

(𝑞)
Λ)

−1

v(𝑞).
(36)

Proof. UsingTheorem 6, we see that

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[

[

(

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑧
𝑗

𝑡
)

𝑘

]

]

𝑑𝑡

= 𝑘!

𝑛

∑

𝑗
1
,...,𝑗
𝑘
=1

𝑢
𝑞
(0, 𝑧

𝑗
1

) 𝜆
𝑗
1

⋅

𝑘−1

∏

𝑖=1

𝑢
𝑞
(𝑧

𝑗
𝑖

, 𝑧
𝑗
𝑖+1

) 𝜆
𝑗
𝑖+1

⋅ 𝑢
𝑞
(𝑧

𝑗
𝑘

, 0) .

(37)

Hence, we obtain

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0, 0)P𝑡

0,0
[

[

exp
{

{

{

𝑛

∑

𝑗=1

𝜆
𝑗
𝐿
𝑧
𝑗

𝑡

}

}

}

− 1]

]

𝑑𝑡

=

∞

∑

𝑘=1

{
⊤u(𝑞)Λ(Σ

(𝑞)
Λ)

𝑘−1

v(𝑞)}

=
⊤u(𝑞)Λ(𝐼 − Σ

(𝑞)
Λ)

−1

v(𝑞).

(38)

The rest of the proof is now obvious.

3. Preliminaries: Squared Bessel Processes and
Generalized Excursion Measures

In this section, we recall squared Bessel processes and
generalized excursion measures.

First, we introduce several notations about squared Bessel
processes, for which we follow [3, XI.1]. For 𝛿 ≥ 0, let (Q𝛿

𝑧
:

𝑧 ≥ 0) denote the law of the 𝛿-dimensional squared Bessel
process where the origin is a trap when 𝛿 = 0. Then the
Laplace transform of a one-dimensional marginal is given by

Q𝛿

𝑧
[exp {−𝜆𝑋

𝑡
}] =

1

(1 + 2𝜆𝑡)
𝛿/2

exp{−
𝜆𝑧

1 + 2𝜆𝑡
} . (39)

We may obtain the transition kernels Q𝛿

𝑧
(𝑋

𝑡
∈ 𝑑𝑤) by the

Laplace inversion.

(i) For 𝛿 > 0 and 𝑧 > 0, we have

Q𝛿

𝑧
(𝑋

𝑡
∈ 𝑑𝑤)

=
1

2𝑡
(
𝑤

𝑧
)

(1/2)(𝛿/2−1)

exp {−
𝑧 + 𝑤

2𝑡
} 𝐼

𝛿/2−1
(
√𝑧𝑤

𝑡
) 𝑑𝑤,

(40)

where 𝐼
𝜈
stands for the modified Bessel function of

order 𝜈.

(ii) For 𝛿 > 0 and 𝑧 = 0, we have

Q𝛿

0
(𝑋

𝑡
∈ 𝑑𝑤) =

1

(2𝑡)
𝛿/2

Γ (𝛿/2)
𝑤
𝛿/2−1 exp {−

𝑤

2𝑡
} 𝑑𝑤,

(41)

where Γ stands for the gamma function.

(iii) For 𝛿 = 0 and 𝑧 ≥ 0, we have

Q0

𝑧
(𝑋

𝑡
∈ 𝑑𝑤) = exp {−

𝑧

2𝑡
} 𝛿

0
(𝑑𝑤)

+
1

2𝑡
(
𝑤

𝑧
)

−1/2

exp {−
𝑧 + 𝑤

2𝑡
}

× 𝐼
1
(
√𝑧𝑤

𝑡
) 𝑑𝑤.

(42)

The squared Bessel process satisfies the scaling property: for
𝛿 ≥ 0, 𝑧 ≥ 0, and 𝑐 > 0, it holds that

(𝑐𝑋
𝑡/𝑐

) under Q𝛿

𝑧/𝑐

law
= (𝑋

𝑡
) under Q𝛿

𝑧
. (43)

Second, we recall the notion of the generalized excursion
measure. By formula (39), we have

Q4

0
[

1

𝑋2

𝑠+𝑡

; 𝑋
𝑠+𝑡

∈ 𝐵] = Q4

0
[

1

𝑋2

𝑠

⋅ Q0

𝑋
𝑠

(𝑋
𝑡
∈ 𝐵)] (44)

for 𝑠, 𝑡 > 0 and 𝐵 ∈ B([0,∞)). If we put 𝜇
𝑡
(𝑑𝑥) =

(1/𝑥
2
)Q4

0
(𝑋

𝑡
∈ 𝑑𝑥), we have

𝜇
𝑠+𝑡

(𝐵) = ∫𝜇
𝑠
(𝑑𝑥)Q0

𝑥
(𝑋

𝑡
∈ 𝐵) . (45)

This shows that the family of laws {𝜇
𝑡

: 𝑡 > 0} is an entrance
law for {Q0

𝑥
: 𝑥 > 0}. In fact, there exists a unique 𝜎-finite

measure n(0) on D such that

n(0) (𝑋
𝑡
1

∈ 𝐵
1
, . . . , 𝑋

𝑡
𝑛

∈ 𝐵
𝑛
)

= ∫
𝐵
1

𝜇
𝑡
1

(𝑑𝑥
1
) ∫

𝐵
2

Q0

𝑥
(𝑋

𝑡
2
−𝑡
1

∈ 𝑑𝑥
2
)

⋅ ⋅ ⋅ ∫
𝐵
𝑛

Q0

𝑥
(𝑋

𝑡
𝑛
−𝑡
𝑛−1

∈ 𝑑𝑥
𝑛
)

(46)

for 0 < 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑛
and 𝐵

1
, . . . , 𝐵

𝑛
∈ B([0,∞)). Note

that, to construct such a measure n(0), we can not appeal to
Kolmogorov’s extension theorem, because the entrance laws
have infinite total mass. However, we can actually construct
n(0) via the agreement formula (see Pitman-Yor [17, Cor. 3]
with 𝛿 = 4), or via the time change of a Brownian excursion
(see Fitzsimmons-Yano [18, Theorem 2.5] with change of
scales).Wemay calln(0) the generalized excursionmeasure for
the squared Bessel process of dimension 0. See the references
above for several characteristic formulae of n(0).
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4. Symmetric Lévy Processes

Let us confine ourselves to one-dimensional symmetric Lévy
processes. We recall general facts and state several results
from [7].

In what follows, we assume that (P
𝑥
) is the law of a

one-dimensional conservative Lévy process. Throughout the
present paper, we assume the following conditions, whichwill
be referred to as (A), are satisfied:

(i) the process is symmetric;
(ii) the origin (and, consequently, any point) is regular for

itself;
(iii) the process is not a compound Poisson.

Under the condition (A), we have the following. The charac-
teristic exponent is given by

𝜃 (𝜆) := − logP
0
[𝑒
𝑖𝜆𝑋
1] = 𝑣𝜆

2
+ 2∫

∞

0

(1 − cos 𝜆𝑥) 𝜈 (𝑑𝑥) ,

(47)

for some 𝑣 ≥ 0 and some positive Radonmeasure 𝜈 on (0,∞)

such that

∫
(0,∞)

min {𝑥
2
, 1} 𝜈 (𝑑𝑥) < ∞. (48)

The reference measure is 𝜇(𝑑𝑥) = 𝑑𝑥 and we have

𝑝
𝑡
(𝑥, 𝑦) = 𝑝

𝑡
(𝑦 − 𝑥) =

1

𝜋
∫

∞

0

(cos 𝜆 (𝑦 − 𝑥)) 𝑒
−𝑡𝜃(𝜆)

𝑑𝜆,

(49)

𝑢
𝑞
(𝑥, 𝑦) = 𝑢

𝑞
(𝑦 − 𝑥) =

1

𝜋
∫

∞

0

cos 𝜆 (𝑦 − 𝑥)

𝑞 + 𝜃 (𝜆)
𝑑𝜆. (50)

There exists a local time (𝐿
𝑥

𝑡
) such that

∫

𝑡

0

𝑓 (𝑋
𝑠
) 𝑑𝑠 = ∫𝑓 (𝑦) 𝐿

𝑦

𝑡
𝑑𝑦, 𝑓 ∈ B

+
(R) , (51)

with P
𝑥
-probability one for any 𝑥 ∈ R. Then it holds that

P
𝑥
[∫

∞

0

𝑒
−𝑞𝑠

𝑑𝐿
𝑦

𝑠
] = 𝑢

𝑞
(𝑦 − 𝑥) , 𝑥, 𝑦 ∈ R. (52)

Let n denote the excursion measure associated to the local
time 𝐿

0

𝑡
. We denote by (P0

𝑥
: 𝑥 ∈ R \ {0}) the law of the

process killed upon hitting the origin; that is,

P0
𝑥
(𝐴; 𝜁 > 𝑡) = P

𝑥
(𝐴; 𝑇

{0}
> 𝑡) , 𝑥 ∈ R \ {0} ,

𝑡 > 0, 𝐴 ∈ F
𝑡
.

(53)

Then the excursion measure n satisfies the Markov property
in the following sense: for any 𝑡 > 0 and for any nonnegative
F

𝑡
-measurable functional 𝑍

𝑡
and for any nonnegative F

∞
-

measurable functional 𝐹, it holds that

n [𝑍
𝑡
𝐹 (𝑋

𝑡+⋅
)] = ∫n [𝑍

𝑡
; 𝑋

𝑡
∈ 𝑑𝑥]P0

𝑥
[𝐹 (𝑋)] . (54)

We need the following additional conditions:

(R) the process is recurrent;
(T) the function 𝜃(𝜆) is nondecreasing in 𝜆 > 𝜆

0
for some

𝜆
0
> 0.

Under the condition (A), the condition (R) is equivalent to

∫

∞

0

𝑑𝜆

𝜃 (𝜆)
= ∞. (55)

All of the conditions (A), (R), and (T) are obviously satisfied
if the process is a symmetric stable Lévy process of index 𝛼 ∈

(1, 2]:

𝜃 (𝜆) = |𝜆|
𝛼
. (56)

In what follows, we assume, as well as the condition (A), that
the conditions (R) and (T) are also satisfied.

The Laplace transform of the law of 𝑇
{0}

is given by

P
𝑧
[𝑒
−𝑞𝑇
{0}] =

𝑢
𝑞
(𝑧)

𝑢
𝑞
(0)

, (57)

see, for example, [19, pp. 64]. It is easy to see that the entrance
law has the space density:

𝜌 (𝑡, 𝑥) =
n (𝑋

𝑡
∈ 𝑑𝑥)

𝑑𝑥
. (58)

In view of [7, Theorem 2.10], the law of the hitting time 𝑇
{0}

is absolutely continuous relative to the Lebesgue measure 𝑑𝑡

and the time density coincides with the space density of the
entrance law:

𝜌
𝑥
(𝑡) =

P
𝑥
(𝑇

{0}
∈ 𝑑𝑡)

𝑑𝑡
= 𝜌 (𝑡, 𝑥) . (59)

4.1. Absolute Continuity of the Law of the Inverse Local Time.
Let 𝜏(𝑙) denote the inverse local time at the origin:

𝜏 (𝑙) = inf {𝑡 > 0; 𝐿
0

𝑡
> 𝑙} . (60)

We prove the absolute continuity of the law of inverse local
time. Note that 𝜏(𝑙) is a subordinator such that

P
0
[𝑒
−𝑞𝜏(𝑙)

] = 𝑒
−𝑙/𝑢
𝑞
(0)

, (61)

see, for example, [19, pp. 131].

Lemma 9. For fixed 𝑙 > 0, the law of 𝜏(𝑙) under P
0
has a

density 𝛾
𝑙
(𝑡):

P
0
(𝜏 (𝑙) ∈ 𝑑𝑡) = 𝛾

𝑙
(𝑡) 𝑑𝑡. (62)

Furthermore, 𝛾
𝑙
(𝑡) may be chosen to be jointly continuous in

(𝑙, 𝑡) ∈ (0,∞) × (0,∞).

Proof. Following [7, Sec. 3.3], we define a positive Borel
measure 𝜎 on [0,∞) as

𝜎 (𝐴) =
1

𝜋
∫

∞

0

1
𝐴
(𝜃 (𝜆)) 𝑑𝜆, 𝐴 ∈ B ([0,∞)) . (63)
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Then we have 𝑢
𝑞
(0) = ∫

[0,∞)
(𝜎(𝑑𝜉)/(𝑞 + 𝜉)) for 𝑞 > 0,

and hence there exists a Radon measure 𝜎
∗ on [0,∞) with

∫
[0,∞)

(𝜎
∗
(𝑑𝜉)/(1 + 𝜉)) < ∞ such that

1

𝑞𝑢
𝑞
(0)

= ∫
[0,∞)

1

𝑞 + 𝜉
𝜎
∗
(𝑑𝜉) , 𝑞 > 0. (64)

Hence, the Laplace exponent 1/𝑢
𝑞
(0) may be represented as

1

𝑢
𝑞
(0)

= ∫

∞

0

(1 − 𝑒
−𝑞𝑢

) 𝜈 (𝑢) 𝑑𝑢, (65)

where 𝜈(𝑢) = ∫
(0,∞)

𝑒
−𝑢𝜉

𝜉𝜎
∗
(𝑑𝜉). Since ∫

∞

0
(1 ∧ 𝑢

2
)𝜈(𝑢)𝑑𝑢 <

∞, we may appeal to analytic continuation of both sides of
formula (61) and obtain

P
0
[𝑒
𝑖𝜆𝜏(𝑙)

] = exp{𝑙 ∫

∞

0

(𝑒
𝑖𝜆𝑢

− 1) 𝜈 (𝑢) 𝑑𝑢} . (66)

Following [20, Theorem 3.1], we may invert the Fourier
transform of the law of 𝜏(𝑙) and obtain the desired result.

4.2. ℎ-Paths of Symmetric Lévy Processes. We follow [7]
for the notations concerning ℎ-paths of symmetric Lévy
processes. For the interpretation of the ℎ-paths as some kind
of conditioning, see [10].

We define

ℎ (𝑥) = lim
𝑞→0+

{𝑢
𝑞
(0) − 𝑢

𝑞
(𝑥)}

=
1

𝜋
∫

∞

0

1 − cos 𝜆𝑥
𝜃 (𝜆)

𝑑𝜆, 𝑥 ∈ R.

(67)

The second equality follows from (50). Then the function ℎ

satisfies the following:

(i) ℎ(𝑥) is continuous;
(ii) ℎ(0) = 0, ℎ(𝑥) > 0 for all 𝑥 ∈ R \ {0};
(iii) ℎ(𝑥) → ∞ as |𝑥| → ∞ (since the condition (R) is

satisfied).

See [7, Lemma 4.2] for the proof. Moreover, the function ℎ is
harmonic with respect to the killed process:

P0
𝑥
[ℎ (𝑋

𝑡
)] = ℎ (𝑥) if 𝑥 ∈ R \ {0} , 𝑡 > 0,

n [ℎ (𝑋
𝑡
)] = 1 if 𝑡 > 0.

(68)

See [7, Theorems 1.1 and 1.2] for the proof. We define the ℎ-
path process (Pℎ

𝑥
: 𝑥 ∈ R) by the following local equivalence

relations:

𝑑Pℎ
𝑥

F
𝑡

=

{{

{{

{

ℎ (𝑋
𝑡
)

ℎ (𝑥)
𝑑P0

𝑥

F
𝑡

if 𝑥 ∈ R \ {0} ,

ℎ (𝑋
𝑡
) 𝑑nF

𝑡

if 𝑥 = 0.

(69)

Remark that, from the strong Markov properties of (𝑋
𝑡
)

under P0
𝑥
and n, the family {Pℎ

𝑥
|
F
𝑡

; 𝑡 ≥ 0} is consistent, and
hence the probability measure Pℎ

𝑥
is well defined.

The ℎ-path process is then symmetric; more precisely,
the transition kernel has a symmetric density 𝑝

ℎ

𝑡
(𝑥, 𝑦) with

respect to the measure ℎ(𝑦)
2
𝑑𝑦. Here the density 𝑝

ℎ

𝑡
(𝑥, 𝑦) is

given by

𝑝
ℎ

𝑡
(𝑥, 𝑦) =

1

ℎ (𝑥) ℎ (𝑦)
{𝑝

𝑡
(𝑦 − 𝑥) −

𝑝
𝑡
(𝑥) 𝑝

𝑡
(𝑦)

𝑝
𝑡
(0)

}

if 𝑥, 𝑦 ∈ R \ {0} ,

𝑝
ℎ

𝑡
(𝑥, 0) = 𝑝

ℎ

𝑡
(0, 𝑥) =

𝜌 (𝑡, 𝑥)

ℎ (𝑥)

if 𝑥 ∈ R \ {0} ,

𝑝
ℎ

𝑡
(0, 0) = ∫

(0,∞)

𝑒
−𝑡𝜉

𝜉𝜎
∗
(𝑑𝜉) .

(70)

By (65), we see that 𝑝ℎ
𝑡
(0, 0) is characterized by

∫

∞

0

(1 − 𝑒
−𝑞𝑡

) 𝑝
ℎ

𝑡
(0, 0) 𝑑𝑡 =

1

𝑢
𝑞
(0)

, 𝑞 > 0. (71)

See [7, Section 5] for the details. The ℎ-path process also
satisfies the following conditions:

(i) the process is conservative;
(ii) any point is regular for itself;
(iii) the process is transient (since the condition (T) is

satisfied).

We can easily prove regularity of any point by the local
equivalence (69). See [7, Theorem 1.4] for the proof of
transience.

The resolvent density of the ℎ-path process with respect
to ℎ(𝑦)

2
𝑑𝑦 is given by

𝑢
ℎ

𝑞
(𝑥, 𝑦) =

1

ℎ (𝑥) ℎ (𝑦)
{𝑢

𝑞
(𝑥 − 𝑦) −

𝑢
𝑞
(𝑥) 𝑢

𝑞
(𝑦)

𝑢
𝑞
(0)

} ,

𝑞 > 0, 𝑥, 𝑦 ∈ R \ {0} ,

𝑢
ℎ

𝑞
(𝑥, 0) = 𝑢

ℎ

𝑞
(0, 𝑥) =

1

ℎ (𝑥)
⋅
𝑢
𝑞
(𝑥)

𝑢
𝑞
(0)

, 𝑞 > 0, 𝑥 ∈ R \ {0} .

(72)

We remark here that, since lim
𝑞→∞

𝑢
𝑞
(0) = 0, we see, by (71),

that

𝑢
ℎ

𝑞
(0, 0) = ∞. (73)

The Green function 𝑢
ℎ

0
(𝑥, 𝑦) = lim

𝑞→0+
𝑢
ℎ

𝑞
(𝑥, 𝑦) exists and is

given by

𝑢
ℎ

0
(𝑥, 𝑦) =

ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦)

ℎ (𝑥) ℎ (𝑦)
, 𝑥, 𝑦 ∈ R \ {0} ,

𝑢
ℎ

0
(𝑥, 0) = 𝑢

ℎ

0
(0, 𝑥) =

1

ℎ (𝑥)
, 𝑥 ∈ R \ {0} .

(74)
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See [7, Section 5.3] for the proof. Since 𝑢
ℎ

0
(𝑥, 𝑦) ≥ 0, we have

ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦) ≥ 0, 𝑥, 𝑦 ∈ R. (75)

It follows from the local equivalence (69) that there exists
a local time (𝐿

𝑥

𝑡
) such that

∫

𝑡

0

𝑓 (𝑋
𝑠
) 𝑑𝑠 = ∫𝑓 (𝑦) 𝐿

𝑦

𝑡
ℎ(𝑦)

2

𝑑𝑦, 𝑡 > 0, 𝑓 ∈ B
+
(R)

(76)

with Pℎ
𝑥
-probability one for any 𝑥 ∈ R. We have

Pℎ
𝑥
[𝐿

𝑦

∞
] = 𝑢

ℎ

0
(𝑥, 𝑦) , 𝑥 ∈ R, 𝑦 ∈ R \ {0} . (77)

Example 10. If the process is the symmetric stable process of
index 𝛼 ∈ (1, 2], then the harmonic function ℎ(𝑥) may be
computed as

ℎ (𝑥) = 𝐶 (𝛼) |𝑥|
𝛼−1

, (78)

where 𝐶(𝛼) is given as follows (see [9, Appendix]):

𝐶 (𝛼) =
1

𝜋
∫

∞

0

1 − cos 𝜆
𝜆𝛼

𝑑𝜆 =
1

2Γ (𝛼) sin (𝜋 (𝛼 − 1) /2)
.

(79)

5. The Laws of the Total Local
Times for ℎ-Paths

In this section, we state and prove our main theorems
concerning the laws of the total local times of ℎ-paths.

5.1. Laplace Transform Formula for ℎ-Paths. In this section,
we prove Laplace transform formula for ℎ-paths at two levels.

Lemma 11. For 𝑥, 𝑦 ∈ R \ {0} and 𝜆
1
, 𝜆

2
≥ 0, one has

Pℎ
0
[exp {−𝜆

1
ℎ (𝑥) 𝐿

𝑥

∞
− 𝜆

2
ℎ (𝑦) 𝐿

𝑦

∞
}]

=
1 + 𝜆

1
+ 𝜆

2
+ 𝐷𝜆

1
𝜆
2

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

,

(80)

where

𝐷 = 𝐷 (𝑥, 𝑦) = ℎ (𝑥 − 𝑦) ⋅
ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦)

ℎ (𝑥) ℎ (𝑦)
≥ 0,

𝐸 = 𝐸 (𝑥, 𝑦) = 1 −
(ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦))

2

4ℎ (𝑥) ℎ (𝑦)
≥ 0.

(81)

Proof. Let us apply Theorem 2 with

𝐼 + (Σ − Σ
0
)Λ

= (

1 + 𝜆
1

ℎ (𝑦) − ℎ (𝑥 − 𝑦)

ℎ (𝑥)
𝜆
2

ℎ (𝑥) − ℎ (𝑥 − 𝑦)

ℎ (𝑦)
𝜆
1

1 + 𝜆
2

),

𝐼 + ΣΛ

=(

1+2𝜆
1

ℎ (𝑥)+ℎ (𝑦)−ℎ (𝑥 − 𝑦)

ℎ (𝑥)
𝜆
2

ℎ (𝑥)+ℎ (𝑦)−ℎ (𝑥 − 𝑦)

ℎ (𝑦)
𝜆
1

1+2𝜆
2

).

(82)

Then we obtain (80) by an easy computation.
By (75), we have 𝐷 ≥ 0. Since

𝐸 =
ℎ (𝑥) ℎ (𝑦)

4
det(

𝑢
ℎ

0
(𝑥, 𝑥) 𝑢

ℎ

0
(𝑥, 𝑦)

𝑢
ℎ

0
(𝑦, 𝑥) 𝑢

ℎ

0
(𝑦, 𝑦)

) , (83)

we obtain 𝐸 ≥ 0 by nonnegative definiteness of the above
matrix. The proof is now complete.

5.2. The Law of 𝐿𝑥
∞
. Using formula (80), we can determine

the law of 𝐿𝑥
∞
; see [16, Example 3.10.5] for the formula in a

more general case.

Theorem 12. For any 𝑥 ∈ R \ {0}, one has

Pℎ
0
(ℎ (𝑥) 𝐿

𝑥

∞
∈ 𝑑𝑙) =

1

2
{𝛿

0
(𝑑𝑙) + 𝑒

−𝑙/2 𝑑𝑙

2
} , (84)

where 𝛿
0
stands for the Dirac measure concentrated at 0.

Consequently, one has

Pℎ
0
(𝐿

𝑥

∞
= 0) =

1

2
. (85)

Proof. Letting 𝜆
2
= 0 in Lemma 11, we have

Pℎ
0
[exp {−𝜆

1
ℎ (𝑥) 𝐿

𝑥

∞
}] =

1 + 𝜆
1

1 + 2𝜆
1

=
1

2
(1 +

1

1 + 2𝜆
1

) ,

(86)

which proves the claim.

Remark 13. Since 𝐿
𝑥

∞
= 0 if and only if 𝑇

{𝑥}
= ∞, the identity

(85) is equivalent to

Pℎ
0
(𝑇

{𝑥}
= ∞) =

1

2
. (87)

This formula may also be obtained from the following
formula (see [9, Proposition 5.10]):

n (𝑇
{𝑥}

< 𝜁) =
1

2ℎ (𝑥)
. (88)
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Suppose that, in the definition (69), we may replace the fixed
time 𝑡 with the stopping time 𝑇

{𝑥}
. Then we have

Pℎ
0
(𝑇

{𝑥}
< ∞) = n [ℎ (𝑋

𝑇
{𝑥}

) ; 𝑇
{𝑥}

< 𝜁]

= ℎ (𝑥)n (𝑇
{𝑥}

< 𝜁) =
1

2
.

(89)

5.3. The Probability That Two Levels Are Attained. Let us
discuss the probability that the total local times at two given
levels are positive.

Theorem 14. Let 𝑥, 𝑦 ∈ R \ {0} such that 𝑥 ̸= 𝑦. Then one has
𝐸 > 0 and

Pℎ
0
(𝐿

𝑥

∞
> 0, 𝐿

𝑦

∞
> 0) = Pℎ

0
(𝐿

𝑥

∞
= 𝐿

𝑦

∞
= 0) =

𝐷

4𝐸
, (90)

Pℎ
0
(𝐿

𝑥

∞
> 0, 𝐿

𝑦

∞
= 0) = Pℎ

0
(𝐿

𝑥

∞
= 0, 𝐿

𝑦

∞
> 0) =

1

2
−

𝐷

4𝐸
.

(91)

Consequently, one has 𝐷 ≤ 2𝐸.

Proof. Letting 𝜆
1
= 𝜆

2
= 𝜆 ≥ 0 in formula (80), we have

Pℎ
0
[exp {−𝜆ℎ (𝑥) 𝐿

𝑥

∞
− 𝜆ℎ (𝑦) 𝐿

𝑦

∞
}] =

1 + 2𝜆 + 𝐷𝜆
2

1 + 4𝜆 + 4𝐸𝜆2
.

(92)

If 𝐸 were zero, then 𝐷 would be positive, and hence the
right-hand side of (92) would diverge as 𝜆 → ∞, which
contradicts the fact that the left-hand side of (92) is bounded
in 𝜆 > 0. Hence, we obtain 𝐸 > 0.

Taking the limit as 𝜆 → ∞ in both sides of formula (92),
we have

Pℎ
0
(𝐿

𝑥

∞
= 𝐿

𝑦

∞
= 0) =

𝐷

4𝐸
, (93)

which is nothing else but the second equality of (90). By
formula (85), we obtain

Pℎ
0
(𝐿

𝑥

∞
= 0, 𝐿

𝑦

∞
> 0) = Pℎ

0
(𝐿

𝑥

∞
= 0)

− Pℎ
0
(𝐿

𝑥

∞
= 𝐿

𝑦

∞
= 0) =

1

2
−

𝐷

4𝐸
.

(94)

Thus we obtain (91). Therefore, we obtain

Pℎ
0
(𝐿

𝑥

∞
> 0, 𝐿

𝑦

∞
> 0) = 1 −

𝐷

4𝐸
− 2 {

1

2
−

𝐷

4𝐸
} =

𝐷

4𝐸
, (95)

which is nothing else but the first equality of (90). The proof
is now complete.

5.4. Joint Law of 𝐿𝑥
∞

and 𝐿
𝑦

∞
. Let us discuss the joint law of

𝐿
𝑥

∞
and 𝐿

𝑦

∞
for 𝑥, 𝑦 ∈ R \ {0} such that 𝑥 ̸= 𝑦.

By Lemma 11, we know that 𝐷 ≥ 0. First, we discuss the
case of 𝐷 = 0.

Theorem 15. Suppose that ℎ(𝑥) + ℎ(𝑦) − ℎ(𝑥 − 𝑦) = 0. Then

Pℎ
0
(ℎ (𝑥) 𝐿

𝑥

∞
∈ 𝑑𝑙

1
, ℎ (𝑦) 𝐿

𝑦

∞
∈ 𝑑𝑙

2
)

=
1

2
{𝑒

−𝑙
1
/2 𝑑𝑙1

2
⋅ 𝛿

0
(𝑑𝑙

2
) + 𝛿

0
(𝑑𝑙

1
) ⋅ 𝑒

−𝑙
2
/2 𝑑𝑙2

2
} .

(96)

Proof. Since 𝐷 = 0 and 𝐸 = 1, formula (80) implies

Pℎ
0
[exp {−𝜆

1
ℎ (𝑥) 𝐿

𝑥

∞
− 𝜆

2
ℎ (𝑦) 𝐿

𝑦

∞
}]

=
1 + 𝜆

1
+ 𝜆

2

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝜆

1
𝜆
2

.

(97)

We may rewrite the right-hand side as

1

2
(

1

1 + 2𝜆
1

+
1

1 + 2𝜆
2

) , (98)

which proves the claim.

Second, we discuss the case of 𝐷 > 0.

Theorem 16. Suppose that ℎ(𝑥) + ℎ(𝑦) − ℎ(𝑥 − 𝑦) > 0. Set

𝑚 = 𝑚(𝑥, 𝑦) = ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦) ,

𝑀 = 𝑀(𝑥, 𝑦) =
4ℎ (𝑥) ℎ (𝑦)

ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦)
.

(99)

Then one has 𝐸 > 0 and 0 < 𝑚 < 𝑀. For any 𝐴, 𝐵 ∈

B([0,∞)), one has

Pℎ
0
(ℎ (𝑥) 𝐿

𝑥

∞
∈ 𝐴, ℎ (𝑦) 𝐿

𝑦

∞
∈ 𝐵) =

4

∑

𝑘=1

𝐶
𝑘
Φ
𝑘
(𝐴 × 𝐵) ,

(100)

where 𝐶
𝑘
= 𝐶

𝑘
(𝑥, 𝑦), 𝑘 = 1, 2, 3, 4 are constants given as

𝐶
1
=

𝐷

4𝐸
, 𝐶

3
= 𝐶

4
=

1

2𝐸
(1 −

𝐷

2𝐸
) ,

𝐶
2
= 1 − 𝐶

1
− 𝐶

3
− 𝐶

4

(101)

and Φ
𝑘
, 𝑘 = 1, 2, 3, 4 are positive measures on [0,∞)

2 such
that

Φ
1
(𝐴 × 𝐵) = 𝛿

0
(𝐴) 𝛿

0
(𝐵) , (102)

Φ
2
(𝐴 × 𝐵) = Q2

0
(
𝑋
𝑚

𝑚
∈ 𝐴,

𝑋
𝑀

𝑀
∈ 𝐵)

= Q2

0
(
𝑋
𝑀

𝑀
∈ 𝐴,

𝑋
𝑚

𝑚
∈ 𝐵) ,

(103)

Φ
3
(𝐴 × 𝐵) = Φ

4
(𝐵 × 𝐴)

= Q2

0
[
𝑋
𝑚

𝑚
∈ 𝐴;Q0

𝑋
𝑚

(
𝑋
𝑀−𝑚

𝑀
∈ 𝐵)] .

(104)

Remark 17. The expression (104) coincides with

n(0) [2𝑚𝑋
𝑚
;
𝑋
𝑚

𝑚
∈ 𝐴,

𝑋
𝑀

𝑀
∈ 𝐵] , (105)

where n(0) is the generalized excursion measure introduced
in Section 3.
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The proof ofTheorem 16 will be given in the next section.

Remark 18. In the case where 𝛼 = 2, the process
((𝑋

𝑡
/√2), Pℎ

0
) is the symmetrized three-dimensional Bessel

process. In other words, if we set

Ω
+

= {𝑤 ∈ D : ∀𝑡 > 0, 𝑤 (𝑡) > 0} ,

Ω
−

= {𝑤 ∈ D : ∀𝑡 > 0, 𝑤 (𝑡) < 0} ,

(106)

then we have

Pℎ
0
(Ω

+
) = Pℎ

0
(Ω

−
) =

1

2
(107)

and the processes ((𝑋
𝑡
/√2), Pℎ

0
(⋅ | Ω

+
)) and ((−𝑋

𝑡
/√2),

Pℎ
0
(⋅ | Ω

−
)) are one-sided three-dimensional Bessel processes.

Hence, the Ray-Knight theorem implies that the process
(𝑥

2
𝐿
𝑥

∞
: 𝑥 ≥ 0) conditional on Ω

+
is the squared Bessel

process of dimension two. Let us check thatTheorems 15 and
16 are consistent with this fact. Since ℎ(𝑥) = |𝑥|/2, we have

ℎ (𝑥) + ℎ (𝑦) − ℎ (𝑥 − 𝑦) =
|𝑥| +

𝑦
 −

𝑥 − 𝑦


2

= {
min {|𝑥| ,

𝑦
} if 𝑥𝑦 > 0,

0 if 𝑥𝑦 < 0.

(108)

If 𝑥 > 0 > 𝑦, then we should look at Theorem 15 which
implies that

Pℎ
0
(𝐿

𝑥

∞
∈ 𝐴, 𝐿

𝑦

∞
∈ 𝐵 | Ω

+
) = Q2

0
(𝑋

1
∈ 𝐴) ⋅ 𝛿

0
(𝐵) . (109)

If 𝑥, 𝑦 > 0, then we should look at Theorem 16. Note that

𝑚(𝑥, 𝑦) = min {𝑥, 𝑦} , 𝑀 (𝑥, 𝑦) = max {𝑥, 𝑦} ,

𝐷 =
2
𝑥 − 𝑦



max {𝑥, 𝑦}
, 𝐸 =

𝑥 − 𝑦


max {𝑥, 𝑦}
,

𝐷

4𝐸
=

1

2

(110)

and that

𝐶
1
= 𝐶

2
=

1

2
, 𝐶

3
= 𝐶

4
= 0. (111)

Hence, Theorem 16 implies that

Pℎ
0
(𝑥

2
𝐿
𝑥

∞
∈ 𝐴, 𝑦

2
𝐿
𝑦

∞
∈ 𝐵 | Ω

+
) = Q2

0
(𝑋

𝑥
∈ 𝐴,𝑋

𝑦
∈ 𝐵) .

(112)

5.5. Proof of Theorem 16. We give the proof of Theorem 16.
We divide the proofs into several steps.

Step 1. Since

0 < 𝐷 ≤ 2𝐸 = 2 (1 −
𝑚

𝑀
) , (113)

we have 0 < 𝑚 < 𝑀.

Step 2. Let us compute the Laplace transform:

Q2

0
[exp {−𝜆

1

𝑋
𝑚

𝑚
− 𝜆

2

𝑋
𝑀

𝑀
}] . (114)

By the Markov property, the right-hand side is equal to

Q2

0
[exp {−𝜆

1

𝑋
𝑚

𝑚
}Q2

𝑋
𝑚

[exp {−𝜆
2

𝑋
𝑀−𝑚

𝑀
}]] . (115)

By formula (39), this expectation is equal to

1

1 + 2 (𝜆
2
/𝑀) (𝑀 − 𝑚)

× Q2

0
[exp{−(

𝜆
1

𝑚
+

𝜆
2
/𝑀

1 + 2 (𝜆
2
/𝑀) (𝑀 − 𝑚)

)𝑋
𝑚
}] .

(116)

Again by formula (39), this expectation is equal to

1

1 + 2 (𝜆
2
/𝑀) (𝑀 − 𝑚)

⋅
1

1 + 2 (𝜆
1
/𝑚 + (𝜆

2
/𝑀) / (1 + 2 (𝜆

2
/𝑀) (𝑀 − 𝑚)))𝑚

.

(117)

Simplifying this quantity with 𝐸 = 1 − 𝑚/𝑀, we see that

∬𝑒
−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

2
(𝑑𝑙

1
× 𝑑𝑙

2
) =

1

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

.

(118)

Note that this expression is invariant under interchange
between 𝜆

1
and 𝜆

2
, which proves the second equality of (103).

Step 3. Let us compute the Laplace transform:

Q2

0
[exp {−𝜆

1

𝑋
𝑚

𝑚
}Q0

𝑋
𝑚

[exp {−𝜆
2

𝑋
𝑀−𝑚

𝑀
}]] . (119)

By formula (39), this expectation is equal to

Q2

0
[exp{−(

𝜆
1

𝑚
+

𝜆
2
/𝑀

1 + 2 (𝜆
2
/𝑀) (𝑀 − 𝑚)

)𝑋
𝑚
}] . (120)

Using the equality between (116) and (118), we see that

∬𝑒
−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

3
(𝑑𝑙

1
× 𝑑𝑙

2
) =

1 + 2𝐸𝜆
2

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

.

(121)

Now we also obtain

∬𝑒
−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

4
(𝑑𝑙

1
× 𝑑𝑙

2
) =

1 + 2𝐸𝜆
1

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

.

(122)

Step 4. Noting that

∬𝑒
−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

1
(𝑑𝑙

1
× 𝑑𝑙

2
) = 1, (123)
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we sum up formulae (123), (118), (121), and (122), and we
obtain

4

∑

𝑘=1

𝐶
𝑘
∬𝑒

−𝜆
1
𝑙
1
−𝜆
2
𝑙
2Φ

𝑘
(𝑑𝑙

1
× 𝑑𝑙

2
)

=
1 + 𝜆

1
+ 𝜆

2
+ 𝐷𝜆

1
𝜆
2

1 + 2𝜆
1
+ 2𝜆

2
+ 4𝐸𝜆

1
𝜆
2

.

(124)

By Lemma 11, we see that the right-hand side coincides with
the Laplace transform of the joint law of (𝐿

𝑥

∞
, 𝐿

𝑦

∞
) under

Pℎ
0
. By the uniqueness of Laplace transforms, we obtain the

desired conclusion.

6. The Laws of Total Local Times for Bridges

In this section, we study the total local time of Lévy bridges
and ℎ-bridges.

6.1. The Laws of the Total Local Times for Lévy Bridges. Let us
work with the Lévy bridge P𝑡

0,0
and its local time (𝐿

𝑧

𝑠
: 0 ≤ 𝑠 ≤

𝑡) such that

∫

𝑠

0

𝑓 (𝑋
𝑢
) 𝑑𝑢 = ∫𝑓 (𝑧) 𝐿

𝑧

𝑠
𝑑𝑧, 0 ≤ 𝑠 ≤ 𝑡, 𝑓 ∈ B

+
(R)

(125)

withP𝑡
0,0
-probability one. Let us study the lawof the total local

time 𝐿
𝑧

𝑡
under P𝑡

0,0
.

Theorem 19. For 𝑡 > 0, it holds that

P𝑡
0,0

(𝐿
0

𝑡
∈ 𝑑𝑙) =

𝛾
𝑙
(𝑡)

𝑝
𝑡
(0)

𝑑𝑙. (126)

Proof. UsingTheorem 7 with 𝑛 = 1 and 𝑧
1
= 0, we have

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0)P𝑡

0,0
[𝑒

−𝜆𝐿
0

𝑡] 𝑑𝑡 =
1

1/𝑢
𝑞
(0) + 𝜆

. (127)

By formula (61), we have

1

1/𝑢
𝑞
(0) + 𝜆

= ∫

∞

0

𝑒
−(1/𝑢

𝑞
(0)−𝜆)𝑙

𝑑𝑙

= ∫

∞

0

P
0
[𝑒
−𝑞𝜏(𝑙)

] 𝑒
−𝜆𝑙

𝑑𝑙.

(128)

Hence, using Lemma 9, we obtain (126) by the Laplace
inversion. The proof is now complete.

Theorem 20. For any 𝑧 ∈ R \ {0}, one has

P𝑡
0,0

(𝐿
𝑧

𝑡
= 0) =

𝑝
𝑡
(0) − (𝜌

𝑧
∗ 𝜌

𝑧
∗ 𝑝

⋅
(0)) (𝑡)

𝑝
𝑡
(0)

, (129)

P𝑡
0,0

(𝐿
𝑧

𝑡
∈ 𝑑𝑙) =

(𝜌
𝑧
∗ 𝜌

𝑧
∗ 𝛾

𝑙
) (𝑡)

𝑝
𝑡
(0)

𝑑𝑙, for 𝑙 ̸= 0, (130)

where the symbol ∗ stands for the convolution operation.

Proof. Using Theorem 7 with 𝑛 = 2, 𝜆
1
= 0, 𝜆

2
= 𝜆, 𝑧

1
= 0,

and 𝑧
2
= 𝑧, we have

∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0)P𝑡

0,0
[𝑒
−𝜆𝐿
𝑧

𝑡] 𝑑𝑡

= 𝑢
𝑞
(0) (1 −

𝑢
𝑞
(𝑧)

2

𝑢
𝑞
(0)

2
) +

𝑢
𝑞
(𝑧)

2

𝑢
𝑞
(0)

2

1

1/𝑢
𝑞
(0) + 𝜆

.

(131)

On the one hand, it follows from (57) that

𝑢
𝑞
(0) (1 −

𝑢
𝑞
(𝑧)

2

𝑢
𝑞
(0)

2
)

= (∫

∞

0

𝑒
−𝑞𝑡

𝑝
𝑡
(0) 𝑑𝑡) (1 − P

𝑧
[𝑒
−𝑞𝑇
{0}]

2

) .

(132)

This implies (129). On the other hand, by (61) and (57), we
have

𝑢
𝑞
(𝑧)

2

𝑢
𝑞
(0)

2

1

1/𝑢
𝑞
(0) + 𝜆

= P
𝑧
[𝑒
−𝑞𝑇
{0}]

2

∫

∞

0

P
0
(𝑒

−𝑞𝜏(𝑙)
) 𝑒

−𝜆𝑙
𝑑𝑙.

(133)

This implies (130). The proof is now complete.

6.2. The Laws of the Total Local Times for ℎ-Bridges. Let us
work with the ℎ-bridge Pℎ,𝑡

0,0
and its local time (𝐿

𝑧

𝑡
) such that

∫

𝑠

0

𝑓 (𝑋
𝑢
) 𝑑𝑢 = ∫𝑓 (𝑧) 𝐿

𝑧

𝑠
ℎ(𝑧)

2
𝑑𝑧, 0 ≤ 𝑠 ≤ 𝑡, 𝑓 ∈ B

+
(R)

(134)

with Pℎ,𝑡
0,0
-probability one. We give the Laplace transform

formula for the law of the total local time 𝐿
𝑧

𝑡
under Pℎ,𝑡

0,0
.

Lemma 21. For 𝑧 ∈ R \ {0} and 𝜆 ≥ 0, one has

∫

∞

0

𝑒
−𝑞𝑡

𝑝
ℎ

𝑡
(0, 0)Pℎ,𝑡

0,0
[1 − 𝑒

−𝜆ℎ(𝑧)
2
𝐿
𝑧

𝑡] 𝑑𝑡

=
(𝑢

𝑞
(𝑧)

2
/𝑢

𝑞
(0)

2
) 𝜆

1 + 𝑢
𝑞
(0) {1 − 𝑢

𝑞
(𝑧)

2
/𝑢

𝑞
(0)

2
} 𝜆

.

(135)

Proof. Using Theorem 8 with 𝑛 = 1, 𝜆
1

= 𝜆, and 𝑧
1

= 𝑧, we
have

∫

∞

0

𝑒
−𝑞𝑡

𝑝
ℎ

𝑡
(0, 0)Pℎ,𝑡

0,0
[1 − 𝑒

−𝜆𝐿
𝑧

𝑡] 𝑑𝑡 =
𝑢
ℎ

𝑞
(0, 𝑧)

2
𝜆

1 + 𝑢ℎ
𝑞
(𝑧, 𝑧) 𝜆

. (136)

By formulae (72), we obtain the desired formula.

7. Concluding Remark

We gave an explicit formula which describes the joint
distribution of the total local times at two levels and we
discussed several formulae related to the law of the total
local times. However, we could not obtain any better result
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on the law of the total local time with space parameter. As
we noted in Remark 3, a difficulty arises in the case of ℎ-
paths, which comes from the asymmetry of thematrix Σ−Σ

0.
We also remark that we have no better result related to the
law of total local time in the case where the Markov process
is asymmetric. We left the further study of the law of the
total local time for asymmetric Markov process with space
parameter for future work.
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