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The commutativity of 𝑘th-order slant Toeplitz operators with harmonic polynomial symbols, analytic symbols, and coanalytic
symbols is discussed. We show that, on the Lebesgue space and Bergman space, necessary and sufficient conditions for the
commutativity of 𝑘th-order slant Toeplitz operators are that their symbol functions are linearly dependent. Also, we study the
product of two 𝑘th-order slant Toeplitz operators and give some necessary and sufficient conditions.

1. Preliminaries

Throughout this paper, 𝑘 is a fixed positive integer, and 𝑘 ≥ 2.
Let 𝜑(𝑧) = ∑

∞

𝑖=−∞
𝑎
𝑖
𝑧
𝑖 be a bounded measurable function

on the unit circle T , where 𝑎
𝑖
= ⟨𝜑, 𝑧

𝑖

⟩ is the 𝑖th Fourier
coefficient of 𝜑 and {𝑧𝑖 : 𝑖 ∈ Z} is the usual basis of 𝐿2(T),
with Z being the set of integers. The 𝑘th-order slant Toeplitz
operator 𝑈

𝜑
with symbol 𝜑 in 𝐿∞(T) is defined on 𝐿2(T) as

follows:

𝑈
𝜑
(𝑧
𝑙

) =

∞

∑

𝑖=−∞

𝑎
𝑘𝑖−𝑙

𝑧
𝑖

. (1)

In the past several decades, slant Toeplitz operators
have played outstanding roles in wavelet analysis, curve
and surface modelling, and dynamical systems (e.g., see [1–
10]). For instance, Villemoes [7] has associated the Besov
regularity of solution of the refinement equation with the
spectral radius of an associated slant Toeplitz operators and
has used the spectral radius of the slant Toeplitz operators
to characterize the 𝐿

𝑝
(1 ≤ 𝑝 ≤ ∞) regularity of refinable

functions; Goodman et al. [6] have shown the connection
between the spectral radii and conditions for the solutions
of certain differential equations that in the Lipschitz classes.
However, these mathematicians concentrated mainly on the
applications, but these considerations serve as a source of

motivation to introduce and study the properties of slant
Toeplitz operators.

In 1995, Ho [11–14] began a systematic study of the
slant Toeplitz operators on the Hardy space. In [15–17],
the authors discussed some properties of 𝑘th-order slant
Toeplitz operator. In [18, 19], the authors defined the slant
Toeplitz operator and 𝑘th-order slant Toeplitz operator on the
Bergman spaces, respectively, and studied some properties of
these operators.

In this paper, properties of 𝑘th-order slant Toeplitz oper-
ators with harmonic polynomial symbols, analytic symbols,
and coanalytic symbols are discussed. We show that, on
the Lebesgue space and Bergman space, the necessary and
sufficient conditions for the commutativity of 𝑘th-order slant
Toeplitz operators are that their symbol functions are linearly
dependent. Meanwhile, we study the product of two 𝑘th-
order slant Toeplitz operators and give some necessary and
sufficient conditions.

2. Commutativity of 𝑘th-Order Slant
Toeplitz Operators on 𝐿

2

(T)

In [17], we investigated the properties of 𝑘th-order slant
Toeplitz operators on 𝐿2(T) and have obtained that for 𝜑, 𝜓 ∈

𝐿
∞

(T), 𝑈
𝜑
and 𝑈

𝜓
commute (essentially commute) if and

only if 𝜑(𝑧𝑘)𝜓 − 𝜑𝜓(𝑧𝑘) = 0.
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Immediately we come up with the following problem.
Could the commutativity of two 𝑘th-order slant Toeplitz

operators be fully characterized by their symbols?
The partial answer to the pervious problem has been

obtained in [17]: for𝜓∈𝐿∞(T) and𝜑(𝑧)=∑𝑘−1
𝑝=0

𝑎
𝑝
𝑧
𝑝 or𝜑(𝑧) =

∑
0

𝑝=−𝑘+1
𝑎
𝑝
𝑧
𝑝, 𝑈
𝜑
and 𝑈

𝜓
commute (essentially commute) if

and only if there exist scalars 𝛼 and 𝛽, not both zero, such that
𝛼𝜑 + 𝛽𝜓 = 0.

In this section the commutativity of 𝑘th-order slant
Toeplitz operators with analytic symbols and harmonic sym-
bols will be studied. First we discuss the commutativity of two
𝑘th-order slant Toeplitz operators with analytic symbols.

Proposition 1. Let 𝜑, 𝜓 ∈ 𝐻
∞

(T), then the following state-
ments are equivalent:

(1.1) 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧𝑘);
(1.2) there exist scalars 𝛼 and𝛽, not both zero, such that 𝛼𝜑+

𝛽𝜓 = 0.

Proof. Begin with the easy direction. First, suppose that (1.2)
holds. Without loss of generality, let 𝛼 ̸= 0, so that 𝜑 =

−(𝛽/𝛼)𝜓. Thus, 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧𝑘).
To prove the other direction of the proposition, suppose

that (1.1) holds; that is, 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧
𝑘

). Let 𝜑(𝑧) =
∑
∞

𝑝=0
𝑎
𝑝
𝑧
𝑝 and 𝜓(𝑧) = ∑∞

𝑝=0
𝑏
𝑝
𝑧
𝑝, then

∞

∑

𝑝=0

𝑎
𝑝
𝑧
𝑘𝑝

⋅

∞

∑

𝑝=0

𝑏
𝑝
𝑧
𝑝

=

∞

∑

𝑝=0

𝑎
𝑝
𝑧
𝑝

⋅

∞

∑

𝑝=0

𝑏
𝑝
𝑧
𝑘𝑝

, (2)

that is,
∞

∑

𝑝=0

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

=

∞

∑

𝑝=0

∑

𝑖+𝑘𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

, (3)

where 𝑖 and 𝑗 are both nonnegative integers. Hence, for all
nonnegative integers 𝑖, 𝑗, and 𝑝,

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
= ∑

𝑖+𝑘𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
. (4)

Now we would give the proof in four cases.

Case I. Suppose that 𝑎
0
𝑏
0
̸= 0. Let 𝜆 = 𝑏

0
/𝑎
0
and we continue

the proof by the induction.
When 𝑝 = 1, from (4) we get that 𝑎

0
𝑏
1
= 𝑎
1
𝑏
0
, which

means that 𝑏
1
= 𝜆𝑎
1
.

When 𝑝 = 2, from (4) we get that

𝑎
0
𝑏
2
+ 𝑎
1
𝑏
0
= 𝑎
2
𝑏
0
+ 𝑎
0
𝑏
1
, if 𝑘 = 2,

𝑎
0
𝑏
2
= 𝑎
2
𝑏
0
, if 𝑘 > 2,

(5)

which means that 𝑏
2
= 𝜆𝑎
2
, since 𝑏

1
= 𝜆𝑎
1
.

Now suppose that 𝑏
𝑖
= 𝜆𝑎
𝑖
for all integers 𝑖 with 0 ≤ 𝑖 ≤

𝑚. Then, observe the connection between 𝑎
𝑚+1

and 𝑏
𝑚+1

. Let
𝑚 + 1 = 𝑘𝑙 + 𝑟, where 𝑙 and 𝑟 are nonnegative integers with
0 ≤ 𝑟 ≤ 𝑘 − 1.

When 𝑝 = 𝑚 + 1, from (4) we get

𝑎
0
𝑏
𝑚+1

+ 𝑎
1
𝑏
𝑚+1−𝑘

+ 𝑎
2
𝑏
𝑚+1−2𝑘

+ ⋅ ⋅ ⋅ + 𝑎
𝑙
𝑏
𝑚+1−𝑙𝑘

= 𝑏
0
𝑎
𝑚+1

+ 𝑏
1
𝑎
𝑚+1−𝑘

+ 𝑏
2
𝑎
𝑚+1−2𝑘

+ ⋅ ⋅ ⋅ + 𝑏
𝑙
𝑎
𝑚+1−𝑙𝑘

.

(6)

From the assumption we have 𝑎
0
𝑏
𝑚+1

= 𝑏
0
𝑎
𝑚+1

; that is; 𝑏
𝑚+1

=

𝜆𝑎
𝑚+1

.
Hence, from the above discussion we get that 𝑏

𝑖
= 𝜆𝑎
𝑖
for

all integers 𝑖 with 𝑖 ≥ 0 by the induction, which means that
𝜓(𝑧) = 𝜆𝜑(𝑧). So, the required result holds.

Case II. Suppose that 𝑎
0
= 0 and 𝑏

0
̸= 0. We want to show that

𝑎
𝑖
= 0 for all integers 𝑖 with 𝑖 ≥ 0; that is, 𝜑 ≡ 0. Suppose

that there exists some 𝑎
𝑖
which is not zero. Without loss of

generality, let 𝑎
𝑖
= 0 for all integers 𝑖 with 0 ≤ 𝑖 ≤ 𝑙 − 1

and 𝑎
𝑙
̸= 0, where 𝑙 ≥ 1 is an integer, then 𝜑(𝑧) = 𝑧

𝑙

𝜑
1
(𝑧) and

𝜑
1
(𝑧) = ∑

∞

𝑖=0
𝑎
𝑖+𝑙
𝑧
𝑖

=̇ ∑
∞

𝑖=0
𝑎


𝑖
𝑧
𝑖.

Because 𝜑(𝑧
𝑘

)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧
𝑘

), we can get that
𝑧
(𝑘−1)𝑙

𝜑
1
(𝑧
𝑘

)𝜓(𝑧) = 𝜑
1
(𝑧)𝜓(𝑧

𝑘

), which means that
∞

∑

𝑝=0

∑

𝑘𝑖+𝑗=𝑝

𝑎


𝑖
𝑏
𝑗
𝑧
𝑝+(𝑘−1)𝑙

=

∞

∑

𝑝=0

∑

𝑖+𝑘𝑗=𝑝

𝑎


𝑖
𝑏
𝑗
𝑧
𝑝

. (7)

Thus, we have 𝑎
0
𝑏
0
= 0, and, so, since 𝑎

0
= 𝑎
𝑙
̸= 0, we have

𝑏
0
= 0. This leads to a contradiction.
Hence, 𝜑 ≡ 0 and the required result holds.

Case III. Suppose that 𝑎
0
̸= 0 and 𝑏

0
= 0. Similar to Case II, we

can get that 𝜓 ≡ 0. So, the required result holds.

Case IV. Suppose that 𝑎
0
= 0 and 𝑏

0
= 0. If 𝜑 ≡ 0 or 𝜓 ≡

0, then the required result holds. Otherwise, without loss of
generality, let 𝑎

𝑖
= 0 for all integers 𝑖 with 0 ≤ 𝑖 ≤ 𝑙 − 1 and

𝑎
𝑙
̸= 0, and let 𝑏

𝑗
= 0 for all integers 𝑗 with 0 ≤ 𝑗 ≤ 𝑚 − 1

and 𝑏
𝑚

̸= 0, where 𝑙 and𝑚 are positive integers. Then, 𝜑(𝑧) =
𝑧
𝑙

𝜑
1
(𝑧) and 𝜓(𝑧) = 𝑧𝑚𝜓

1
(𝑧).

If 𝑙 = 𝑚, then 𝜑(𝑧
𝑘

)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧
𝑘

) is equal to
𝜑
1
(𝑧
𝑘

)𝜓
1
(𝑧) = 𝜑

1
(𝑧)𝜓
1
(𝑧
𝑘

). The proof is similar to Case I.
If 𝑙 > 𝑚, then 𝜑(𝑧

𝑘

)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧
𝑘

) is equal to
𝑧
𝑘(𝑙−𝑚)

𝜑
1
(𝑧
𝑘

)𝜓
1
(𝑧) = 𝜑

1
(𝑧)𝜓
1
(𝑧
𝑘

). The proof is similar to
Case II.

If 𝑙 < 𝑚, then 𝜑(𝑧
𝑘

)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧
𝑘

) is equal to
𝜑
1
(𝑧
𝑘

)𝜓
1
(𝑧) = 𝑧

𝑘(𝑚−𝑙)

𝜑
1
(𝑧)𝜓
1
(𝑧
𝑘

). The proof is similar to
Case III.

From the preceding Proposition 1, it is evident that
Corollary 2 holds.

Corollary 2. Let𝜑, 𝜓 ∈ 𝐻
∞

(T), then the following statements
are equivalent:

(1.1) 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧𝑘);
(1.2) there exist scalars 𝛼 and𝛽, not both zero, such that 𝛼𝜑+

𝛽𝜓 = 0.

FromTheorem 2.8 in [17], Proposition 1, and Corollary 2,
we can obtain the followingTheorem 3.
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Theorem3. Let𝜑, 𝜓∈𝐻∞(T) or𝜑,𝜓 ∈ 𝐻
∞

(T), the following
statements are equivalent:

(1.1) 𝑈
𝜑
and 𝑈

𝜓
commute;

(1.2) 𝑈
𝜑
and 𝑈

𝜓
essentially commute;

(1.3) 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧𝑘);
(1.4) there exist scalars 𝛼 and𝛽, not both zero, such that 𝛼𝜑+

𝛽𝜓 = 0.

Nowwe start to study the commutativity of two 𝑘th-order
slant Toeplitz operators with harmonic symbols.

Proposition4. Let𝜑(𝑧)=∑𝑛
𝑝=−𝑛

𝑎
𝑝
𝑧
𝑝 and𝜓(𝑧)= ∑𝑛

𝑝=−𝑛
𝑏
𝑝
𝑧
𝑝,

where 𝑎2
−𝑛
+𝑏
2

−𝑛
̸= 0 and 𝑛 is a positive integer, then the following

statements are equivalent:

(1.1) 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧𝑘);
(1.2) there exist scalars 𝛼 and𝛽, not both zero, such that 𝛼𝜑+

𝛽𝜓 = 0.

Proof. We begin with the easy direction. First, suppose that
(1.2) holds and let 𝛼 ̸= 0 without lost of generality, so that 𝜑 =
−(𝛽/𝛼)𝜓. Thus, 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧𝑘).

To prove the other direction of the proposition, suppose
that (1.1) holds. Since 𝜑(𝑧) = ∑

𝑛

𝑝=−𝑛
𝑎
𝑝
𝑧
𝑝 and 𝜓(𝑧) =

∑
𝑛

𝑝=−𝑛
𝑏
𝑝
𝑧
𝑝, then 𝜑(𝑧𝑘) = ∑

𝑛

𝑝=−𝑛
𝑎p𝑧
𝑘𝑝, 𝜓(𝑧𝑘) = ∑

𝑛

𝑝=−𝑛
𝑏
𝑝
𝑧
𝑘𝑝

and

𝜑 (𝑧
𝑘

) 𝜓 (𝑧) =

𝑛

∑

𝑝=−𝑛

𝑎
𝑝
𝑧
𝑘𝑝

⋅

𝑛

∑

𝑝=−𝑛

𝑏
𝑝
𝑧
𝑝

=

(𝑘+1)𝑛

∑

𝑝=−(𝑘+1)𝑛

𝑛

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

,

𝜑 (𝑧) 𝜓 (𝑧
𝑘

) =

𝑛

∑

𝑝=−𝑛

𝑎
𝑝
𝑧
𝑝

⋅

𝑛

∑

𝑝=−𝑛

𝑏
𝑝
𝑧
𝑘𝑝

=

(𝑘+1)𝑛

∑

𝑝=−(𝑘+1)𝑛

𝑛

∑

𝑖+𝑘𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

,

(8)

where both 𝑖 and 𝑗 are integers with −𝑛 ≤ 𝑖, 𝑗 ≤ 𝑛. Because
𝜑(𝑧
𝑘

)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧
𝑘

), we can get that

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
= ∑

𝑖+𝑘𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
, (9)

for any integers 𝑝 with −(𝑘 + 1)𝑛 ≤ 𝑝 ≤ (𝑘 + 1)𝑛.
Nowwe start to investigate the connection between𝑎

𝑗
and

𝑏
𝑗
(𝑗 = −𝑛, . . . , 𝑛) by induction. Since 𝑎2

−𝑛
+ 𝑏
2

−𝑛
̸= 0, without

loss of generality, let 𝑎
−𝑛

̸= 0 and let 𝜆 = 𝑏
−𝑛
/𝑎
−𝑛

, which also
means that 𝑏

−𝑛
= 𝜆𝑎
−𝑛
.

When 𝑝 = −(𝑘 + 1)𝑛 + 1, then by (9), we can get that
𝑎
−𝑛
𝑏
−𝑛+1

= 𝑎
−𝑛+1

𝑏
−𝑛
, which means that 𝑏

−𝑛+1
= 𝜆𝑎
−𝑛+1

, since
𝑎
−𝑛

̸= 0.
Suppose that 𝑏

−𝑛+𝑗
= 𝜆𝑎
−𝑛+𝑗

for any integers 𝑗 with 0 ≤

𝑗 ≤ 𝑙 − 1, where 1 ≤ 𝑙 ≤ 2𝑛. Now we consider the connection

between 𝑏
−𝑛+𝑙

and 𝑎
−𝑛+𝑙

. Let 𝑙 = 𝑚𝑘 + 𝑟, where 𝑚 and 𝑟 are
both nonnegative integers with 0 ≤ 𝑟 ≤ 𝑘 − 1.

When 𝑝 = −(𝑘 + 1)𝑛 + 𝑙, by (9) we get that

𝑎
−𝑛
𝑏
−𝑛+𝑙

+ 𝑎
−𝑛+1

𝑏
−𝑛+𝑙−𝑘

+ ⋅ ⋅ ⋅ + 𝑎
−𝑛+𝑚

𝑏
−𝑛+𝑙−𝑚𝑘

= 𝑏
−𝑛
𝑎
−𝑛+𝑙

+ 𝑏
−𝑛+1

𝑎
−𝑛+𝑙−𝑘

+ ⋅ ⋅ ⋅ + 𝑏
−𝑛+𝑚

𝑎
−𝑛+𝑙−𝑚𝑘

.

(10)

From the assumption we get that 𝑎
−𝑛
𝑏
−𝑛+𝑙

= 𝑎
−𝑛+𝑙

𝑏
−𝑛
, which

means that 𝑏
−𝑛+𝑙

= 𝜆𝑎
−𝑛+𝑙

.
Hence, by the induction we obtain that 𝑏

𝑗
= 𝜆𝑎
𝑗
(𝑗 =

−𝑛, . . . , 𝑛); that is, 𝜓(𝑧) = ∑
𝑛

𝑗=−𝑛
𝜆𝑎
𝑗
𝑧
𝑗

= 𝜆∑
𝑛

𝑗=−𝑛
𝑎
𝑗
𝑧
𝑗

=

𝜆𝜑(𝑧). So, the required result holds.

Lemma 5. Let 𝜑(𝑧) = ∑
𝑛

𝑝=−𝑛
𝑎
𝑝
𝑧
𝑝, 𝜓(𝑧) = ∑

𝑚

𝑝=−𝑚
𝑏
𝑝
𝑧
𝑝, and

𝑏
𝑚
𝑏
−𝑚

̸= 0, where 𝑛 and 𝑚 are integers and 𝑛 > 𝑚 ≥ 1. If
𝜑(𝑧
𝑘

)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧
𝑘

), then 𝑎
𝑗
= 0 for any integers 𝑗 with

𝑚 + 1 ≤ |𝑗| ≤ 𝑛.

Proof. Since 𝜑(𝑧) = ∑
𝑛

𝑝=−𝑛
𝑎
𝑝
𝑧
𝑝, 𝜓(𝑧) = ∑

𝑚

𝑝=−𝑚
𝑏
𝑝
𝑧
𝑝, and

𝜑(𝑧
𝑘

)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧
𝑘

), then

𝑘𝑛+𝑚

∑

𝑝=−(𝑘𝑛+𝑚)

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

=

𝑛+𝑘𝑚

∑

𝑝=−(𝑛+𝑘𝑚)

∑

𝑖+𝑘𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

. (11)

Since 𝑛 > 𝑚 ≥ 1, we can get that for any integers 𝑝 with
𝑛 + 𝑘𝑚 + 1 ≤ |𝑝| ≤ 𝑘𝑛 + 𝑚,

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
= 0, (12)

for any integers 𝑝 with 0 ≤ |𝑝| ≤ 𝑛 + 𝑘𝑚,

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
= ∑

𝑖+𝑘𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
. (13)

We want to show that 𝑎
𝑗
= 0 for any integers 𝑗 with 𝑚 +

1 ≤ 𝑗 ≤ 𝑛. Here are two cases: 𝑛 < 𝑚 + 𝑘 and 𝑛 ≥ 𝑚 + 𝑘.
Let 𝑚 = 𝑙𝑘 + 𝑟, where 𝑙 and 𝑟 are nonnegative integers with
0 ≤ 𝑟 ≤ 𝑘 − 1.

First Case. If 𝑛 < 𝑚 + 𝑘, then 𝑘(𝑚 + 1) +𝑚 = 𝑘𝑚 +𝑚 + 𝑘 >

𝑘𝑚 + 𝑛. Now we, continue the discussion by induction.
When 𝑝 = 𝑘𝑛 + 𝑚, by (12), we can get that 𝑎

𝑛
𝑏
𝑚
= 0. So,

𝑎
𝑛
= 0, since 𝑏

−𝑚
𝑏
𝑚

̸= 0.
When 𝑝 = 𝑘𝑛+𝑚−𝑘, by (12) we can get that 𝑎

𝑛−1
𝑏
𝑚
+(𝑚−

𝑘)
+

𝑎
𝑛
𝑏
𝑚−𝑘

= 0, where (𝑚 − 𝑘)
+

= max{sgn (2𝑚 − 𝑘 + 1), 0}

and sgn is a sign function. So, 𝑎
𝑛−1

= 0, since 𝑏
−𝑚
𝑏
𝑚

̸= 0 and
𝑎
𝑛
= 0.
Suppose that 𝑎

𝑛−𝑗
= 0 for any integers 𝑗 with 0 ≤ 𝑗 ≤ 𝑡 <

𝑛 − 𝑚 − 1. Now, consider the value of 𝑎
𝑛−𝑡−1

.
When 𝑝 = 𝑘𝑛 + 𝑚 − 𝑘(𝑡 + 1), by (12) we get that

𝑎
𝑛−𝑡−1

𝑏
𝑚
+ ⋅ ⋅ ⋅ + 𝑎

𝑛−𝑡−1+𝜆
𝑏
𝑚−𝜆𝑘

= 0, (14)

where

𝜆 = 𝑡 + 1, if 2𝑚 ≥ (𝑡 + 1) 𝑘,

𝜆 = [
2𝑚

𝑘
] , if 2𝑚 < (𝑡 + 1) 𝑘,

(15)
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and [2𝑚/𝑘] is the biggest integer which is not bigger than
2𝑚/𝑘. Then, by the assumption and (14), we get that 𝑎

𝑛−𝑡−1
=

0, since 𝑏
𝑚
𝑏
−𝑚

̸= 0.
Hence, from the above discussion we obtain that 𝑎

𝑗
= 0

for all integers 𝑗 with𝑚 + 1 ≤ 𝑗 ≤ 𝑛 by the induction.

Second Case. If 𝑛 ≥ 𝑚+ 𝑘, then 𝑘(𝑚 + 1) +𝑚 = 𝑘𝑚+𝑚+ 𝑘 ≤

𝑘𝑚 + 𝑛. Now we continue the discussion by induction.
When 𝑝 = 𝑘𝑛 + 𝑚, by (12), we can get that 𝑎

𝑛
𝑏
𝑚
= 0. So,

𝑎
𝑛
= 0, since 𝑏

−𝑚
𝑏
𝑚

̸= 0.
Suppose that 𝑎

𝑛−𝑗
for any integers 𝑗 with 0 ≤ 𝑗 ≤ 𝑡 <

𝑛 − 𝑚 − 1. Now, consider the value of 𝑎
𝑛−𝑡−1

.
If 𝑝 = 𝑘𝑛 + 𝑚 − 𝑘(𝑡 + 1) > 𝑘𝑚 + 𝑛, by (12) we get that

𝑎
𝑛−𝑡−1

𝑏
𝑚
+ ⋅ ⋅ ⋅ + 𝑎

𝑛−𝑡−1+𝜆
𝑏
𝑚−𝜆𝑘

= 0, (16)

where

𝜆 = 𝑡 + 1, if 2𝑚 ≥ (𝑡 + 1) 𝑘,

𝜆 = [
2𝑚

𝑘
] , if 2𝑚 < (𝑡 + 1) 𝑘,

(17)

and [𝑥] is the biggest integer which is not bigger than 𝑥.Then,
by the assumption and (16), we get that 𝑎

𝑛−𝑡−1
= 0, since

𝑏
𝑚
𝑏
−𝑚

̸= 0.
If 𝑝 = 𝑘𝑛 + 𝑚 − 𝑘(𝑡 + 1) ≤ 𝑘𝑚 + 𝑛, by (13), we get that

𝑎
𝑛−𝑡−1

𝑏
𝑚
+ ⋅ ⋅ ⋅ + 𝑎

𝑛−𝑡−1+𝜆
1

𝑏
𝑚−𝜆
1
𝑘

= 𝑏
𝑚
𝑎
𝑘𝑛−𝑘𝑚−𝑘𝑡−𝑘+𝑚

+ ⋅ ⋅ ⋅ + 𝑏
𝑚−𝜆
2

𝑎
𝑘𝑛−𝑘𝑚−𝑘𝑡−𝑘+𝑚+𝜆

2
𝑘
,

(18)

where

𝜆
1
= 𝑡 + 1, if 2𝑚 ≥ (𝑡 + 1) 𝑘,

𝜆
1
= [

2𝑚

𝑘
] , if 2𝑚 < (𝑡 + 1) 𝑘,

𝜆
2
= 2𝑚, if 𝑘𝑛 + 𝑘𝑚 − 𝑘𝑡 − 𝑘 + 𝑚 ≤ 𝑛,

𝜆
2
= [

𝑛 + 𝑘𝑚 + 𝑘𝑡 + 𝑘 − 𝑘𝑛 − 𝑚

𝑘
] ,

if 𝑘𝑛 + 𝑘𝑚 − 𝑘𝑡 − 𝑘 + 𝑚 > 𝑛,

(19)

and [𝑥] is the biggest integer which is not bigger than 𝑥.Then,
by the assumption and (18), we get that 𝑎

𝑛−𝑡−1
= 0, since

𝑏
𝑚
𝑏
−𝑚

̸= 0.
Hence, from the above discussion we obtain that 𝑎

𝑗
= 0

for all integers 𝑗 with𝑚 + 1 ≤ 𝑗 ≤ 𝑛 by the induction.
Similarly, we could get that 𝑎

𝑗
= 0 for all integers 𝑗 with

−𝑛 ≤ 𝑗 ≤ −(𝑚 + 1).

From Proposition 4 and Lemma 5, it is evident that
Proposition 6 holds.

Proposition 6. Let 𝜑(𝑧) = ∑
𝑛

𝑝=−𝑛
𝑎
𝑝
𝑧
𝑝, 𝜓(𝑧) = ∑

𝑚

𝑝=−𝑚
𝑏
𝑝
𝑧
𝑝

and 𝑏
𝑚
𝑏
−𝑚

̸= 0, where 𝑛,𝑚 are integers and 𝑛 > 𝑚 ≥ 1, then
the following statements are equivalent:

(1.1) 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧𝑘);

(1.2) there exist scalars 𝛼 and𝛽, not both zero, such that 𝛼𝜑+
𝛽𝜓 = 0.

Theorem 7 is obvious from Theorem 2.8 in [17] and
Proposition 6.

Theorem 7. Let 𝜑(𝑧) = ∑𝑛
𝑝=−𝑛

𝑎
𝑝
𝑧
𝑝, 𝜓(𝑧) = ∑𝑚

𝑝=−𝑚
𝑏
𝑝
𝑧
𝑝, and

𝑏
𝑚
𝑏
−𝑚

̸= 0, where 𝑛 and𝑚 are integers and 𝑛 > 𝑚 ≥ 1, and the
following statements are equivalent:

(1.1) 𝑈
𝜑
and 𝑈

𝜓
commute;

(1.2) 𝑈
𝜑
and 𝑈

𝜓
essentially commute;

(1.3) 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧)𝜓(𝑧𝑘);

(1.4) there exist scalars 𝛼 and𝛽, not both zero, such that 𝛼𝜑+
𝛽𝜓 = 0.

3. Product of Two 𝑘th-Order Slant Toeplitz
Operators on 𝐿

2

(T)

In [15, 17], the authors have investigated properties of the
product of two 𝑘th-order slant Toeplitz operators on 𝐿

2

(T)

and have obtained the following result.

Theorem8 (see [15, 17]). Let 𝜑, 𝜓 ∈ 𝐿
∞

(T), then the following
statements are equivalent:

(1.1) 𝑈
𝜑
𝑈
𝜓
is a 𝑘th-order slant Toeplitz operator;

(1.2) 𝑈
𝜑
𝑈
𝜓
is a zero operator;

(1.3) 𝑈
𝜑
𝑈
𝜓
is compact;

(1.4) 𝜑(𝑧𝑘)𝜓(𝑧) = 0.

In this section, we will describe properties of the product
of two 𝑘th-order slant Toeplitz operators with analytic sym-
bols and harmonic symbols on 𝐿2(T) by their symbols. First,
we start to discuss properties of two 𝑘th-order slant Toeplitz
product with analytic symbols.

Proposition 9. Let 𝜑, 𝜓 ∈ 𝐻
∞

(T), then 𝜑(𝑧𝑘)𝜓(𝑧) = 0 if and
only if 𝜑 = 0 or 𝜓 = 0.

Proof. As we know, the “if ” direction of the proposition is
trivial.

Now suppose that𝜑(𝑧𝑘)𝜓(𝑧) = 0. Since𝜑, 𝜓 ∈ 𝐻
∞

(T), we
have �̂�(𝑧𝑘)�̂�(𝑧) = 0, where �̂� and �̂� are the Poisson extensions
of 𝜑 and𝜓, respectively, and they are analytic on the unit disk
D. Hence, we get that �̂�(𝑧𝑘) is identically 0 or �̂� is identically
0; that is, 𝜑 is identically 0 or 𝜓 is identically 0.

Similarly, we could obtain Corollary 10.

Corollary 10. Let 𝜑, 𝜓 ∈ 𝐻
∞

(T), then 𝜑(𝑧𝑘)𝜓(𝑧) = 0 if and
only if 𝜑 = 0 or 𝜓 = 0.

It is obvious that Theorem 11 holds from the preceding
analysis.
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Theorem 11. Let 𝜑, 𝜓 ∈ 𝐻
∞

(T) or 𝜑, 𝜓 ∈ 𝐻
∞

(T), then the
following statements are equivalent:

(1.1) 𝑈
𝜑
𝑈
𝜓
is a 𝑘th-order slant Toeplitz operator;

(1.2) 𝑈
𝜑
𝑈
𝜓
is a zero operator;

(1.3) 𝑈
𝜑
𝑈
𝜓
is compact;

(1.4) 𝜑(𝑧𝑘)𝜓(𝑧) = 0;

(1.5) 𝜑 = 0 or 𝜓 = 0.

Now, we start to discuss the properties of two 𝑘th-order
slant Toeplitz product with harmonic symbols.

Proposition 12. Let 𝜑(𝑧) = ∑
𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝 and 𝜓(𝑧) =

∑
𝑚

𝑝=0
𝑏
−𝑝
𝑧
−𝑝, where 𝑛 and 𝑚 are both positive integers, then

𝜑(𝑧
𝑘

)𝜓(𝑧) = 0 if and only if 𝜑 = 0 or 𝜓 = 0.

Proof. We begin with the easy direction. First, suppose that
𝜑 = 0 or 𝜓 = 0; then it is clear that 𝜑(𝑧𝑘)𝜓(𝑧) = 0.

Without loss of generality, let 𝑎2
𝑛
+𝑏
2

−𝑚
̸= 0. Otherwise, 𝑎2

𝑛
+

𝑏
2

−𝑚
= 0; then we can consider the value of 𝑎

𝑖
and 𝑏
𝑗
, where

𝑖 and 𝑗 are both integers with 0 ≤ 𝑖 ≤ 𝑛 − 1 and 0 ≤ 𝑗 ≤

𝑚−1, since 𝜑(𝑧) and 𝜓 are both polynomial functions.There
are four cases: (1) 𝑎

𝑖
= 0 for all integers 𝑖 with 0 ≤ 𝑖 ≤ 𝑛;

(2) 𝑏
−𝑗

= 0 for all integers 𝑗 with 0 ≤ 𝑗 ≤ 𝑚; (3) 𝑎
𝑠
̸= 0 and

𝑎
𝑖
= 0 for all integers 𝑖 with 𝑠 + 1 ≤ 𝑖 ≤ 𝑛; (4) 𝑏

−𝑡
̸= 0 and

𝑏
−𝑗

= 0 for all integers 𝑗 with 𝑡 + 1 ≤ 𝑗 ≤ 𝑚, where 𝑠 and 𝑡
are both nonnegative integers with 𝑠 ≤ 𝑛 − 1 and 𝑡 ≤ 𝑚− 1. If
the first two cases hold, then the required result holds; if the
latter two cases holds, then we have 𝜑(𝑧) = ∑

𝑠

𝑝=0
𝑎
𝑝
𝑧
𝑝 and

𝑎
2

𝑠
+ 𝑏
2

−𝑚
̸= 0 or 𝜓(𝑧) = ∑𝑡

𝑝=0
𝑏
−𝑝
𝑧
−𝑝 and 𝑎2

𝑛
+ 𝑏
2

−𝑡
̸= 0.

Now suppose that 𝜑(𝑧𝑘)𝜓(𝑧) = 0 and 𝑎2
𝑛
+ 𝑏
2

−𝑚
̸= 0. Since

𝜑(𝑧) = ∑
𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝, 𝜓(𝑧) = ∑𝑚

𝑝=0
𝑏
−𝑝
𝑧
−𝑝, then

𝜑 (𝑧
𝑘

) 𝜓 (𝑧) =

𝑛

∑

𝑝=0

𝑎
𝑝
𝑧
𝑘𝑝

⋅

𝑚

∑

𝑝=0

𝑏
−𝑝
𝑧
−𝑝

=

𝑘𝑛

∑

𝑝=−𝑚

∑

𝑘𝑖−𝑗=𝑝

𝑎
𝑖
𝑏
−𝑗
𝑧
𝑝

,

(20)

where 𝑖 and 𝑗 are both integers with 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 ≤ 𝑚.
Because 𝜑(𝑧𝑘)𝜓(𝑧) = 0, we get, for any integers 𝑝 with −𝑚 ≤

𝑝 ≤ 𝑘𝑛,

∑

𝑘𝑖−𝑗=𝑝

𝑎
𝑖
𝑏
−𝑗
= 0, (21)

where 𝑖 and 𝑗 are both integers with 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑗 ≤ 𝑚.
Since 𝑎2

𝑛
+𝑏
2

−𝑚
̸= 0, yet we only obtain either 𝑎

𝑛
̸= 0 or 𝑏

−𝑚
̸= 0.

First Case. If 𝑎
𝑛
̸= 0. Now we want to show that 𝜓 ≡ 0 by the

induction.
When 𝑝 = 𝑘𝑛, by (21), we get that 𝑎

𝑛
𝑏
0
= 0, which means

that 𝑏
0
= 0, since 𝑎

𝑛
̸= 0.

When 𝑝 = 𝑘𝑛 − 1, by (21), we get that 𝑎
𝑛
𝑏
−1

= 0, which
means that 𝑏

−1
= 0, since 𝑎

𝑛
̸= 0.

Now suppose that 𝑏
−𝑙
= 0 for any integers 𝑙 with 0 ≤ 𝑙 ≤ 𝑡,

where 𝑡 is an integer with 0 ≤ 𝑡 ≤ 𝑚 − 1. Considering the
value of 𝑏

−𝑡−1
, when 𝑝 = 𝑘𝑛 − 𝑡 − 1, by (21), we get that

𝑎
𝑛
𝑏
−𝑡−1

+𝑎
𝑛−1

𝑏
−𝑡−1+𝑘

+𝑎
𝑛−2

𝑏
−𝑡−1+2𝑘

+ ⋅ ⋅ ⋅ +𝑎
𝑛−𝜆

𝑏
−𝑡−1+𝑘𝜆

=0,

(22)

where 𝜆 = min{𝑛, [(𝑡 + 1)/𝑘]} and [𝑥] is the biggest integer
which is not bigger than 𝑥. By the assumption and the above
equation, we get that 𝑎

𝑛
𝑏
−𝑡−1

= 0; that is, 𝑏
−𝑡−1

= 0, since
𝑎
𝑛
̸= 0.
From the preceding analysis, by the induction, we can

obtain that 𝑏
−𝑙
= 0 for any integers 𝑙 with 0 ≤ 𝑙 ≤ 𝑚. Hence,

𝜓 ≡ 0.

Second Case. If 𝑏
−𝑚

̸= 0. Arguing as in the First case, we obtain
that 𝜑 ≡ 0.

Proposition 13. Let 𝜑(𝑧) = ∑
𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝 and 𝜓(𝑧) =

∑
𝑚

𝑝=−𝑚
𝑏
𝑝
𝑧
𝑝, where 𝑛 and𝑚 are positive integers and 𝑎2

𝑛
+ 𝑏
2

𝑚
+

𝑏
2

−𝑚
̸= 0, then the following statements are equivalent:

(1.1) 𝜑(𝑧𝑘)𝜓(𝑧) = 0;

(1.2) 𝜑(𝑧)𝜓(𝑧𝑘) = 0;
(1.3) 𝜑 = 0 or 𝜓 = 0.

Proof. We begin with the easy direction. First, suppose that
𝜑 = 0 or 𝜓 = 0; then it is clear that (1.1) and (1.2) hold.

Now suppose that (1.1) holds. Since 𝜑(𝑧) = ∑
𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝,

𝜓(𝑧) = ∑
𝑚

𝑝=−𝑚
𝑏
𝑝
𝑧
𝑝, then

𝜑 (𝑧
𝑘

) 𝜓 (𝑧) =

𝑛

∑

𝑝=0

𝑎
𝑝
𝑧
𝑘𝑝

⋅

𝑚

∑

𝑝=−𝑚

𝑏
𝑝
𝑧
𝑝

=

𝑘𝑛+𝑚

∑

𝑝=−𝑚

∑

𝑘i+𝑗=𝑝
𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

,

(23)

where 𝑖 and 𝑗 are both integers with 0 ≤ 𝑖 ≤ 𝑛 and −𝑚 ≤ 𝑗 ≤

𝑚. Because 𝜑(𝑧𝑘)𝜓(𝑧) = 0, we get that for any integers 𝑝 with
−𝑚 ≤ 𝑝 ≤ 𝑘𝑛 + 𝑚,

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
= 0, (24)

where 𝑖 and 𝑗 are both integers with 0 ≤ 𝑖 ≤ 𝑛 and −𝑚 ≤

𝑗 ≤ 𝑚. Since 𝑎2
𝑛
+ 𝑏
2

𝑚
+ 𝑏
2

−𝑚
̸= 0, yet we can obtain that 𝑎

𝑛
̸= 0,

𝑏
−𝑚

̸= 0, or 𝑏
𝑚

̸= 0.

First Case. If 𝑎
𝑛
̸= 0. Now we start to continue the proof by

induction.
When 𝑝 = 𝑘𝑛 + 𝑚, by (24), we get that 𝑎

𝑛
𝑏
𝑚
= 0, which

means that 𝑏
𝑚
= 0, since 𝑎

𝑛
̸= 0.

When 𝑝 = 𝑘𝑛 + 𝑚 − 1, by (24), we get that 𝑎
𝑛
𝑏
𝑚−1

= 0,
which means that 𝑏

𝑚−1
= 0, since 𝑎

𝑛
̸= 0.

Now suppose that 𝑏
𝑙
= 0 for any integers 𝑙 with 𝑡 ≤ 𝑙 ≤ 𝑚,

where 𝑡 is an integer with 0 < 𝑡 ≤ 𝑚. Considering the value
of 𝑏
𝑡−1

, when 𝑝 = 𝑘𝑛 + 𝑡 − 1, by (24), we get that

𝑎
𝑛
𝑏
𝑡−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛−𝜆

𝑏
𝑡−1+𝑘𝜆

= 0, (25)
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where 𝜆 = min{𝑛, [(𝑚−𝑡+1)/2]} and [𝑥] is the biggest integer
which is not bigger than 𝑥. By the assumption and the above
equation, we get that 𝑎

𝑛
𝑏
𝑡−1

= 0; that is, 𝑏
𝑡−1

= 0, since 𝑎
𝑛
̸= 0.

From the preceding analysis, by the induction we can
obtain that 𝑏

𝑙
= 0 for any integers 𝑙 with 0 ≤ 𝑙 ≤ 𝑚. Then, by

Proposition 12 we get that 𝜓 ≡ 0, since 𝜑 is not 0 identically.

Second Case. If 𝑏
𝑚

̸= 0. In the following, we will continue the
proof by induction.

When 𝑝 = 𝑘𝑛 + 𝑚, by (24), we get that 𝑎
𝑛
𝑏
𝑚
= 0, which

means that 𝑎
𝑛
= 0, since 𝑏

𝑚
̸= 0.

When 𝑝 = 𝑘𝑛 + 𝑚 − 𝑘, by (24), we get that 𝑎
𝑛−1

𝑏
𝑚
+ (𝑚 −

𝑘)
+

𝑎
𝑛
𝑏
𝑚−𝑘

= 0, where (𝑚−𝑘)+ = max{0, sgn (2𝑚−𝑘+1)} and
sgn is a sign function. So, 𝑎

𝑛−1
= 0, since 𝑎

𝑛
= 0 and 𝑏

𝑚
̸= 0.

Now, suppose that 𝑎
𝑙
= 0 for any integers 𝑙 with 𝑡 ≤ 𝑙 ≤ 𝑛,

where 𝑡 is an integer with 0 < 𝑡 ≤ 𝑛. Considering the value of
𝑎
𝑡−1

, when 𝑝 = 𝑚 + 𝑘𝑡 − 𝑘, by (24), we get that

𝑏
𝑚
𝑎
𝑡−1

+ ⋅ ⋅ ⋅ + 𝑏
𝑚−𝑘𝜆

𝑎
𝑡−1+𝜆

= 0, (26)

where 𝜆 = min{𝑛−𝑡+1, [2𝑚/𝑘]} and [𝑥] is the biggest integer
which is not bigger than 𝑥. By the assumption and the above
equation, we get that 𝑏

𝑚
𝑎
𝑡−1

= 0; that is, 𝑎
𝑡−1

= 0, since 𝑏
𝑚

̸= 0.
From the preceding analysis, by the induction we can

obtain that 𝑎
𝑙
= 0 for any integers 𝑙 with 0 ≤ 𝑙 ≤ 𝑛, which

means that 𝜑 ≡ 0.

Third Case. If 𝑏
−𝑚

̸= 0. A computation analogous to the one
done in the second case from which we can get that 𝜑 ≡ 0.

From the above analysis, we have that (1.3) holds.
Arguing as in the pervious discussion, we obtain that if

(1.2) holds, then (1.3) is true.

Proposition 14. Let 𝜑(𝑧) = ∑
𝑛

𝑝=−𝑛
𝑎
𝑝
𝑧
𝑝, 𝜓(𝑧) = ∑

𝑚

𝑝=−𝑚
𝑏
𝑝
𝑧
𝑝,

where 𝑛 and 𝑚 are both positive integers and 𝑎2
𝑛
+ 𝑏
2

𝑚
+ 𝑎
2

−𝑛
+

𝑏
2

−𝑚
̸= 0, then 𝜑(𝑧𝑘)𝜓(𝑧) = 0 if and only if 𝜑 = 0 or 𝜓 = 0.

Proof. We begin with the easy direction. First, suppose that
𝜑 = 0 or 𝜓 = 0; then it is clear that 𝜑(𝑧𝑘)𝜓(𝑧) = 0.

Now suppose that 𝜑(𝑧
𝑘

)𝜓(𝑧) = 0. Since 𝜑(𝑧) =

∑
𝑛

𝑝=−𝑛
𝑎
𝑝
𝑧
𝑝, 𝜓(𝑧) = ∑𝑚

𝑝=−𝑚
𝑏
𝑝
𝑧
𝑝, then

𝜑 (𝑧
𝑘

) 𝜓 (𝑧) =

𝑛

∑

𝑝=−𝑛

𝑎
𝑝
𝑧
𝑘𝑝

⋅

𝑛

∑

𝑝=−𝑛

𝑏
𝑝
𝑧
𝑝

=

𝑘𝑛+𝑚

∑

𝑝=−(𝑘𝑛+𝑚)

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

,

(27)

where 𝑖 and 𝑗 are both integers with −𝑛 ≤ 𝑖 ≤ 𝑛 and −𝑚 ≤

𝑗 ≤ 𝑚. Because 𝜑(𝑧𝑘)𝜓(𝑧) = 0, we get that, for any integers 𝑝
with −(𝑘𝑛 + 𝑚) ≤ 𝑝 ≤ 𝑘𝑛 + 𝑚,

∑

𝑘𝑖+𝑗=𝑝

𝑎
𝑖
𝑏
𝑗
= 0, (28)

where 𝑖 and 𝑗 are both integers with −𝑛 ≤ 𝑖 ≤ 𝑛 and −𝑚 ≤ 𝑗 ≤

𝑚.
Since 𝑎2

𝑛
+ 𝑏
2

𝑚
+ 𝑎
2

−𝑛
+ 𝑏
2

−𝑚
̸= 0, without loss of generality,

suppose that 𝑎
𝑛
̸= 0. We want to continue the proof by

induction.

When 𝑝 = 𝑘𝑛 + 𝑚, by (28), we get that 𝑎
𝑛
𝑏
𝑚
= 0, which

means that 𝑏
𝑚
= 0, since 𝑎

𝑛
̸= 0, when 𝑝 = 𝑘𝑛+𝑚−1, by (28),

we get that 𝑎
𝑛
𝑏
𝑚−1

= 0, which means that 𝑏
𝑚−1

= 0, since
𝑎
𝑛
̸= 0.
Now suppose that 𝑏

𝑙
= 0 for any integers 𝑙 with 𝑡 ≤ 𝑙 ≤ 𝑚,

where 𝑡 is an integer with 0 < 𝑡 ≤ 𝑚. Considering the value
of 𝑏
𝑡−1

. When 𝑝 = 𝑘𝑛 + 𝑡 − 1, by (28) we get that

𝑎
𝑛
𝑏
𝑡−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛−𝜆

𝑏
𝑡−1+𝑘𝜆

= 0, (29)

where 𝜆 = min{2𝑛, [(𝑚 − 𝑡 + 1)/𝑘]} and [𝑥] is the biggest
integer which is not bigger than 𝑥. By the assumption and the
above equation, we get that 𝑎

𝑛
𝑏
𝑡−1

= 0; that is, 𝑏
𝑡−1

= 0, since
𝑎
𝑛
̸= 0.
From the preceding analysis, by the induction we can

obtain that 𝑏
𝑙
= 0 for any integers 𝑙 with 0 ≤ 𝑙 ≤ 𝑚. Then, by

Proposition 13 we get that 𝜓 ≡ 0, since 𝜑 is not 0 identically
and 𝜑(𝑧𝑘)𝜓(𝑧) = 0 is equivalent to 𝜑(𝑧𝑘)𝜓(𝑧) = 𝜑(𝑧𝑘) ⋅𝜓(𝑧) =
0.

Form Proposition 3.4 andTheorem 3.1 in [15, 17], we will
obtain the following theorem which describes the product of
two slant Toeplitz operators with harmonic symbols.

Theorem 15. Let 𝜑(𝑧) = ∑
𝑛

𝑝=−𝑛
𝑎
𝑝
𝑧
𝑝, 𝜓(𝑧) = ∑

𝑚

𝑝=−𝑚
𝑏
𝑝
𝑧
𝑝,

where 𝑛 and 𝑚 are both positive integers and 𝑎2
𝑛
+ 𝑏
2

𝑚
+ 𝑎
2

−𝑛
+

𝑏
2

−𝑚
̸= 0, then the following statements are equivalent:

(1.1) 𝑈
𝜑
𝑈
𝜓
is a 𝑘th-order slant Toeplitz operator;

(1.2) 𝑈
𝜑
𝑈
𝜓
is a zero operator;

(1.3) 𝑈
𝜑
𝑈
𝜓
is compact;

(1.4) 𝜑(𝑧𝑘)𝜓(𝑧) = 0;
(1.5) 𝜑 = 0 or 𝜓 = 0.

4. Commutativity of 𝑘th-Order Slant Toeplitz
Operators on Bergman Spaces

Let C be the complex plane and let D be the unit disk in C.
Let 𝑑𝐴 be the areameasure onD normalized so that∫

D
1𝑑𝐴 =

1. Let 𝐴2(D) be the space of analytic functions in 𝐿2(D, 𝑑𝐴)
which consists of Lebesguemeasurable functions𝑓 onDwith

∫
D

𝑓 (𝑧)

2

𝑑𝐴 (𝑧) < +∞. (30)

It is well known that𝐴2(D) is a closed subspace of the Hilbert
space 𝐿2(D, 𝑑𝐴) with the inner product ⟨⋅, ⋅⟩ and {𝑧

𝑖

: 𝑖 ∈

Z+} are the orthogonal basis in 𝐴
2

(D), where Z+ is the set
of nonnegative integers. Let 𝐿∞(D) be the Banach space of
Lebesgue measurable functions 𝑓 on D with

𝑓
∞ = ess sup {𝑓 (𝑧)

 : 𝑧 ∈ D} < +∞. (31)

Let 𝑃 denote the orthogonal projection from 𝐿
2

(D, 𝑑𝐴)

onto 𝐴
2

(D). For 𝑓 ∈ 𝐿
∞

(D), the Toeplitz operator 𝑇
𝑓
on

𝐴
2

(D) is defined by

𝑇
𝑓
(𝑔) = 𝑃 (𝑓𝑔) , 𝑔 ∈ 𝐴

2

(D) , (32)
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and the 𝑘th-order slant Toeplitz operator 𝐵
𝑓
on 𝐴
2

(D) is
defined by

𝐵
𝑓
= 𝑊
𝑘
𝑇
𝑓
, (33)

where 𝑊
𝑘
is a bounded linear operator on 𝐴

2

(D) which is
defined as

𝑊
𝑘
(𝑧
𝑖

) = {
𝑧
𝑖/𝑘

, if 𝑖 is divisible by 𝑘,
0, otherwise.

(34)

In this section we will investigate the commutativity of
𝑘th-order slant Toeplitz operators with coanalytic symbols
and harmonic symbols on Bergman space 𝐴2(D). First, we
study the commutativity of 𝑘th-order slant Toeplitz operators
with coanalytic symbols.

Lemma 16. Let 𝑞 ≥ 0 be an integer, let 𝑓, 𝑔 ∈ 𝐻∞(D), both of
which are not 0 identically. If 𝑓𝑊∗

𝑘
𝑔 = 𝑔𝑊

∗

𝑘
𝑓, the following

statements are equivalent:

(1.1) 𝑓(𝑖)(0) = 0 for any integers 𝑖 with 0 ≤ 𝑖 ≤ 𝑞 and
𝑓
(𝑞+1)

(0) ̸= 0;
(1.2) 𝑔(𝑖)(0) = 0 for any integers 𝑖 with 0 ≤ 𝑖 ≤ 𝑞 and

𝑔
(𝑞+1)

(0) ̸= 0.

Proof. First, suppose that (1.1) holds. Since 𝑓 ∈ 𝐻
∞

(D), we
get that 𝑓(𝑧) = 𝑧𝑞+1𝑓

1
(𝑧) and (𝑊∗

𝑘
𝑓)(𝑧) = 𝑧

𝑘𝑞+𝑘

𝑓
2
(𝑧), where

𝑓
1
(0) ̸= 0, 𝑓

2
(0) ̸= 0, and 𝑓

1
, 𝑓
2
∈ 𝐻
∞

(D). Because 𝑓𝑊∗
𝑘
𝑔 =

𝑔𝑊
∗

𝑘
𝑓 and 𝑔 ∈ 𝐻∞(D), we get that

𝑓
1
(𝑧) (𝑊

∗

𝑘
𝑔) (𝑧) = 𝑧

(𝑘−1)(𝑞+1)

𝑓
2
(𝑧) 𝑔 (𝑧) , (35)

so 𝑔(0) = 0. Since 𝑔 is not 0 identically, without loss of
generality, take 𝑔(𝑗)(0) = 0 for any integers 𝑗 with 0 ≤ 𝑗 ≤ 𝑝

and 𝑔
(𝑝+1)

(0) ̸= 0, then 𝑔(𝑧) = 𝑧
𝑝+1

𝑔
1
(𝑧) and (𝑊

∗

𝑘
𝑔)(𝑧) =

𝑧
𝑘(𝑝+1)

𝑔
2
(𝑧), where 𝑔

1
(0) ̸= 0, 𝑔

2
(0) ̸= 0, and 𝑔

1
, 𝑔
2
∈ 𝐻
∞

(D);
so, by (35) we get that

𝑓
1
(𝑧) 𝑔
2
(𝑧) 𝑧
(𝑘−1)(𝑝+1)

= 𝑧
(𝑘−1)(𝑞+1)

𝑓
2
(𝑧) 𝑔
1
(𝑧) , (36)

so 𝑝 = 𝑞. Otherwise, if 𝑝 > 𝑞, then by the above equation
we get that 𝑓

1
(𝑧)𝑔
2
(𝑧)𝑧
(𝑘−1)(𝑝−𝑞)

= 𝑓
2
(𝑧)𝑔
1
(𝑧), which means

that 𝑓
2
(0)𝑔
1
(0) = 0, that leads a contradiction; if 𝑝 <

𝑞, then by the above equation we get that 𝑓
1
(𝑧)𝑔
2
(𝑧) =

𝑧
(𝑘−1)(𝑞−𝑝)

𝑓
2
(𝑧)𝑔
1
(𝑧), which means that 𝑓

1
(0)𝑔
2
(0) = 0, that

leads a contradiction. Hence (1.2) holds.
Similarly, we can obtain the other direction of the Lemma.

Theorem17. Let𝜑, 𝜓 ∈ 𝐻
∞

(D), then the following statements
are equivalent:

(1.1) 𝐵
𝜑
and 𝐵

𝜓
commute;

(1.2) there exist scalars 𝛼 and𝛽, not both zero, such that 𝛼𝜑+
𝛽𝜓 = 0.

Proof. First suppose that (1.2) holds; then it is obvious that 𝐵
𝜑

and 𝐵
𝜓
commute.

Now suppose that (1.1) holds. So, we get that 𝐵∗
𝜑
𝐵
∗

𝜓
(1) =

𝐵
∗

𝜓
𝐵
∗

𝜑
(1); that is, 𝜑𝑊∗

𝑘
𝜓 = 𝜓𝑊

∗

𝑘
𝜑.

Now we continue the discussion in three cases.

First Case. If 𝜑 ≡ 0 or 𝜓 ≡ 0. It is obvious that the required
result holds.

Second Case. If 𝜑(0) ̸= 0 and 𝜓(0) ̸= 0. Since 𝜑, 𝜓 ∈ 𝐻
∞

(D),
let 𝜑(𝑧) = ∑

∞

𝑝=0
𝑎
𝑝
𝑧
𝑝 and 𝜓(𝑧) = ∑

∞

𝑝=0
𝑏
𝑝
𝑧
𝑝, then 𝑎

0
̸= 0,

𝑏
0
̸= 0, and 𝑊

∗

𝑘
𝜑(𝑧) = ∑

∞

𝑝=0
𝑎
𝑝
((𝑘𝑝 + 1)/(𝑝 + 1))𝑧

𝑘𝑝 and
𝑊
∗

𝑘
𝜓(𝑧) = ∑

∞

𝑝=0
𝑏
𝑝
((𝑘𝑝 + 1)/(𝑝 + 1))𝑧

𝑘𝑝, so

𝜓𝑊
∗

𝑘
𝜑 (𝑧) =

∞

∑

𝑝=0

𝑏
𝑝
𝑧
𝑝

⋅

∞

∑

𝑝=0

𝑎
𝑝

𝑘𝑝 + 1

𝑝 + 1
𝑧
𝑘𝑝

=

∞

∑

𝑝=0

∑

𝑘𝑖+𝑗=𝑝

𝑘𝑖 + 1

𝑖 + 1
𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

,

𝜑𝑊
∗

𝑘
𝜓 (𝑧) =

∞

∑

𝑝=0

𝑎
𝑝
𝑧
𝑝

⋅

∞

∑

𝑝=0

𝑏
𝑝

𝑘𝑝 + 1

𝑝 + 1
𝑧
𝑘𝑝

=

∞

∑

𝑝=0

∑

𝑖+𝑘𝑗=𝑝

𝑘𝑗 + 1

𝑗 + 1
𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

.

(37)

Because 𝜑𝑊∗
𝑘
𝜓 = 𝜓𝑊

∗

𝑘
𝜑, we get that

∞

∑

𝑝=0

∑

𝑘𝑖+𝑗=𝑝

𝑘𝑖 + 1

𝑖 + 1
𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

=

∞

∑

𝑝=0

∑

𝑖+𝑘𝑗=𝑝

𝑘𝑗 + 1

𝑗 + 1
𝑎
𝑖
𝑏
𝑗
𝑧
𝑝

, (38)

that is, for any integers 𝑝 ≥ 0,

∑

𝑘𝑖+𝑗=𝑝

𝑘𝑖 + 1

𝑖 + 1
𝑎
𝑖
𝑏
𝑗
= ∑

𝑖+𝑘𝑗=𝑝

𝑘𝑗 + 1

𝑗 + 1
𝑎
𝑖
𝑏
𝑗
, (39)

where 𝑖 and 𝑗 are both nonnegative integers. In the following,
we want to continue the proof by the induction.

When 𝑝 = 0, by (39), we get that 𝑎
0
𝑏
0
= 𝑎
0
𝑏
0
, so 𝑏
0
=

(𝑏
0
/𝑎
0
)𝑎
0
, since 𝑎

0
̸= 0. Let 𝜆 = 𝑏

0
/𝑎
0
, then 𝑏

0
= 𝜆𝑎
0
.

When 𝑝 = 1, by (39), we get that 𝑎
0
𝑏
1
= 𝑎
1
𝑏
0
, so 𝑏
1
= 𝜆𝑎
1
.

Suppose that 𝑏
𝑗
= 𝜆𝑎

𝑗
for any integers 𝑗 with 0 ≤

𝑗 ≤ 𝑙, where 𝑙 is a nonnegative integer. Now, consider the
connection between 𝑎

𝑙+1
and 𝑏
𝑙+1

.
When 𝑝 = 𝑙 + 1, by (39), we get that

∑

𝑘𝑖+𝑗=𝑙+1

𝑘𝑖 + 1

𝑖 + 1
𝑎
𝑖
𝑏
𝑗
= ∑

𝑖+𝑘𝑗=𝑙+1

𝑘𝑗 + 1

𝑗 + 1
𝑎
𝑖
𝑏
𝑗
, (40)

that is,

𝑎
0
𝑏
𝑙+1

+ ⋅ ⋅ ⋅ +
𝑘𝜆 + 1

𝜆 + 1
𝑎
𝜆
𝑏
𝑙+1−𝜆𝑘

= 𝑏
0
𝑎
𝑙+1

+ ⋅ ⋅ ⋅ +
𝑘𝜆 + 1

𝜆 + 1
𝑏
𝜆
𝑎
𝑙+1−𝜆𝑘

,

(41)

where 𝜆 = [(𝑙 + 1)/𝑘] and [𝑥] is the biggest integer which
is not bigger than 𝑥. By this assumption, we can obtain that
𝑎
0
𝑏
𝑙+1

= 𝑏
0
𝑎
𝑙+1

; that is, 𝑏
𝑙+1

= 𝜆𝑎
𝑙+1

, since 𝑎
0
̸= 0.
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Hence, by the induction, we obtain that 𝑏
𝑗
= 𝜆𝑎
𝑗
for any

nonnegative integers 𝑗 from the pervoius discussion; that is,
𝜓(𝑧) = ∑

∞

𝑝=0
𝜆𝑎
𝑝
𝑧
𝑝

= 𝜆𝜑(𝑧). So, the required result holds.

Third Case. If 𝜑 and 𝜓 are both not 0 identically, and 𝜑(0) = 0
or𝜓(0) = 0.Without loss of generality, take𝜑(𝑖)(0) = 0 for any
integers 0 ≤ 𝑖 ≤ 𝑖

1
and𝜑(𝑖1+1)(0) ̸= 0. By Lemma 16, we get that

𝜓
(𝑖)

(0) = 0 for any integers 0 ≤ 𝑖 ≤ 𝑖
1
and 𝜓(𝑖1+1)(0) ̸= 0, and

𝜑 (𝑧) = 𝑧
𝑖
1
+1

𝜑
1
(𝑧) , 𝜓 (𝑧) = 𝑧

𝑖
1
+1

𝜓
1
(𝑧) , (42)

where𝜑
1
, 𝜓
1
∈ 𝐻
∞

(D), and𝜑
1
(0) ̸= 0,𝜓

1
(0) ̸= 0, so𝜓𝑊∗

𝑘
(𝜑) =

𝑧
(𝑘+1)(𝑖

1
+1)

𝜓
1
𝑊
∗

𝑘
(𝜑
1
) and 𝜑𝑊

∗

𝑘
(𝜓) = 𝑧

(𝑘+1)(𝑖
1
+1)

𝜑
1
𝑊
∗

𝑘
(𝜓
1
).

Since 𝜓𝑊∗
𝑘
(𝜑) = 𝜑𝑊

∗

𝑘
(𝜓), yet we can get that 𝜓

1
𝑊
∗

𝑘
(𝜑
1
) =

𝜑
1
𝑊
∗

𝑘
(𝜓
1
). Since 𝜑

1
(0) ̸= 0 and 𝜓

1
(0) ̸= 0, yet by the second

case we get that 𝜓
1
= 𝜆
1
𝜑
1
, where 𝜆

1
= 𝜓
1
(0)/𝜑
1
(0). So,

𝜓(𝑧) = 𝑧
𝑖
1
+1

𝜓
1
(𝑧) = 𝜆

1
𝑧
𝑖
1
+1

𝜑
1
(𝑧) = 𝜆

1
𝜑
1
(𝑧). The required

result holds.

Now we are in a position to discuss the commutativity of
slant Toeplitz operators with harmonic symbols.

Theorem 18. Let 𝜑(𝑧) = ∑𝑛
𝑝=0

𝑎
𝑝
𝑧
𝑝

+ ∑
𝑛

𝑘=1
𝑎
−𝑝
𝑧
𝑝 and 𝜓(𝑧) =

∑
𝑛

𝑝=0
𝑏
𝑝
𝑧
𝑝

+ ∑
𝑛

𝑘=1
𝑏
−𝑝
𝑧
𝑝, where 𝑎2

−𝑛
+ 𝑏
2

−𝑛
̸= 0 and 𝑛 ≥ 1 is an

integer, then the following statements are equivalent:

(1.1) 𝐵
𝜑
and 𝐵

𝜓
commute;

(1.2) there exist scalars 𝛼 and𝛽, not both zero, such that 𝛼𝜑+
𝛽𝜓 = 0.

Proof. First suppose that (1.2) holds. It is obvious that 𝐵
𝜑
and

𝐵
𝜓
commute.
Now suppose that (1.1) holds. Let 𝜑

1
(𝑧) = ∑

𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝,

𝜑
2
(𝑧) = ∑

𝑛

𝑝=1
𝑎
−𝑝
𝑧
𝑝, 𝜓
1
(𝑧) = ∑

𝑛

𝑝=0
𝑏
𝑝
𝑧
𝑝, and 𝜓

2
(𝑧) =

∑
𝑛

𝑝=1
𝑏
−𝑝
𝑧
𝑝, then 𝜑 = 𝜑

1
+ 𝜑
2
and 𝜓 = 𝜓

1
+ 𝜓
2
. Since 𝐵

𝜑
and

𝐵
𝜓
commute, we have 𝑇

𝜑
𝑊
∗

𝑘
𝑇
𝜓
𝑊
∗

𝑘
1 = 𝑇
𝜓
𝑊
∗

𝑘
𝑇
𝜑
𝑊
∗

𝑘
1, that is,

𝜑
2
𝑊
∗

𝑘
𝜓
2
+ 𝜓
1
(0)𝜑
2
+ 𝑃 (𝜑

1
𝑊
∗

𝑘
𝜓
2
)

= 𝜓
2
𝑊
∗

𝑘
𝜑
2
+ 𝜑
1
(0)𝜓
2
+ 𝑃 (𝜓

1
𝑊
∗

𝑘
𝜑
2
) .

(43)

Then, by (43), we get that for any integers 𝑝with 𝑘𝑛+1 ≤ 𝑝 ≤
𝑘𝑛 + 𝑛,

∑

𝑖+𝑘𝑗=𝑝

𝑎
−𝑖
𝑏
−𝑗

𝑘𝑗 + 1

𝑗 + 1
= ∑

𝑘𝑖+𝑗=p
𝑎
−𝑖
𝑏
−𝑗

𝑘𝑖 + 1

𝑖 + 1
, (44)

where 𝑖 and 𝑗 are positive integers which are not bigger than
𝑛. Since 𝑎2

−𝑛
+ 𝑏
2

−𝑛
̸= 0, without loss of generality, take 𝑏

−𝑛
̸= 0.

Now we continue the proof by the induction.
When 𝑝 = 𝑘𝑛+𝑛, by (44), we get that 𝑎

−𝑛
𝑏
−𝑛
((𝑘𝑛+1)/(𝑛+

1)) = 𝑎
−𝑛
𝑏
−𝑛
((𝑘𝑛 + 1)/(𝑛 + 1)), so 𝑎

−𝑛
= (𝑎
−𝑛
/𝑏
−𝑛
)𝑏
−𝑛
, since

𝑏
−𝑛

̸= 0. Let 𝜆 = 𝑎
−𝑛
/𝑏
−𝑛
, then 𝑎

−𝑛
= 𝜆𝑏
−𝑛
.

When 𝑝 = 𝑘𝑛 + 𝑛 − 1, by (44), we get that 𝑎
−𝑛+1

𝑏
−𝑛
((𝑘𝑛 +

1)/(𝑛 + 1)) = 𝑎
−𝑛
𝑏
−𝑛+1

((𝑘𝑛 + 1)/(𝑛 + 1)), so 𝑎
−𝑛+1

= 𝜆𝑏
−𝑛+1

,
since 𝑏

−𝑛
̸= 0.

Suppose that 𝑎
−𝑛+𝑖

= 𝜆𝑏
−𝑛+𝑖

for any integers 𝑖 with 0 ≤ 𝑖 ≤
𝑙 < 𝑛 − 1. Now, consider the connection between 𝑎

−𝑛+𝑙+1
and

𝑏
−𝑛+𝑙+1

.
When 𝑝 = 𝑘𝑛 + 𝑛 − 𝑙 − 1, by (44), we get that

𝑎
−𝑛+𝑙+1

𝑏
−𝑛

2𝑛 + 1

𝑛 + 1
+ ⋅ ⋅ ⋅ + 𝑎

−𝑛+𝑙+1−𝑘𝛾
𝑏
−𝑛+𝛾

𝑘𝛾 + 1

𝑘 + 1

= 𝑏
−𝑛+𝑙+1

𝑎
−𝑛

2𝑛 + 1

𝑛 + 1
+ ⋅ ⋅ ⋅ + 𝑏

−𝑛+𝑙+1−𝑘𝛾
𝑎
−𝑛+𝛾

𝑘𝛾 + 1

𝑘 + 1
,

(45)

where 𝛾 = [(𝑙 + 1)/𝑘] and [𝑥] is the biggest integer which
is not bigger than 𝑥. From the assumption we obtain that
𝑎
−𝑛+𝑙+1

𝑏
−𝑛
((2𝑛 + 1)/(𝑛 + 1)) = 𝑏

−𝑛+𝑙+1
𝑎
−𝑛
((2𝑛 + 1)/(𝑛 + 1)),

so 𝑎
−𝑛+𝑙+1

= 𝜆𝑏
−𝑛+𝑙+1

, since 𝑏
−𝑛

̸= 0.
From the pervous discussion, by the induction we obtain

that 𝑎
−𝑛+𝑖

= 𝜆𝑏
−𝑛+𝑖

for any integers 𝑖with 0 ≤ 𝑖 ≤ 𝑛−1. Hence,
𝜑
2
(𝑧) = ∑

𝑛

𝑝=1
𝑎
−𝑝
𝑧
𝑝

= ∑
𝑛

𝑝=1
𝜆𝑏
−𝑝
𝑧
𝑝

= 𝜆𝜓
2
(𝑧).

Since 𝜑
2
(𝑧) = 𝜆𝜓

2
(𝑧), by (43), we get that

𝜓
1
(0)𝜑
2
+ 𝑃 (𝜑

1
𝑊
∗

𝑘
𝜓
2
) = 𝜑
1
(0)𝜓
2
+ 𝑃 (𝜓

1
𝑊
∗

𝑘
𝜑
2
) . (46)

Then,

⟨𝜓
1
(0)𝜑
2
+ 𝑃 (𝜑

1
𝑊
∗

𝑘
𝜓
2
) , 𝑧
𝑘𝑛

⟩

= ⟨𝑊
∗

𝑘
𝜓
2
, 𝑧
𝑘𝑛

𝜑
1
⟩ = 𝑏
−𝑛
𝑎
0

1

𝑛 + 1

= ⟨𝜑
1
(0)𝜓
2
+ 𝑃 (𝜓

1
𝑊
∗

𝑘
𝜑
2
) , 𝑧
𝑘𝑛

⟩

= ⟨𝑊
∗

𝑘
𝜑
2
, 𝑧
𝑘𝑛

𝜓
1
⟩ = 𝑎
−𝑛
𝑏
0

1

𝑛 + 1
,

(47)

and we get that 𝑏
−𝑛
𝑎
0
= 𝑎
−𝑛
𝑏
0
; that is, 𝑎

0
= 𝜆𝑏
0
. So, by (46) we

have that 𝜓
1
(0)𝜑
2
= 𝜑
1
(0)𝜓
2
and 𝑃(𝜑

1
𝑊
∗

𝑘
𝜓
2
) = 𝑃(𝜓

1
𝑊
∗

𝑘
𝜑
2
),

that is, 𝑃(𝜆𝜓
1
− 𝜑
1
𝑊
∗

𝑘
𝜓
2
) = 0. Hence, for any integers 𝑙 with

𝑘𝑛 − 𝑛 ≤ 𝑙 ≤ 𝑘𝑛 − 1, we have

0 = ⟨𝑧
𝑙

, 0⟩ = ⟨𝑧
𝑙

, 𝑃 (𝜆𝜓
1
− 𝜑
1
𝑊
∗

𝑘
𝜓
2
)⟩

= ⟨𝑧
𝑙

, 𝜆𝜓
1
− 𝜑
1
𝑊
∗

𝑘
𝜓
2
⟩ = ⟨(𝜆𝜓

1
− 𝜑
1
) 𝑧
𝑙

,𝑊
∗

𝑘
𝜓
2
⟩ ,

(48)

that is,

⟨

𝑛

∑

𝑝=0

(𝜆𝑏
𝑝
− 𝑎
𝑝
) 𝑧
𝑝+𝑙

,

𝑛

∑

𝑝=1

𝑏
−𝑝

𝑘𝑝 + 1

𝑝 + 1
𝑧
𝑘𝑝

⟩ = 0. (49)

Since 𝑎
0
= 𝜆𝑏
0
, we have

⟨

𝑛

∑

𝑝=1

(𝜆𝑏
𝑝
− 𝑎
𝑝
) 𝑧
𝑝+𝑙

,

𝑛

∑

𝑝=1

𝑏
−𝑝

𝑘𝑝 + 1

𝑝 + 1
𝑧
𝑘𝑝

⟩ = 0. (50)

When 𝑙 = 𝑘𝑛−1, by (50), we get that (𝜆𝑏
1
−𝑎
1
)𝑏
−𝑛
(1/(𝑛+1)) =

0, so 𝑎
1
= 𝜆𝑏
1
, since 𝑏

−𝑛
̸= 0. Then we have

⟨

𝑛

∑

𝑝=2

(𝜆𝑏
𝑝
− 𝑎
𝑝
) 𝑧
𝑝+𝑙

,

𝑛

∑

𝑝=1

𝑏
−𝑝

𝑘𝑝 + 1

𝑝 + 1
𝑧
𝑘𝑝

⟩ = 0. (51)
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Suppose that 𝑎
𝑗
= 𝜆𝑏
𝑗
for any integers 𝑗 with 0 ≤ 𝑗 ≤ 𝑠,

where 0 ≤ 𝑠 ≤ 𝑛 − 1. By (50), we get that

⟨

𝑛

∑

𝑝=𝑠+1

(𝜆𝑏p − 𝑎𝑝) 𝑧
𝑝+𝑙

,

𝑛

∑

𝑝=1

𝑏
−𝑝

𝑘𝑝 + 1

𝑝 + 1
𝑧
𝑘𝑝

⟩ = 0. (52)

Now consider the connection between 𝑎
𝑠+1

and 𝑏
𝑠+1

.
When 𝑙 = 𝑘𝑛 − 𝑠 − 1, by (52), we get that (𝜆𝑏

𝑠+1
−

𝑎
𝑠+1
)𝑏
−𝑛
(1/(𝑛 + 1)) = 0, so 𝑎

𝑠+1
= 𝜆𝑏
𝑠+1

, since 𝑏
−𝑛

̸= 0.
Form the above discussion, by the induction we can

obtain that 𝑎
𝑗
= 𝜆𝑏
𝑗
for any integers 𝑗 with 0 ≤ 𝑗 ≤ 𝑛, so

𝜑
1
(𝑧) = ∑

𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝

= ∑
𝑛

𝑝=0
𝜆𝑏
𝑝
𝑧
𝑝

= 𝜆𝜓
1
(𝑧).

Since 𝜑
2
= 𝜆𝜓
2
, we have 𝜑 = 𝜑

1
+ 𝜑
2
= 𝜆𝜓
1
+ 𝜆𝜓
2
= 𝜆𝜓.

Hence, the required result holds.

Lemma 19. Let 𝜑(𝑧) = ∑
𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝

+ ∑
𝑛

𝑝=1
𝑎
−𝑝
𝑧
𝑝 and 𝜓(𝑧) =

∑
𝑚

𝑝=0
𝑏
𝑝
𝑧
𝑝

+ ∑
𝑚

𝑝=1
𝑏
−𝑝
𝑧
𝑝, where 𝑛 and 𝑚 are integers with 𝑛 >

𝑚 ≥ 1 and 𝑏
−𝑚

̸= 0. If 𝐵
𝜑
and 𝐵

𝜓
commute, then 𝑎

−𝑗
= 0 for

any integers 𝑗 with𝑚 + 1 ≤ 𝑗 ≤ 𝑛.

Proof. Let 𝜑
1
(𝑧) = ∑

𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝, 𝜑
2
(𝑧) = ∑

𝑛

𝑝=1
𝑎
−𝑝
𝑧
𝑝, 𝜓
1
(𝑧) =

∑
𝑚

𝑝=0
𝑏
𝑝
𝑧
𝑝 and 𝜓

2
(𝑧) = ∑

𝑚

𝑝=1
𝑏
−𝑝
𝑧
𝑝, then 𝜑 = 𝜑

1
+ 𝜑
2
and 𝜓 =

𝜓
1
+ 𝜓
2
. Since 𝐵

𝜑
and 𝐵

𝜓
commute, we have 𝑇

𝜑
𝑊
∗

𝑘
𝑇
𝜓
𝑊
∗

𝑘
1 =

𝑇
𝜓
𝑊
∗

𝑘
𝑇
𝜑
𝑊
∗

𝑘
1; that is,

𝜑
2
𝑊
∗

𝑘
𝜓
2
+ 𝜓
1
(0)𝜑
2
+ 𝑃 (𝜑

1
𝑊
∗

𝑘
𝜓
2
)

= 𝜓
2
𝑊
∗

𝑘
𝜑
2
+ 𝜑
1
(0)𝜓
2
+ 𝑃 (𝜓

1
𝑊
∗

𝑘
𝜑
2
) ,

𝑘𝑚+𝑛

∑

𝑝=𝑘+1

∑

𝑖+𝑘𝑗=𝑝

𝑎
−𝑖
𝑏
−𝑗

𝑘𝑗 + 1

𝑗 + 1
𝑧
𝑝

+ 𝜓
1
(0)

𝑛

∑

𝑝=1

𝑎
−𝑝
𝑧
𝑝

+

𝑘𝑚

∑

𝑝=0

∑

𝑘𝑗−𝑖=𝑝

𝑎
𝑖
𝑏
−𝑗

𝑘𝑗 − 𝑖 + 1

𝑘𝑗 + 1
𝑧
𝑝

=

𝑘𝑛+𝑚

∑

𝑝=𝑘+1

∑

𝑘𝑖+𝑗=𝑝

𝑎
−𝑖
𝑏
−𝑗

𝑘𝑖 + 1

𝑖 + 1
𝑧
𝑝

+ 𝜑
1
(0)

𝑚

∑

𝑝=1

𝑏
−𝑝
𝑧
𝑝

+

𝑘𝑛

∑

𝑝=0

∑

𝑘𝑖−𝑗=𝑝

𝑏
𝑗
𝑎
−𝑖

𝑘𝑖 − 𝑗 + 1

𝑘𝑖 + 1
𝑧
𝑝

.

(53)

Since 𝑛 > 𝑚, let 𝑛 = 𝑚 + 𝑟, where 𝑟 is a positive integer.
Then, by the pervoius equation, we get that

∑

𝑘𝑖+𝑗=𝑘𝑛+𝑚

𝑎
−𝑖
𝑏
−𝑗

𝑘𝑖 + 1

𝑖 + 1
= 0, that is, 𝑎

−𝑛
𝑏
−𝑚

𝑘𝑛 + 1

𝑛 + 1
= 0,

(54)

so 𝑎
−𝑛
= 0, since 𝑏

−𝑚
̸= 0.

Suppose that 𝑎
−𝑛+𝑡

= 0 for any integers 𝑡with 0 ≤ 𝑡 ≤ 𝑟−2.
Now consider the value of 𝑎

−𝑛+𝑡+1
. By the assumption and the

above equation we get that

𝑘𝑚+𝑛−𝑡−1

∑

𝑝=𝑘+1

∑

𝑖+𝑘𝑗=𝑝

𝑎
−𝑖
𝑏
−𝑗

𝑘𝑗 + 1

𝑗 + 1
𝑧
𝑝

+ 𝜓
1
(0)

𝑛−𝑡−1

∑

𝑝=1

𝑎
−𝑝
𝑧
𝑝

+

𝑘𝑚

∑

𝑝=0

∑

𝑘𝑗−𝑖=𝑝

𝑎
𝑖
𝑏
−𝑗

𝑘𝑗 − 𝑖 + 1

𝑘𝑗 + 1
𝑧
𝑝

=

𝑘𝑛+𝑚−𝑘𝑡−𝑘

∑

𝑝=𝑘+1

∑

𝑘𝑖+𝑗=𝑝

𝑎
−𝑖
𝑏
−𝑗

𝑘𝑖 + 1

𝑖 + 1
𝑧
𝑝

+ 𝜑
1
(0)

𝑚

∑

𝑝=1

𝑏
−𝑝
𝑧
𝑝

+

𝑘𝑛−𝑘𝑡−𝑘

∑

𝑝=0

∑

𝑘𝑖−𝑗=𝑝

𝑏
𝑗
𝑎
−𝑖

𝑘𝑖 − 𝑗 + 1

𝑘𝑖 + 1
𝑧
𝑝

.

(55)

Since 𝑡 + 1 < 𝑟, we can get that ∑
𝑘𝑖+𝑗=𝑘𝑛+𝑚−𝑘𝑡−𝑘

𝑎
−𝑖
𝑏
−𝑗
((𝑘𝑖 +

1)/(𝑖 + 1)) = 0; that is,

𝑎
−𝑛+𝑡+1

𝑏
−𝑚

𝑘 (𝑛 − 𝑡 − 1) + 1

𝑛 − 𝑡 − 1

+ ⋅ ⋅ ⋅ + 𝑎
−𝑛+𝑡+1−𝜆

𝑏
−𝑚+𝑘𝜆

𝑘 (𝑛 − 𝑡 − 1 + 𝜆) + 1

𝑛 − 𝑡 − 1 + 𝜆
= 0,

(56)

where𝜆 = min{𝑡+1, [2𝑚/𝑘]} and [2𝑚/𝑘] is the biggest integer
which is not bigger than 2𝑚/𝑘. Since 𝑏

−𝑚
̸= 0, by assumption,

we get that 𝑎
−𝑛+𝑡+1

= 0.
From the preceding discussion, by the induction we can

get that 𝑎
−𝑗
= 0 for any integers 𝑗 with𝑚 + 1 ≤ 𝑗 ≤ 𝑛.

Theorem 20. Let 𝜑(𝑧) = ∑𝑛
𝑝=0

𝑎
𝑝
𝑧
𝑝

+∑
𝑛

𝑝=1
𝑎
−𝑝
𝑧
𝑝 and 𝜓(𝑧) =

∑
𝑚

𝑝=0
𝑏
𝑝
𝑧
𝑝

+ ∑
𝑚

𝑝=1
𝑏
−𝑝
𝑧
𝑝, where 𝑎2

−𝑛
+ 𝑏
2

−𝑚
̸= 0, 𝑛 and 𝑚 are

integers with 𝑛 > 𝑚 ≥ 1, then the following statements are
equivalent:

(1.1) 𝐵
𝜑
and 𝐵

𝜓
commute;

(1.2) there exist scalars 𝛼 and𝛽, not both zero, such that 𝛼𝜑+
𝛽𝜓 = 0.

Proof. First suppose that (1.2) holds. It is obvious that 𝐵
𝜑
and

𝐵
𝜓
commute.
Now suppose that (1.1) holds. Since 𝑎2

−𝑛
+ 𝑏
2

−𝑚
̸= 0, we can

get that 𝑎
−𝑛

̸= 0 or 𝑏
−𝑚

̸= 0.
If 𝑎
−𝑛

̸= 0, by Theorem 18, we can get the required result.
If 𝑏
−𝑚

̸= 0, by Lemma 19, we can get that 𝜑(𝑧) =

∑
𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝

+ ∑
𝑚

𝑘=1
𝑎
−𝑝
𝑧
𝑝. Let 𝜑

1
(𝑧) = ∑

𝑛

𝑝=0
𝑎
𝑝
𝑧
𝑝, 𝜑
2
(𝑧) =

∑
𝑚

𝑝=1
𝑎
−𝑝
𝑧
𝑝, 𝜓
1
(𝑧) = ∑

𝑚

𝑝=0
𝑏
𝑝
𝑧
𝑝, and 𝜓

2
(𝑧) = ∑

𝑚

𝑝=1
𝑏
−𝑝
𝑧
𝑝,

then 𝜑 = 𝜑
1
+ 𝜑
2
and 𝜓 = 𝜓

1
+ 𝜓
2
.

Since 𝐵
𝜑
and 𝐵

𝜓
commute, we have 𝑇

𝜑
𝑊
∗

𝑘
𝑇
𝜓
𝑊
∗

𝑘
1 =

𝑇
𝜓
𝑊
∗

𝑘
𝑇
𝜑
𝑊
∗

𝑘
1; that is,

𝜑
2
𝑊
∗

𝑘
𝜓
2
+ 𝜓
1
(0)𝜑
2
+ 𝑃 (𝜑

1
𝑊
∗

𝑘
𝜓
2
)

= 𝜓
2
𝑊
∗

𝑘
𝜑
2
+ 𝜑
1
(0)𝜓
2
+ 𝑃 (𝜓

1
𝑊
∗

𝑘
𝜑
2
) .

(57)
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By (57) we get that for any integers 𝑝 with 𝑘𝑚 + 1 ≤ 𝑝 ≤

𝑘𝑚 + 𝑚,

∑

𝑖+𝑘𝑗=𝑝

𝑎
−𝑖
𝑏
−𝑗

𝑘𝑗 + 1

𝑗 + 1
= ∑

𝑘𝑖+𝑗=𝑝

𝑎
−𝑖
𝑏
−𝑗

𝑘𝑖 + 1

𝑖 + 1
, (58)

where 𝑖 and 𝑗 are positive integers with −𝑚 ≤ 𝑖 ≤ 𝑛 and −𝑚 ≤

𝑗 ≤ 𝑚. Now we continue the proof by the induction.
When 𝑝 = 𝑘𝑚 + 𝑚, by (58), we get that 𝑎

−𝑚
𝑏
−𝑚
((𝑘𝑚 +

1)/(𝑚 + 1)) = 𝑎
−𝑚

𝑏
−𝑚
((𝑘𝑚 + 1)/(𝑚 + 1)), so 𝑎

−𝑚
=

(𝑎
−𝑚
/𝑏
−𝑚
)𝑏
−𝑚

, since 𝑏
−𝑚

̸= 0. Let 𝜆 = (𝑎
−𝑚
/𝑏
−𝑚
), then 𝑎

−𝑚
=

𝜆𝑏
−𝑚

.
When𝑝 = 𝑘𝑚+𝑚−1, by (58), we get that 𝑎

−𝑚+1
𝑏
−𝑚
((𝑘𝑚+

1)/(𝑚+1)) = 𝑎
−𝑚
𝑏
−𝑚+1

((𝑘𝑚+1)/(𝑚+1)), so 𝑎
−𝑚+1

= 𝜆𝑏
−𝑚+1

,
since 𝑏

−𝑚
̸= 0.

Suppose that 𝑎
−𝑚+𝑖

= 𝜆𝑏
−𝑚+𝑖

for any integers 𝑖 with 0 ≤

𝑖 ≤ 𝑙 < 𝑚 − 1. Now consider the connection between 𝑎
−𝑚+𝑙+1

and 𝑏
−𝑚+𝑙+1

.
When 𝑝 = 𝑘𝑚 + 𝑚 − 𝑙 − 1, by (58), we get that

𝑎
−𝑚+𝑙+1

𝑏
−𝑚

𝑘𝑚 + 1

𝑚 + 1
+ ⋅ ⋅ ⋅

+ 𝑎
−𝑚+𝑙+1−𝑟𝑘

𝑏
−𝑚+𝑟

𝑘 (𝑚 − 𝑟) + 1

𝑚 − 𝑟 + 1

= 𝑏
−𝑚+𝑙+1

𝑎
−𝑚

𝑘𝑚 + 1

𝑚 + 1
+ ⋅ ⋅ ⋅

+ 𝑏
−𝑚+𝑙+1−𝑟𝑘

𝑎
−𝑚+𝑟

𝑘 (𝑚 − 𝑟) + 1

𝑚 − 𝑟 + 1
.

(59)

From the assumption we obtain that 𝑎
−𝑚+𝑙+1

𝑏
−𝑚
((𝑘𝑚 +

1)/(𝑚 + 1)) = 𝑏
−𝑚+𝑙+1

𝑎
−𝑚
((𝑘𝑚 + 1)/(𝑚 + 1)), so 𝑎

−𝑚+𝑙+1
=

𝜆𝑏
−𝑚+𝑙+1

, since 𝑏
−𝑚

̸= 0.
From the pervious discussion, by the induction we obtain

that 𝑎
−𝑚+𝑖

= 𝜆𝑏
−𝑚+𝑖

for any integers 𝑖 with 0 ≤ 𝑖 ≤ 𝑚 − 1.
Hence, 𝜑

2
(𝑧) = ∑

𝑚

𝑝=1
𝑎
−𝑝
𝑧
𝑝

= ∑
𝑚

𝑝=1
𝜆𝑏
−𝑝
𝑧
𝑝

= 𝜆𝜓
2
(𝑧).

Since 𝜑
2
(𝑧) = 𝜆𝜓

2
(𝑧), by (57), we get that

𝜓
1
(0)𝜑
2
+ 𝑃 (𝜑

1
𝑊
∗

𝜓
2
) = 𝜑
1
(0)𝜓
2
+ 𝑃 (𝜓

1
𝑊
∗

𝜑
2
) . (60)

Then,

⟨𝜓
1
(0)𝜑
2
+ 𝑃 (𝜑

1
𝑊
∗

𝜓
2
) , 𝑧
𝑘𝑚

⟩

= ⟨𝑊
∗

𝜓
2
, 𝑧
𝑘𝑚

𝜑
1
⟩ = 𝑏
−𝑚

𝑎
0

1

𝑚 + 1

= ⟨𝜑
1
(0)𝜓
2
+ 𝑃 (𝜓

1
𝑊
∗

𝜑
2
) , 𝑧
𝑘𝑚

⟩

= ⟨𝑊
∗

𝜑
2
, 𝑧
𝑘𝑚

𝜓
1
⟩ = 𝑎
−𝑚

𝑏
0

1

𝑚 + 1
,

(61)

and we get that 𝑏
−𝑚

𝑎
0
= 𝑎
−𝑚

𝑏
0
; that is, 𝑎

0
= 𝜆𝑏
0
. So, by

(60), we have that 𝜓
1
(0)𝜑
2
= 𝜑
1
(0)𝜓
2
and 𝑃(𝜑

1
𝑊
∗

𝜓
2
) =

𝑃(𝜓
1
𝑊
∗

𝑘
𝜑
2
); that is, 𝑃((𝜆𝜓

1
− 𝜑
1
)𝑊
∗

𝑘
𝜓
2
) = 0. Hence, for any

integers 𝑙 with 𝑘𝑚 − 𝑚 ≤ 𝑙 ≤ 𝑘𝑚 − 1, we have

0 = ⟨𝑧
𝑙

, 0⟩ = ⟨𝑧
𝑙

, 𝑃 ((𝜆𝜓
1
− 𝜑
1
)𝑊
∗

𝑘
𝜓
2
)⟩

= ⟨𝑧
𝑙

, (𝜆𝜓
1
− 𝜑
1
)𝑊
∗

𝑘
𝜓
2
⟩ = ⟨(𝜆𝜓

1
− 𝜑
1
) 𝑧

l
,𝑊
∗

𝑘
𝜓
2
⟩ ,

(62)

that is,

⟨

𝑚

∑

𝑝=0

(𝜆𝑏
𝑝
− 𝑎
𝑝
) 𝑧
𝑝+𝑙

−

𝑛

∑

𝑝=𝑚+1

𝑎
𝑝
𝑧
𝑝+𝑙

,

𝑚

∑

𝑝=1

𝑏
−𝑝

𝑘𝑝 + 1

𝑝 + 1
𝑧
𝑘𝑝

⟩ = 0.

(63)

Since 𝑎
0
= 𝜆𝑏
0
, we have

⟨

𝑚

∑

𝑝=1

(𝜆𝑏
𝑝
− 𝑎
𝑝
) 𝑧
𝑝+𝑙

−

𝑛

∑

𝑝=𝑚+1

𝑎
𝑝
𝑧
𝑝+𝑙

,

𝑚

∑

𝑝=1

𝑏
−𝑝

𝑘𝑝 + 1

𝑝 + 1
𝑧
𝑘𝑝

⟩ = 0.

(64)

When 𝑙 = 𝑘𝑚−1, by (64), we get that (𝜆𝑏
1
−𝑎
1
)𝑏
−𝑚
((𝑘𝑚+

1)/(𝑚 + 1)) = 0, so 𝑎
1
= 𝜆𝑏
1
, since 𝑏

−𝑚
̸= 0. Then, we have

⟨

𝑚

∑

𝑝=2

(𝜆𝑏
𝑝
− 𝑎
𝑝
) 𝑧
𝑝+𝑙

−

𝑛

∑

𝑝=𝑚+1

𝑎
𝑝
𝑧
𝑝+𝑙

,

𝑚

∑

𝑝=1

𝑏
−𝑝

𝑘𝑝 + 1

𝑝 + 1
𝑧
𝑘𝑝

⟩ = 0.

(65)

Suppose that 𝑎
𝑗
= 𝜆𝑏
𝑗
for any integers 𝑗with 0 ≤ 𝑗 ≤ 𝑠, where

0 ≤ 𝑠 ≤ 𝑚 − 1. By (64), we get that

⟨

𝑚

∑

𝑝=𝑠+1

(𝜆𝑏
𝑝
− 𝑎
𝑝
) 𝑧
𝑝+𝑙

−

𝑛

∑

𝑝=𝑚+1

𝑎
𝑝
𝑧
𝑝+𝑙

,

𝑚

∑

𝑝=1

𝑏
−𝑝

𝑘𝑝+1

𝑝+1
𝑧
𝑘𝑝

⟩=0.

(66)

Now consider the connection between 𝑎
𝑠+1

and 𝑏
𝑠+1

.
When 𝑙 = 𝑘𝑚 − 𝑠 − 1, by (66), we get that (𝜆𝑏

𝑠+1
−

𝑎
𝑠+1
)𝑏
−𝑚
((𝑘𝑚+1)/(𝑚+1)) = 0, so 𝑎

𝑠+1
= 𝜆𝑏
𝑠+1

, since 𝑏
−𝑚

̸= 0.
From the pervious discussion, by the induction, we can

obtain that 𝑎
𝑗
= 𝜆𝑏
𝑗
for any integers 𝑗with 0 ≤ 𝑗 ≤ 𝑚. Hence,

𝜑
1
(𝑧) =

𝑛

∑

𝑝=0

𝑎
𝑝
𝑧
𝑝

=

𝑚

∑

𝑝=0

𝜆𝑏
𝑝
𝑧
𝑝

+

𝑛

∑

𝑝=𝑚+1

𝑎
𝑝
𝑧
𝑝

= 𝜆𝜓
1
(𝑧) +

𝑛

∑

𝑝=𝑚+1

𝑎
𝑝
𝑧
𝑝

.

(67)

Let𝜑
3
(𝑧) = ∑

𝑛

𝑝=𝑚+1
𝑎
𝑝
𝑧
𝑝, then𝜑 = 𝜑

1
+𝜑
2
= 𝜆𝜓
1
+𝜑
3
+𝜆𝜓
2
=

𝜆𝜓 + 𝜑
3
, since 𝜑

2
= 𝜆𝜓
2
.

Nowwe want to show that 𝜑
3
≡ 0. Because 𝐵

𝜑
𝐵
𝜓
= 𝐵
𝜓
𝐵
𝜑
,

yet we get that 𝐵
𝜑
3

𝐵
𝜓
= 𝐵
𝜓
𝐵
𝜑
3

, which means that

𝑇
𝜑
3

𝑊
∗

𝑘
𝑇
𝜓
𝑊
∗

𝑘
= 𝑇
𝜓
𝑊
∗

𝑘
𝑇
𝜑
3

𝑊
∗

𝑘
. (68)

Since𝑚 ≥ 1, we have 𝑇
𝜑
3

𝑊
∗

𝑘
𝑇
𝜓
𝑊
∗

𝑘
1 = 0; that is, 𝑇

𝜑
3

𝑊
∗

𝑘
[𝜓
2
+

𝜓
1
(0)] = 0. Then, we get that for any integers 𝑙 with 0 ≤ 𝑙 ≤

𝑘𝑚 − 𝑚 − 1, ⟨𝑇
𝜑
3

𝑊
∗

𝑘
[𝜓
2
+ 𝜓
1
(0)], 𝑧

𝑙

⟩ = 0; that is,

⟨

𝑚

∑

𝑗=1

𝑏
−𝑗

𝑘𝑗 + 1

𝑗 + 1
𝑧
𝑘𝑗

+ 𝜓
1
(0),

𝑛

∑

𝑖=𝑚+1

𝑎
𝑖
𝑧
𝑖+𝑙

⟩ = 0. (69)
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By (69), we can get that for any integers 𝑙 with max{0, 𝑘𝑚 −

𝑛} ≤ 𝑙 ≤ 𝑘𝑚−𝑚−1, 𝑏
−𝑚

𝑎
𝑘𝑚−𝑙

(1/(𝑚+1)) = 0; that is, 𝑎
𝑘𝑚−𝑙

= 0,
since 𝑏

−𝑚
̸= 0.

If 𝑛 ≤ 𝑘𝑚, then 𝜑
3
≡ 0, which means that 𝜑 = 𝜆𝜓, so the

required result holds.
If 𝑛 ≥ 𝑘𝑚+ 1, then 𝜑

3
(𝑧) = ∑

𝑛

𝑝=𝑘𝑚+1
𝑎
𝑝
𝑧
𝑝. So, by (68), we

can get that 𝑇
𝜑
3

𝑊
∗

𝑘
𝑇
𝜓
𝑊
∗

𝑘
(𝑧
𝑚

) = 0, that is, 𝑇
𝜑
3

𝑊
∗

𝑘
[𝜓
2
𝑧
𝑘𝑚

+

𝑃(𝜓
1
𝑧
𝑘𝑚

)] = 0. So we get that for any integers 𝑙 with
max{0, 𝑘2𝑚 + 𝑘𝑚 − 𝑛} ≤ 𝑙 ≤ 𝑘

2

𝑚 − 1,

⟨𝑊
∗

𝑘
[𝜓
2
𝑧
𝑘𝑚

+ 𝑃 (𝜓
1
𝑧
𝑘𝑚

)] ,

𝑛

∑

𝑖=𝑘𝑚+1

𝑎
𝑖
𝑧
𝑖+𝑙

⟩ = 0. (70)

By (70), we can get that for any integers 𝑙 with max{0, 𝑘2𝑚 +

𝑘𝑚 − 𝑛} ≤ 𝑙 ≤ 𝑘
2

𝑚− 1, 𝑏
−𝑚

𝑎
𝑘
2
𝑚+𝑘𝑚−𝑙

(1/(𝑘
2

𝑚+ 𝑘𝑚 + 1)) = 0,
that is, 𝑎

𝑘
2
𝑚+𝑘𝑚−𝑙

= 0, since 𝑏
−𝑚

̸= 0.
If 𝑛 ≤ 𝑘2𝑚 + 𝑘𝑚, then 𝜑

3
≡ 0, which means that 𝜑 = 𝜆𝜓,

so, the required result holds.
If 𝑛 ≥ 𝑘2𝑚+𝑘𝑚+1, then 𝜑

3
(𝑧) = ∑

𝑛

𝑝=𝑘
2
𝑚+𝑘𝑚+1

𝑎
𝑝
𝑧
𝑝.Then

successively by the pervoius method, we can get that 𝑎
𝑖
= 0

for all integers 𝑖with𝑚+1 ≤ 𝑖 ≤ 𝑛, whichmeans that 𝜑 = 𝜆𝜓.
So, the required result holds.
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