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We study the analytic integrability problem through the formal integrability problem and we show its connection, in some cases,
with the existence of invariant analytic (sometimes algebraic) curves. From the results obtained, we consider some families of
analytic differential systems in C2, and imposing the formal integrability we find resonant centers obviating the computation of
some necessary conditions.

1. Introduction

One of the main open problems in the qualitative theory
of differential systems in R2 is the distinction between a
center and a focus, called the center problem, and its relation
with the integrability problem; see, for instance, [1–5]. The
notion of center can be extended to the case of a 𝑝 :

−𝑞 resonant singular point of a polynomial vector field in
C2 and to some other situations (resonant node, saddle
node, and nonelementary singular points); see [6]. Recently,
several works about this subject have appeared where the
classification of the resonant centers for certain families
is given using powerful computational facilities; see, for
instance, [6–17].

There exist several methods to find necessary conditions;
see [1, 18]. However, there is no general method to provide
the sufficiency for each family that satisfies some necessary
conditions. The sufficiency is obtained verifying that the
system is Hamiltonian, or that it has certain reversibility, or
certain Lie symmetry, or finding a first integral well defined
in a neighborhood of the singular point, sometimes finding
an integrating factor that allows to construct a first integral,
reducing the system to an integrable system; see, for instance,
[4, 5, 18–23] and the references therein. These methods have

proved ineffective in certain families that already verify some
necessary conditions, and in many papers some cases are
established as open problems; see, for instance, [7, 10, 11].
Carrying, in practice, to prove the sufficiency by ad hoc
methods for each particular case where it has been possible,
see [6–8, 12, 16, 17, 24–26]. One of the ways to prove the
sufficiency is proving the existence of a formal first integral.
The existence of a formal first integral implies the existence
of an analytic first integral for an isolated singularity from
the results obtained by Mattei and Moussu; see [27] and
Theorem 2 in Section 2.

Therefore, one of the main objectives for the next years
will be to find an algorithm (if exists) or methods that give
directly sufficient conditions to decide whether or not a
differential system in the plane admits a formal first integral
at a singular point.

This paper is the first step in this direction. In this
paper, we study the analytic integrability through the formal
integrability and we show its connection, in some cases,
with the existence of invariant analytic (sometimes algebraic)
curves. Moreover, from the results obtained in this work,
we consider some families of analytic differential systems in
C2, and imposing the formal integrability we find centers or
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resonant centers obviating the computation of the necessary
conditions (see, for instance, Proposition 11).

2. Definitions and Preliminary Concepts

We first consider a real system of ordinary differential
equations onR2 with an isolated singular point at the origin,
whose linear parts are nonzero pure imaginary numbers. By
a linear change of coordinates and a constant time rescaling,
the system takes the form

�̇� = V + ⋅ ⋅ ⋅ , V̇ = −𝑢 + ⋅ ⋅ ⋅ . (1)

The classical Poincaré-Liapunov center theorem states that
the origin is a center if and only if the system admits an
analytic first integral of the form 𝜙(𝑢, V) = 𝑢

2
+ V2 + ⋅ ⋅ ⋅; see,

for instance, [18, 28–31] and the references therein.
If system (1) is complexified in a natural way taking

𝑧 = 𝑢 + 𝑖V, then we obtain a differential equation of the
form �̇� = 𝑖𝑧 + ⋅ ⋅ ⋅. In this case one constructs, step by
step, the formal first integral Φ = 𝑧𝑧 + ⋅ ⋅ ⋅ satisfying the
equation Φ̇ = V

3
|𝑧|
4
+ V
5
|𝑧|
6
+ ⋅ ⋅ ⋅, where the coefficients

V
2𝑖+1

, called the focus quantities, are polynomials in the
coefficients of the original system. The theorem of Poincaré-
Liapunov [32, 33] says that the point 𝑧 = 0 is a center if
and only if all the V

2𝑖+1
= 0. Existence of a first integral 𝜙

is equivalent to existence of an analytic first integral for the
complexified equation of the form Φ = 𝑧𝑧 + ⋅ ⋅ ⋅. Taking
the complex conjugated equation, there arises an analytic
system of ordinary differential equations on C2 of the form
�̇� = 𝑖𝑧 + ⋅ ⋅ ⋅, �̇� = −𝑖𝑤 + ⋅ ⋅ ⋅ where 𝑤 = 𝑢 − 𝑖V. Hence, after the
complexification, the system is transformed into an analytic
system with eigenvalues +𝑖 and −𝑖. This is the 1 : −1 resonant
singular point and the numbers V

2𝑖+1
become the coefficients

of the resonant terms in its orbital normal form. Dulac [34]
chosen this way to approach the center problem for quadratic
systems.

The next natural generalization is to consider the case of
an analytic vector field inC2 with 𝑝 : −𝑞 resonant elementary
singular point

�̇� = 𝑝𝑥 + ⋅ ⋅ ⋅ , �̇� = −𝑞𝑦 + ⋅ ⋅ ⋅ , (2)

where 𝑝, 𝑞 ∈ Z with 𝑝, 𝑞 > 0. These facts motivate the
generalization of the concept of real center to certain classes
of systems of ordinary differential equations on C2. In this
case, we have the following definition of a resonant center or
focus, coming from Dulac [34]; see also [6].

Definition 1. A 𝑝 : −𝑞 resonant elementary singular point of
an analytic system is a resonant center if, and only if, there
exists a local meromorphic first integral Φ = ℎ

0
+ ⋅ ⋅ ⋅, with

ℎ
0
= 𝑥
𝑞
𝑦
𝑝. This singular point is a resonant focus of order 𝑘

if, and only if, there is a formal power series Φ = 𝑥
𝑞
𝑦
𝑝
+ ⋅ ⋅ ⋅

with the property Φ̇ = 𝑔
𝑘
ℎ
𝑘+1

0
+ ⋅ ⋅ ⋅.

Recently, several works are focused on the study of
resonant centers for complex analytic systems. In theseworks,
the integrability and linearizability problems are studied.

The linearizability problem is focused on the study of the
existence of an analytic change of coordinates that linearize
the complex analytic system.

Mattei and Moussu [27] proved the next result for all
isolated singularities.

Theorem 2. Assume that system (1) or (2) with an isolated
singularity at the origin has a formal first integral 𝐻 ∈

R[[𝑥, 𝑦]] around it. Then, there exists an analytic first integral
around the singularity.

In the light of the former result, we can conclude that in
order to prove the existence of an analytic first integral we
only need to prove the existence of a formal first integral.
Therefore, the formal integrability problem takes a primary
role for the upcoming investigations on the center and
resonant center problem.

3. Blowup of Resonant Saddles

In this section, we will consider the first method to approach
the formal integrability problem for resonant centers. We
consider the resonant analytic system (2). We now do the
blowup of this singularity. This means that we apply the map
(𝑥, 𝑦) → (𝑥, 𝑧) = (𝑥, 𝑦/𝑥). The point 𝑥 = 𝑦 = 0 is replaced
by the line 𝑥 = 0, which contains two singular points that
correspond to the separatrices of (2) and are the saddles: 𝑝

1

which is (𝑝 + 𝑞) : −𝑝 resonant and 𝑝
2
which is (𝑝 + 𝑞) : −𝑞

resonant. The following lemma is proved in [12] using the
normal orbital form of a resonant analytic system (2).

Lemma 3. If one of the points 𝑝
1
or 𝑝
2
is orbitally analytically

linearizable then the point 𝑥 = 𝑦 = 0 is a 𝑝 : −𝑞 resonant
center.

As a corollary of this lemma, we get the following useful
property which can be used to approach the resonant center
problem. If the point 𝑝

1
is orbitally analytically linearizable

then it has a formal first integral in the variables (𝑥, 𝑧) of the
form

𝐻 = 𝑥
𝑝
𝑧
𝑞+𝑝

∞

∑

𝑛=0

𝑓
𝑛
(𝑥) 𝑧
𝑛
, (3)

with 𝑓
𝑛
(0) ̸= 0. Hence, the original 𝑝 : −𝑞 resonant point has

a nonformal first integral of the form

𝑥
−𝑞
𝑦
𝑞+𝑝

∞

∑

𝑛=0

𝑓
𝑛
(𝑥) 𝑥
−𝑛
𝑦
𝑛
=

∞

∑

𝑛=0

𝑓
𝑛
(𝑥) 𝑥
−𝑞−𝑛

𝑦
𝑞+𝑝+𝑛

. (4)

Consequently, if the resonant point 𝑝 : −𝑞 has a non formal
first integral of the form (4) then by Lemma 3 the resonant
point 𝑝 : −𝑞 is a resonant center. The same result can be
established for the other saddle𝑝

2
.These types of results were

also given by Bruno in [35, 36].
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4. The 𝜀-Method for Resonant Centers

We recall in this section the 𝜀-method developed in [23]
which we apply here to resonant centers. We consider system
(2) which we write into the form

�̇� = 𝑃 (𝑥, 𝑦) = 𝑝𝑥 + 𝐹
1
(𝑥, 𝑦) ,

�̇� = 𝑄 (𝑥, 𝑦) = −𝑞 𝑦 + 𝐹
2
(𝑥, 𝑦) ,

(5)

where 𝐹
1
(𝑥, 𝑦) and 𝐹

2
(𝑥, 𝑦) are analytic functions without

constant and linear terms, defined in a neighborhood of the
origin.

To implement the algorithm we introduce a rescaling
of the variables and a time rescaling given by (𝑥, 𝑦, 𝑡) →

(𝜀
𝑝
𝑥, 𝜀
𝑞
𝑦, 𝜀
𝑟
𝑡) where 𝜀 > 0 and 𝑝, 𝑞, and 𝑟 ∈ Z and system

(5) takes the form

�̇� = 𝜀
𝑟−𝑝

(𝑝 𝜀
𝑝
𝑥 + 𝐹
1
(𝜀
𝑝
𝑥, 𝜀
𝑞
𝑦)) ,

�̇� = 𝜀
𝑟−𝑞

(−𝑞 𝜀
𝑞
𝑦 + 𝐹
2
(𝜀
𝑝
𝑥, 𝜀
𝑞
𝑦)) .

(6)

We choose 𝑝, 𝑞, 𝑟 in such a way that system (6) will be
analytic in 𝜀. Hence, by the classical theorem of the analytic
dependence with respect to the parameters, we have that
system (6) admits a first integral which can be developed
in power of series of 𝜀 because it is analytic with respect
to this parameter. Therefore, we can propose the following
development for the first integral:

𝐻(𝑥, 𝑦) =

∞

∑

𝑘=0

𝜀
𝑘
ℎ
𝑘
(𝑥, 𝑦) , (7)

where ℎ
𝑘
(𝑥, 𝑦) are arbitrary functions.Wenotice that𝐹

1
(𝑥, 𝑦)

and 𝐹
2
(𝑥, 𝑦) are analytic functions, where both can be null

and 𝐹
1
(0, 0) = 𝐹

2
(0, 0) = 0, so we can develop them, in a

neighborhood of the origin, as convergent series of 𝑥 and 𝑦

of the form

𝐹
1
(𝑥, 𝑦) = 𝑝

𝑛
(𝑥, 𝑦) + 𝑝

𝑛+1
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑝

𝑗
(𝑥, 𝑦) + ⋅ ⋅ ⋅ ,

𝐹
2
(𝑥, 𝑦) = 𝑞

𝑛
(𝑥, 𝑦) + 𝑞

𝑛+1
(𝑥, 𝑦) + ⋅ ⋅ ⋅ + 𝑞

𝑗
(𝑥, 𝑦) + ⋅ ⋅ ⋅ ,

(8)

with 𝑛 = min{subdeg
|(0,0)

𝐹
1
(𝑥, 𝑦), subdeg

|(0,0)
𝐹
2
(𝑥, 𝑦)} ≥ 2.

We recall that given an analytic function 𝑓(𝑥, 𝑦)

defined in a neighborhood of a point (𝑥
0
, 𝑦
0
), we define

subdeg
|(𝑥0 ,𝑦0)

𝑓(𝑥, 𝑦) as the least positive integer 𝑗 such that
some derivative (𝜕𝑗𝑓/𝜕𝑥𝑖𝜕𝑦𝑗−𝑖)(𝑥

0
, 𝑦
0
) is not zero. We notice

that this computation depends on the variables (𝑥, 𝑦) on
which the function 𝑓(𝑥, 𝑦) depends, so we will explicit the
variables used in each computation of subdeg. For instance,
subdeg

|(𝑥0 ,𝑦0)
𝑓(𝑥, 𝑦) = 0, if and only if 𝑓(𝑥

0
, 𝑦
0
) ̸= 0. In (8),

𝑝
𝑗
(𝑥, 𝑦) and 𝑞

𝑗
(𝑥, 𝑦) denote homogeneous polynomials of 𝑥

and 𝑦 of degree 𝑗 ≥ 𝑛. It is possible that 𝑝
𝑛
(𝑥, 𝑦) or 𝑞

𝑛
(𝑥, 𝑦)

be null but, by definition, not both of them can be null. The
simplest case is to consider in the rescaling 𝑝 = 𝑞 = 1. In
fact, this case is equivalent to impose that system (8) has a
first integral which can be expanded as a formal series in
homogeneous parts.

The richness of the 𝜀-method is that, using the parameter
𝜀, the functions ℎ

𝑘
(𝑥, 𝑦) need not be homogeneous parts

and we can construct also a singular series expansion in the
variables 𝑥 and 𝑦; see [23]. The method depends heavily on
ℎ
0
the first integral of the initial quasi-homogeneous system.

The simpler is ℎ
0
farther we go with the method. However, ℎ

0

can be chosen using different scalings of variables (𝑥, 𝑦, 𝑡) →

(𝜀
𝑝
𝑥, 𝜀
𝑞
𝑦, 𝜀
𝑟
𝑡) where 𝜀 > 0 and 𝑝, 𝑞, and 𝑟 ∈ Z, in such

a way that ℎ
0
will be as simple as possible. The method

gives necessary conditions to have analytic integrability or
a singular series expansion around a singular point and
information about what is called in [23] the essential variables
of a system. In the method developed in [23], the parameter 𝜀
needs not be small. The parameter 𝜀 may be relatively large
(for instance 𝜀 → 1). The convergence of series (7) with
respect to (𝑥, 𝑦) must be analyzed in each particular case,
and the convergent rate depends upon the nonlinear terms
of the system (8). In the case of a resonant center, the most
convenient ℎ

0
is 𝑥𝑞𝑦𝑝.

From now on we suppose that system (5) admits a
formal first integral. Therefore, ℎ

𝑘
(𝑥, 𝑦) are homogeneous

polynomials of degree 𝑘 and we can take ℎ
0
(𝑥, 𝑦) = 0. In this

case if we impose that series (7) be a formal first integral of
system (5) we obtain at each order of homogeneity

𝑝𝑥
𝜕ℎ
𝑘

𝜕𝑥
(𝑥, 𝑦) − 𝑞𝑦

𝜕ℎ
𝑘

𝜕𝑦
(𝑥, 𝑦) + 𝐺

𝑘
(𝑥, 𝑦) = 0, (9)

where𝐺
𝑘
(𝑥, 𝑦) depends on the previous ℎ

𝑖
for 𝑖 = 1, . . . , 𝑘−1.

The solution of the partial equation (9) is

ℎ
𝑘
(𝑥, 𝑦) = 𝐹 (𝑥

𝑞/𝑝
𝑦) − ∫

𝑥 𝐺
𝑘
(𝑠, (𝑥
𝑞/𝑝

𝑦) /𝑠
𝑞/𝑝

)

𝑝 𝑠
𝑑𝑠, (10)

where 𝐹 is an arbitrary function of 𝑥𝑞/𝑝𝑦. We require that ℎ
𝑘

be a polynomial and therefore an ℎ
𝑘
not having logarithmic

terms. In order to avoid the logarithmic terms, it is easy to see
that the function𝐺

𝑘
(𝑥, 𝑦)must not have polynomial terms of

the form (𝑥
𝑞
𝑦
𝑝
)
𝑚 for 𝑚 ∈ N. This result is the same as that

we obtain using normal form theory; see [6].
We must impose the vanishing of all the logarithmic

terms (if there exists any difference from zero) and prove that
all the functions ℎ

𝑖
(𝑥, 𝑦) for 𝑖 > 1 are polynomials. In fact

we must prove this by induction assuming that all the ℎ
𝑖
for

𝑖 = 1, . . . 𝑘 − 1 are polynomials, and prove that the recursive
partial differential equation with respect to ℎ

𝑘
(see (9)) gives

also a polynomial. This is not so easy and even less working
with a partial recursive differential equation as (9).

At this point we think in the blow-up 𝑧 = 𝑦/𝑥 because
each ℎ

𝑖
(𝑥, 𝑦) are homogeneous polynomials of degree 𝑖.
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This blowup transforms the system (5) into a system of
variables (𝑥, 𝑧) of the form

�̇� = − (𝑝 + 𝑞) 𝑧 + 𝑥F (𝑥, 𝑧) ,

�̇� = 𝑝𝑥 + 𝑥
2
G (𝑥, 𝑧) ,

(11)

where F(0, 0) = 0. After that we propose a formal first
integral of the form

�̃� =

∞

∑

𝑖≥1

𝑓
𝑖
(𝑧) 𝑥
𝑖
, (12)

where 𝑓
𝑖
(𝑧) must be polynomials of degree ≤i (if the log-

arithmic terms are zero). If we impose that series (12) be
a first integral of the system in variables (𝑥, 𝑧), we obtain
that the term 𝑏

20
𝑥
2 must be zero. However, we can vanish

this term doing the change 𝑦 = 𝑦 − 𝛼𝑥
2 and 𝑥 = 𝑥, with

𝛼 = −𝑏
20
/(2𝑝 + 𝑞). We must also take 𝑓

1
(𝑧) = 0. Finally at

each power of 𝑦 we have the recursive equation

𝑘𝑝𝑓
𝑘
(𝑧) − (𝑝 + 𝑞) 𝑧𝑓



𝑘
(𝑧) + 𝑔

𝑘
(𝑧) = 0, (13)

where 𝑔
𝑘
(𝑧) depends of the previous functions 𝑓

𝑖
for 𝑖 =

1, . . . , 𝑘 − 1. Hence in this case instead of getting the partial
recursive differential equation (9), we obtain an ordinary
recursive differential equation whose solution is given by

𝑓
𝑘
(𝑧) = �̃�

𝑘
𝑧
𝑘𝑝/(𝑝+𝑞)

+ 𝑧
𝑘𝑝/(𝑝+𝑞)

∫

𝑧 𝑠
−1−𝑘𝑝/(𝑝+𝑞)

𝑝 + 𝑞
𝑔
𝑘
(𝑠) 𝑑𝑠,

(14)

where �̃�
𝑘
is an arbitrary constant. However, we are going to

see that, although we place in a resonant center where all the
𝑓
𝑘
be polynomials, this blowup does not allow us to prove, in

general, by induction of the existence of a formal first integral
of the form (12).

In this sense, consider the recursive differential equation
(13) whose solution is (14) and we assume that system (5) has
a resonant degenerate center at the origin. It is easy to see that
there always exists a value 𝑘

0
such that for 𝑘 ≥ 𝑘

0
the arbitrary

polynomials 𝑓
𝑖
(𝑧) for 𝑖 = 1, . . . , 𝑘

0
− 1 can gives following the

recursive equation (13) logarithmic terms. Therefore, we can
not apply the induction method to prove that the recursive
equation (13) gives always a polynomial.

To see this we must to see that the solution (14) of the
recursive equation (13) can give a logarithmic term. This
happens when

−1 −
𝑘
0
𝑝

𝑝 + 𝑞
+ 𝑚
𝑘
= −1, (15)

where𝑚
𝑘
is the degree of the polynomial 𝑔

𝑘
(𝑠). From here we

have that 𝑘
0
= 𝑚
𝑘
(𝑝+𝑞)/𝑝. Hence if𝑝 = 1 then 𝑘

0
= 𝑚
𝑘
(1+𝑞)

which can be satisfied because𝑚
𝑘
and 𝑞 are positive integers.

For the case 𝑝 ̸= 1 and taking into account that the value of
𝑚
𝑘
increases when 𝑘 increases, it can also exist a value of𝑚

𝑘

such that 𝑚
𝑘
is divisible by 𝑝 and that gives the value of 𝑘

0

that can give logarithmic terms.

Therefore the conclusion is that the formal construction
of the first integral (7) using homogeneous terms or using the
blow-up 𝑧 = 𝑦/𝑥 and the formal series (12) do not allow to
use the induction method in order to verify the existence of a
formal first integral. We must use other developments which
is the subject of the next section.

5. Other Developments of the Formal
First Integral

In this section, we consider other developments of the formal
first integral. We consider the formal development of the first
integral of system (5) in a series in the variable 𝑥 or in 𝑦; that
is, we consider

𝐻
1
=

∞

∑

𝑘=0

𝑓
𝑘
(𝑥) 𝑦
𝑘
, or 𝐻

2
=

∞

∑

𝑘=0

𝑔
𝑘
(𝑦) 𝑥
𝑘
. (16)

First we consider a general analytic system that we can
always write into the following forms:

�̇� = 𝑓 (𝑥) + 𝑦Φ
1
(𝑥, 𝑦) , �̇� = 𝑔 (𝑥) + 𝑦Φ

2
(𝑥, 𝑦) , (17)

or

�̇� = 𝑓 (𝑦) + 𝑥Ψ
1
(𝑥, 𝑦) , �̇� = 𝑔 (𝑦) + 𝑥Ψ

2
(𝑥, 𝑦) , (18)

where 𝑓, 𝑔,Φ
1
,Φ
2
, Ψ
1
, and Ψ

2
are analytic in their variables.

For systems (17) and (18), we have the following straightfor-
ward result.

Proposition 4. If we impose that the series 𝐻
1
(𝐻
2
, resp.) be

a first integral of system (17) (system (18), resp.) among others,
the first condition is 𝑓

0
(𝑥)𝑓(𝑥) + 𝑓

1
(𝑥)𝑔(𝑥) = 0, (𝑓

0
(𝑦)𝑔(𝑦) +

𝑓
1
(𝑦)𝑓(𝑦) = 0, resp.).

In order that this condition generates a collection of
recursive differential equations where each 𝑓

𝑖
(𝑥) does not

depend on𝑓
𝑖+1

(𝑥), wemust impose𝑔(𝑥) = 0 (𝑓(𝑦) = 0, resp.)
which implies that𝑦 = 0 (𝑥 = 0 resp.) is an invariant algebraic
curve of system (17) (system (18) resp.).

In fact for system (5), there are always a new coordinates
(𝑧
1
, 𝑧
2
) where 𝑧

1
= 0 and 𝑧

2
= 0 are invariant curves. These

invariant curves are defined by the stable and instable man-
ifold of the p :−q resonant singular point and therefore the
previous conditions are directly satisfied. In these coordinates
any 𝑝 : −𝑞 resonant singular point is a Lotka-Volterra system.
In the following result, we are going to see that we always can
find a new coordinate where 𝑦 = 0 is an invariant algebraic
curve of the transformed system (5).

We consider system (2) which we write into the form

�̇� = 𝑃 (𝑥, 𝑦) = 𝑝𝑥 (1 + 𝑃
0
(𝑥)) + ∑

𝑗≥1

𝑃
𝑗
(𝑥) 𝑦
𝑗
,

�̇� = 𝑄 (𝑥, 𝑦) = 𝑥𝑄
0
(𝑥) − 𝑞𝑦 (1 + 𝑄

1
(𝑥)) + ∑

𝑗≥2

𝑄
𝑗
(𝑥) 𝑦
𝑗
,

(19)

where 𝑃
𝑗
(𝑥) = ∑

𝑖≥0
𝑎
𝑖𝑗
𝑥
𝑖 and 𝑄

𝑗
(𝑥) = ∑

𝑖≥0
𝑏
𝑖𝑗
𝑥
𝑖 are analytic

functions, defined in a neighborhood of the origin.
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Lemma 5. System (19) is orbitally equivalent to

�̇� = 𝑃 (𝑥, 𝑦) = 𝑝𝑥 (1 + 𝑃
0
(𝑥)) + ∑

𝑗≥1

𝑃
𝑗
(𝑥) 𝑦
𝑗
,

�̇� = 𝑄 (𝑥, 𝑦) = −𝑞𝑦 + ∑

𝑗≥2

𝑄
𝑗
(𝑥) 𝑦
𝑗
,

(20)

that is, 𝑄
0
(𝑥) ≡ 𝑄

1
(𝑥) ≡ 0. Moreover, (𝑝, 𝑞) are coprimes.

Proof. First we prove that we can achieve 𝑄
0
(𝑥) ≡ 0. Assume

that 𝑄
0
(𝑥) ̸≡ 0 and let 𝑁 = min{𝑖 ∈ N ∪ {0} : 𝑏

𝑖0
̸= 0}. The

change of variable 𝑢 = 𝑥, V = 𝑦 − (𝑏
𝑁0

/(𝑝(𝑁 + 1) + 𝑞))𝑥
𝑁+1

transforms system (19) into

�̇� = 𝑝𝑢 (1 + �̃�
0
(𝑢)) + ∑

𝑗≥1

�̃�
𝑗
(𝑢) V
𝑗
,

V̇ = 𝑢�̃�
0
(𝑢) − 𝑞V (1 + �̃�

1
(𝑢)) + ∑

𝑗≥2

�̃�
𝑗
(𝑢) V
𝑗
,

(21)

where �̃�
0
(𝑢) = ∑

𝑖≥0
𝑏
𝑖0
𝑢
𝑖 and �̃�

𝑖0
= 0 for 𝑖 = 0, 1, . . . , 𝑁

because V̇ = �̇� − ((𝑁 + 1)𝑏
𝑁0

/(𝑝(𝑁 + 1) + 𝑞))𝑢
𝑁
�̇� hence

𝑢�̃�
0
(𝑢) = 𝑏

𝑁0
𝑢
𝑁+1

−
𝑞𝑏
𝑁0

𝑝 (𝑁 + 1) + 𝑞
𝑢
𝑁+1

−
𝑝 (𝑁 + 1) 𝑏

𝑁0

𝑝 (𝑁 + 1) + 𝑞
𝑢
𝑁+1

+ O (𝑢
𝑁+2

)

= O (𝑢
𝑁+2

) .

(22)

Therefore, by means of successive change of variables we can
transform system (19) into

�̇� = 𝑝𝑢 (1 + �̂�
0
(𝑢)) + ∑

𝑗≥1

�̂�
𝑗
(𝑢) 𝑦
𝑗
,

V̇ = −𝑞V (1 + �̂�
1
(𝑢)) + ∑

𝑗≥2

�̂�
𝑗
(𝑢) V
𝑗
.

(23)

To complete the proof it is enough to apply the scaling 𝑑𝑡 =

𝑑𝑇/(1 + �̂�
1
(𝑢)).

Lemma 6. Let G be a formal function with G(0) = 0. The
system

(
�̇�

�̇�
) = (

𝑝𝑥

−𝑞𝑦
) + (

𝑝𝑥

𝑞𝑦
)G (𝑥

𝑞
𝑦
𝑝
) , (24)

is formally integrable if and only ifG ≡ 0.

Proof. The sufficient condition is trivial since 𝑥
𝑞
𝑦
𝑝 is a first

integral of (�̇�, �̇�)𝑇 = (𝑝𝑥, −𝑞𝑦)
𝑇.

We now will prove the necessary condition. Let F(𝑥, 𝑦) =
(𝑝𝑥, −𝑞𝑦)

𝑇
+ (𝑝𝑥, 𝑞𝑦)

𝑇
G(ℎ), where ℎ = 𝑥

𝑞
𝑦
𝑝 and G(ℎ) =

∑
𝑗≥1

𝑔
𝑗
ℎ
𝑗. G ̸≡ 0; otherwise, the proof is finished. We

consider 𝑗
0
= min{𝑗 ∈ N | 𝑔

𝑗
̸= 0}. If 𝐼 is a first integral of

this system, then there exists 𝑀 ∈ N such that 𝐼 = ℎ
𝑀

+ ⋅ ⋅ ⋅

and 0 = ∇𝐼 ⋅F = 2𝑝𝑞𝑔
𝑗0
ℎ
𝑗0+1 + ⋅ ⋅ ⋅. Therefore, 𝑔

𝑗0
= 0 and this

is a contradiction.

The next result shows that any integrable system (20)
admits always a first integral of the form𝐻

1
.

Proposition 7. If system (20) is formally integrable then
𝐻(𝑥, 𝑦) = ∑

𝑗≥0
𝑓
𝑗
(𝑥)𝑦
𝑗 with 𝑓

𝑗
(𝑥) a formal function is a first

integral and moreover 𝑓
0
= ⋅ ⋅ ⋅ 𝑓

𝑝−1
= 0.

Proof. By applying the Poincare-Dulac normal form, there
exists a change of variable to transform (20) into

(
�̇�

V̇
) = (

𝑝𝑢

−𝑞V
) + (

∑

𝑘≥1

𝑎
𝑘
𝑢ℎ
𝑘

∑

𝑘≥1

𝑏
𝑘
Vℎ
𝑘
), (25)

where ℎ = 𝑢
𝑞V𝑝. We can assume that the change of variable is

𝑢 = 𝑥 + ⋅ ⋅ ⋅, V = 𝑦(1 + ⋅ ⋅ ⋅) because the axis 𝑦 = 0 and V = 0

are invariant.
Considering the formal functions F(ℎ) = ∑

𝑘≥1
𝑐
𝑘
ℎ
𝑘 and

G̃(ℎ) = ∑
𝑘≥1

𝑑
𝑘
ℎ
𝑘 with 𝑐

𝑘
= (𝑞𝑎
𝑘
− 𝑝𝑏
𝑘
)/2𝑝𝑞 and 𝑑

𝑘
= (𝑞𝑎
𝑘
+

𝑝𝑏
𝑘
)/2𝑝𝑞, we get

(
�̇�

V̇
) = (

𝑝𝑢

−𝑞V
) (1 +F (𝑢

𝑞
V
𝑝
)) + (

𝑝𝑢

𝑞V
) G̃ (𝑢

𝑞
V
𝑝
) , (26)

whereF, G̃ are formal functions withF(0) = G̃(0) = 0.
Moreover, by the scaling of the time, 𝑑𝑡 = (1 +F)𝑑𝜏, we

can getF ≡ 0; that is, it is possible to transform (20) into

(
𝑢


V
) = (

𝑝𝑢

−𝑞V
) + (

𝑝𝑢

𝑞V
)G (𝑢

𝑞
V
𝑝
) , (27)

whereG = G̃/(1 +F) is a formal function withG(0) = 0.
If this system is formally integrable, applying Lemma 6,

we obtainG = 0.Therefore,𝐻(𝑥, 𝑦) = (𝑥+⋅ ⋅ ⋅ )
𝑞
𝑦
𝑝
(1+⋅ ⋅ ⋅ )

𝑝
=

∑
𝑘≥𝑝

𝑓
𝑘
(𝑥)𝑦
𝑘 is a first integral of system (20).

The main result of this work is as follows.

Theorem 8. System (20) admits an analytic first integral
𝐻(𝑥, 𝑦) = ∑

𝑘≥𝑝
𝑓
𝑘
(𝑥)𝑦
𝑘 if for each 𝑘 ∈ N such that 𝑘 = 𝑀𝑝

with𝑀 ∈ N is verified that the derivative �̂�(𝑀𝑞)
𝑘

(0) = 0, where
�̂�
𝑘
for 𝑘 ≥ 𝑝 is the analytical function

�̂�
𝑘
(𝑥) :=

𝑔
𝑘
(𝑥)

𝑝 (1 + 𝑃
0
(𝑥)) 𝑓

𝑝
(𝑥)
𝑘
,

𝑓
𝑝
(𝑥) = exp(−∫

𝑥

0

(
𝑞𝑃
0
(𝑠)

𝑝𝑠 (1 + 𝑃
0
(𝑠))

) 𝑑𝑠) ,

𝑔
𝑝
= 0, and for 𝑘 > 𝑝

𝑔
𝑘
(𝑥) =

𝑘−𝑝

∑

𝑗=1

((𝑘 − 𝑗) 𝑓
𝑘−𝑗

(𝑥)𝑄
𝑗+1

(𝑥) + 𝑓


𝑘−𝑗
(𝑥) 𝑃
𝑗
(𝑥)) ,

(28)

and for 𝑘 ≥ 𝑝

𝑓
𝑘
(𝑥) = 𝑥

𝑘𝑞/𝑝
𝑓
𝑝
(𝑥)
𝑘
(𝐶
𝑘
− ∫

𝑥

𝑠
−1−(𝑘𝑞/𝑝)

�̂�
𝑘
(𝑠) 𝑑𝑠) . (29)
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Proof. By Proposition 7, we have 𝑓
0

= ⋅ ⋅ ⋅ = 𝑓
𝑝−1

= 0. If
we impose that 𝐻(𝑥, 𝑦) be a first integral of system (20), we
obtain that the first condition is

−𝑝𝑞𝑓
𝑝
(𝑥) + 𝑝𝑥𝑓



𝑝
(𝑥) (1 + 𝑃

0
(𝑥)) = 0. (30)

The next coefficients for each power of 𝑦 are of the form

−𝑞𝑘𝑓
𝑘
(𝑥) + 𝑝𝑥 (1 + 𝑃

0
(𝑥)) 𝑓



𝑘
(𝑥) + 𝑔

𝑘
(𝑥) = 0, (31)

where 𝑔
𝑝
= 0 and 𝑔

𝑘
(𝑥) for 𝑘 > 𝑝 depends of the previous

𝑓
𝑖
(𝑥) for 𝑖 = 𝑝, 𝑝 + 1, . . . , 𝑘 − 1. More specifically we obtain

the expression (28).
The solution of homogeneous equation associated to (31)

is

𝑓
ℎ

𝑘
(𝑥) = exp(∫

𝑘𝑞

𝑝𝑥 (1 + 𝑃
0
(𝑥))

) . (32)

We can define the following analytical function 𝑏(𝑥) =

−(𝑞/𝑝𝑥)(𝑃
0
(𝑥)/(1+𝑃

0
(𝑥))) and the integrand of the previous

expression of 𝑓
ℎ

𝑘
is a rational function which admits the

following fraction decomposition:

𝑘𝑞

𝑝𝑥 (1 + 𝑃
0
(𝑥))

=
𝑘𝑞

𝑝𝑥
+ 𝑘𝑏 (𝑥) . (33)

Therefore, 𝑓
ℎ

𝑘
(𝑥) = 𝑥

𝑘𝑞/𝑝 exp(∫ 𝑘𝑏(𝑥)) =

𝑥
𝑘𝑞/𝑝

(exp(∫𝑥
0
𝑏(𝑠)𝑑𝑠))

𝑘

and for the first equation which
corresponds to 𝑘 = 𝑝 we have that 𝑔

𝑝
(𝑥) = 0. Therefore,

𝑓
ℎ

𝑝
(𝑥) has the form 𝑓

ℎ

𝑝
(𝑥) = 𝐶

𝑝
𝑥
𝑞
(𝑓
𝑝
(𝑥))
𝑝

where 𝑓
𝑝
(𝑥) =

exp(∫𝑥
0
𝑏(𝑠)𝑑𝑠) is an analytic function with 𝑓

𝑝
(0) = 1. So,

𝑓
ℎ

𝑘
(𝑥) = 𝐶

𝑘
𝑥
𝑘𝑞/𝑝

𝑓
𝑝
(𝑥)
𝑘 and the solution of (31) is given by

𝑓
𝑘
(𝑥) = 𝑥

𝑘𝑞/𝑝
𝑓
𝑝
(𝑥)
𝑘
(𝐶
𝑘
− ∫

𝑥

0

𝑠
−𝑘𝑞/𝑝

𝑓
𝑝
(𝑠)
−𝑘

𝑝𝑠 (1 + 𝑃
0
(𝑠))

𝑔
𝑘
(𝑠) 𝑑𝑠) .

(34)

Taking into account the form of 𝑔
𝑘
(𝑥), we obtain the

expression (29) for𝑓
𝑘
. Now it is straightforward to see that the

integral does not give logarithmic terms in the case 𝑘𝑞/𝑝 ∉ N

and in the case 𝑘 = 𝑀𝑝 because �̂�
(𝑀𝑞)

𝑘
(0) = 0. If we choose

𝐶
𝑘

= 0, we have that each 𝑓
𝑘
(𝑥) for all 𝑘 is an analytic

function and therefore system (20) under the assumptions
of the theorem admits a formal first integral of the form
𝐻(𝑥, 𝑦) = ∑

𝑘≥𝑝
𝑓
𝑘
(𝑥)𝑦
𝑘.

Corollary 9. System (20) admits a formal first integral of the
form𝐻(𝑥, 𝑦) = ∑

𝑗≥𝑝
𝑓
𝑗
(𝑥)𝑦
𝑗 if one of the following conditions

holds:

(a) 𝑃
0
(𝑥) ≡ 0 and for each 𝑘 = 𝑀𝑝, 𝑀 ∈ N, 𝑔

𝑘
(𝑥) is a

polynomial of degree at most𝑀𝑞 − 1;
(b) 𝑃
0
(𝑥) ≡ 𝑎𝑥

𝑟, with 𝑟 a positive integer and for each
𝑘 = 𝑀𝑝, 𝑀 ∈ N, 𝑔

𝑘
(𝑥) is a rational function of the

form 𝑔
𝑘
(𝑥) = �̃�

𝑘
(𝑥)/(1 + 𝑎𝑥

𝑟
)
−1+𝑞/𝑟𝑝 where �̃�

𝑘
is a

polynomial of degree at most𝑀𝑞 − 1.

Proof. In case (a) it is enough to applyTheorem 8 for𝑓
𝑝
(𝑥) ≡

1 and �̂�
𝑘
(𝑥) = 𝑔

𝑘
(𝑥)/𝑝. For 𝑘 = 𝑀𝑝, 𝑀 ∈ N and we have

�̂�
(𝑀𝑞)

𝑘
(𝑥) = 𝑔

(𝑀𝑞)

𝑘
/𝑝 = 0, because the degree of 𝑔

𝑘
(𝑥) is less

than 𝑞𝑀.
In case (b), we have that 𝑓

𝑝
(𝑥) ≡ (1 + 𝑎𝑥

𝑟
)
−𝑞/𝑟𝑝, and

�̂�
𝑘
(𝑥) = 𝑔

𝑘
(𝑥)/𝑝(1 + 𝑎𝑥

𝑟
)
1−𝑞/𝑟𝑝. Therefore, �̂�

𝑘
(𝑥) = �̃�

𝑘
(𝑥)/𝑝

and �̂�
(𝑀𝑝)

𝑘
(𝑥) = 0 because the degree of �̃�

𝑘
(𝑥) is less than 𝑞𝑀.

We obtain the result by applying also Theorem 8.

Notice that in fact statement (a) is contained in statement
(b). However, we give the two statements in a separate form
in order to be applied directly to different examples.

Lemma 10. If system (20)with 𝑃
0
(𝑥) ≡ 0 admits a formal first

integral of the form𝐻(𝑥, 𝑦) = ∑
𝑗≥𝑝

𝑓
𝑗
(𝑥)𝑦
𝑗 then the following

conditions hold.

(a) If for each 𝑘 such that 𝑘𝑞/𝑝 ∉ N, 𝑔
𝑘
is a polyno-

mial then it is possible to choose 𝑓
𝑘
polynomial with

deg(𝑓
𝑘
) = deg(𝑔

𝑘
).

(b) If for each 𝑘 = 𝑀𝑝, 𝑀 ∈ N, 𝑔
𝑘
(𝑥) is a polynomial

with deg(𝑔
𝑘
) ≤ 𝑀𝑞 − 1 then it is possible to choose 𝑓

𝑘

polynomial with deg(𝑓
𝑘
) ≤ 𝑀𝑞 − 1.

Proof. By applying Theorem 8, we obtain 𝑓
𝑝
(𝑥) ≡ 1 and

�̂�
𝑘
(𝑥) = 𝑔

𝑘
(𝑥)/𝑝. If we choose 𝐶

𝑘
= 0 in (29), we obtain

𝑓
𝑘
(𝑥) = −

1

𝑝
𝑥
𝑘𝑞/𝑝

∫

𝑥

𝑠
−1−𝑘𝑞/𝑝

𝑔
𝑘
(𝑠) 𝑑𝑠. (35)

In case (a), the result is trivial since the integral does not give
logarithmic terms because 𝑘𝑞/𝑝 ∉ N.

In case (b), 𝑘 = 𝑀𝑝 and 𝑓
𝑘
(𝑥) =

−(1/𝑝)𝑥
𝑀𝑞

∫
𝑥

𝑠
−1−𝑀𝑞

𝑔
𝑘
(𝑠) 𝑑𝑠.Therefore, we obtain the result

applying that 𝑔
𝑘
is a polynomial with deg(𝑔

𝑘
) ≤ 𝑀𝑞 − 1.

Based on the results presented in this work, the following
proposition gives a large family of analytic systems that have
an analytic first integral.

Proposition 11. The analytic system

�̇� = 𝑝𝑥 + ∑

𝑗≥1

𝑃
𝑗
(𝑥) 𝑦
𝑗
,

�̇� = −𝑞𝑦 + ∑

𝑗≥2

𝑄
𝑗
(𝑥) 𝑦
𝑗
,

(36)

where 𝑃
𝑗
and 𝑄

𝑗
are polynomials such that deg(𝑃

𝑗
) ≤ ⌊𝑗𝑞/𝑝⌋,

deg(𝑄
𝑗
) ≤ ⌊(𝑗 − 1)𝑞/𝑝⌋ − 1 has an analytic first integral in

a neighborhood of the origin where ⌊𝑎⌋ is the integer part of
𝑎 ∈ R.

Proof. From Proposition 7, if system (36) is integrable then
a first integral is of the form 𝐻(𝑥, 𝑦) = ∑

𝑗≥𝑝
𝑓
𝑗
(𝑥)𝑦
𝑗

where 𝑓
𝑗
(𝑥) is a formal function. Moreover, 𝑃

0
(𝑥) ≡ 0 and,

therefore, by applying Theorem 8 we obtain 𝑓
𝑝
(𝑥) ≡ 1,

�̂�
𝑘
(𝑥) = 𝑔

𝑘
(𝑥)/𝑝, 𝑔

𝑝
= 0 and 𝑓

𝑝
(𝑥) = 𝑥

𝑞.
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We will prove now by induction that deg(𝑓
𝑗
) ≤ ⌊𝑗𝑞/𝑝⌋

and deg(𝑔
𝑗
) ≤ ⌊𝑗𝑞/𝑝⌋ − 1 for all 𝑗 ∈ N and 𝑝 ≤ 𝑗.

For 𝑗 = 𝑝 is true since 𝑓
𝑝
(𝑥) = 𝑥

𝑞 and 𝑔
𝑝

= 0. If we
suppose that the hypothesis is true for 1 ≤ 𝑗 ≤ 𝑗

0
−1, we have

to prove that deg(𝑔
𝑗0
) ≤ ⌊𝑗

0
𝑞/𝑝⌋ − 1 and deg(𝑓

𝑗0
) ≤ ⌊𝑗

0
𝑞/𝑝⌋.

On the other hand, applying (28), we have

deg (𝑔
𝑗0
)

≤ max
1≤𝑗≤𝑗0−𝑝

{deg (𝑓
𝑗0−𝑗

)+deg (𝑄
𝑗+1

) , deg (𝑓
𝑗0−𝑗

) + deg (𝑃
𝑗
)}

≤ ⌊
𝑗
0
𝑞

𝑝
⌋ − 1,

(37)

since for 1 ≤ 𝑗 ≤ 𝑗
0
− 𝑝, we have

deg (𝑓
𝑗0−𝑗

) + deg (𝑄
𝑗+1

) ≤ ⌊(𝑗
0
− 𝑗) 𝑞/𝑝⌋ + ⌊

𝑗𝑞

𝑝
⌋ − 1

≤ ⌊
𝑗
0
𝑞

𝑝
⌋ − 1,

deg (𝑓
𝑗0−𝑗

) + deg (𝑃
𝑗
) ≤ ⌊

(𝑗
0
− 𝑗) 𝑞

𝑝
⌋ − 1 + ⌊

𝑗𝑞

𝑝
⌋

≤ ⌊
𝑗
0
𝑞

𝑝
⌋ − 1.

(38)

By applying Lemma 10, we have that deg(𝑓
𝑗0
) ≤ ⌊𝑗

0
𝑞/𝑝⌋−

1. In particular, deg(𝑓
𝑗0
) ≤ ⌊𝑗

0
𝑞/𝑝⌋.

Therefore, if 𝑘 = 𝑀𝑝, deg(𝑔
𝑘
) ≤ 𝑀𝑞 − 1, 𝑔𝑀𝑞

𝑘
(0) = 0 and

�̂�
𝑀𝑞

𝑘
(0) = 0.
To finish the proof, it is enough to apply Theorem 8.

However, as it is difficult to determine the new coordi-
nates where system (19) has 𝑄

0
(𝑥) ≡ 𝑄

1
(𝑥) ≡ 0, we are

going to work with the original system (5), imposing directly
these two conditions. In order that one of the series 𝐻

1
or

𝐻
2
be a formal first integral of system (5), we have that these

series must have the term 𝑥
𝑞
𝑦
𝑝 as a first monomial in its

development. We will see that in this case and under some
conditionswe can use the inductionmethod in order to verify
the existence of a formal first integral.

The following result is only established for the series 𝐻
1

but we can obtain a similar result for the case where 𝐻
2
is a

formal first integral of system (5).

Proposition 12. We consider system (5)where wewrite𝐹
1
and

𝐹
2
into the form

𝐹
1
(𝑥, 𝑦) =

∞

∑

𝑖+𝑗=2

𝑎
𝑖𝑗
𝑥
𝑖
𝑦
𝑗
,

𝐹
2
(𝑥, 𝑦) =

∞

∑

𝑖+𝑗=2

𝑏
𝑖𝑗
𝑥
𝑖
𝑦
𝑗
,

(39)

where 𝑎
𝑖𝑗
and 𝑏
𝑖𝑗
are arbitrary constants. If we impose that 𝐻

1

be a first integral of system (5), we obtain that the first condition
is

∞

∑

𝑖=2

𝑏
𝑖0

𝑥
𝑖
𝑓
1
(𝑥) + 𝑝𝑥𝑓



0
(𝑥) +

∞

∑

𝑖=2

𝑎
𝑖0
𝑥
𝑖
𝑓


0
(𝑥) = 0. (40)

The proof of this proposition is also straightforward
developing in powers of 𝑦 and taking the coefficient of the
power 𝑦

0. Hence in order to have a recursive differential
equations where each 𝑓

𝑖
(𝑥) does not depend on 𝑓

𝑖+1
(𝑥), we

must impose that 𝑏
𝑖0

= 0 for all 𝑖 and consequently 𝑓
0
must

be a constant that we can take without loss of generality equal
to zero. The consequence, as before, is that if all 𝑏

𝑖0
= 0 for all

𝑖 the system (5) has 𝑦 as invariant algebraic curve.
The next coefficients for each power of 𝑦 are of the form

𝑘(−𝑞 +

∞

∑

𝑖=1

𝑏
𝑖1
𝑥
𝑖
)𝑓
𝑘
(𝑥)

+ (𝑝𝑥 +

∞

∑

𝑖=2

𝑎
𝑖0
𝑥
𝑖
)𝑓


𝑘
(𝑥) + 𝑔

𝑘
(𝑥) = 0,

(41)

where 𝑔
𝑘
(𝑥) depends of the previous𝑓

𝑖
(𝑥) for 𝑖 = 1, 2, . . . , 𝑘−

1, and for the first equation which corresponds to 𝑘 = 1 we
have that 𝑔

1
(𝑥) = 0. Therefore, 𝑓

1
(𝑥) has the form

𝑓
1
(𝑥) = exp(−∫

−𝑞 + ∑
∞

𝑖=1
𝑏
𝑖1
𝑥
𝑖

𝑝𝑥 + ∑
∞

𝑖=2
𝑎
𝑖0
𝑥𝑖

) . (42)

The integrand of the previous expression of 𝑓
1
is a rational

function which admits the following fraction decomposition:

−𝑞 + ∑
∞

𝑖=1
𝑏
𝑖1

𝑥
𝑖

𝑝𝑥 + ∑
∞

𝑖=2
𝑎
𝑖0

𝑥𝑖
=

𝐴

𝑥
+

𝐵 (𝑥)

𝑝 + ∑
∞

𝑖=2
𝑎
𝑖0

𝑥𝑖−1
, (43)

where 𝐴 = −𝑞/𝑝 and 𝐵(𝑥) is a formal series. Therefore,
𝑓
1
(𝑥) = 𝑥

𝑞/𝑝
𝑓
1
(𝑥) where 𝑓

1
is the corresponding formal

series obtained after the integration. Now we consider the
particular case 𝑝 = 1. The following theorem gives sufficient
conditions to have formal integrability in this case. A similar
proposition can be established for the case when the first
integral is of the form𝐻

2
.

Proposition 13. System (5) where we write 𝐹
1
and 𝐹

2
into the

form (39) admits a formal first integral of the form𝐻
1
if 𝑝 = 1,

𝑏
𝑖0
= 0 for 𝑖 ≥ 2 and 𝑏

𝑖1
= 0 for 𝑖 ≥ 1 and

𝑔
𝑘
(𝑥) =

�̃�
𝑘
(𝑥) 𝑃 (𝑥, 0)

𝑥𝑓
1
(𝑥)
−𝑘

with �̃�
(𝑘𝑞)

𝑘
(0) = 0. (44)

Proof. Under the assumptions of the theorem, we have that
𝑓
0
= 0, 𝑓

1
= 𝑥
𝑞
𝑓
1
(𝑥), and (41) takes the form

−𝑘𝑞𝑓
𝑘
(𝑥) + 𝑃 (𝑥, 0) 𝑓



𝑘
(𝑥) + 𝑔

𝑘
(𝑥) = 0, (45)

whose solution is given by

𝑓
𝑘
(𝑥) = 𝑥

𝑘𝑞
𝑓
1
(𝑥)
𝑘
(𝐶
𝑘
− ∫

𝑥 𝑠
−𝑘𝑞

𝑓
1
(𝑠)
−𝑘

𝑃 (𝑠, 0)
𝑔
𝑘
(𝑠) 𝑑𝑠) .

(46)
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Taking into account the form of 𝑔
𝑘
(𝑥), we obtain

𝑓
𝑘
(𝑥) = 𝑥

𝑘𝑞
𝑓
1
(𝑥)
𝑘
(𝐶
𝑘
− ∫

𝑥

𝑠
−1−𝑘𝑞

�̃�
𝑘
(𝑠) 𝑑𝑠) . (47)

Now it is straightforward to see that the integral does not give
logarithmic terms because the 𝑘𝑞-th derivative of �̃�

𝑘
(𝑠) at zero

is zero; that is, �̃� (𝑘𝑞)
𝑘

(0) = 0. We have that each 𝑓
𝑘
(𝑥) for all

𝑘 is an analytic function and therefore system (5) under the
assumptions of the theorem admits a formal first integral of
the form (39).

Examples where Proposition 13 can be applied can be
found in [7, 12, 16, 17] where some partial results are given.
We also can establish the following corollary in the casewhere
the 𝑔
𝑘
(𝑥) are polynomials or some irrational functions.

Corollary 14. System (5) where we write 𝐹
1
and 𝐹

2
into the

form (39) admits a formal first integral of the form𝐻
1
if one of

the following conditions holds:

(a) 𝑝 = 1, 𝑎
𝑖0

= 𝑏
𝑖0

= 0 for 𝑖 ≥ 2 and 𝑏
𝑖1

= 0 for 𝑖 ≥ 1 and
𝑔
𝑘
(𝑥) is a polynomial of degree at most 𝑘𝑞 − 1;

(b) 𝑝 = 1, 𝑎
𝑖0
= 0 for 𝑖 ̸= 𝑟 + 1, 𝑏

𝑖0
= 0 for 𝑖 ≥ 2 and 𝑏

𝑖1
= 0

for 𝑖 ≥ 1with 𝑟 a positive integer and 𝑔
𝑘
(𝑥) is a rational

function of the form 𝑔
𝑘
(𝑥) = �̃�

𝑘
(𝑥)/(1 + 𝑎𝑥

𝑟
)
−1+𝑘𝑞/𝑟

where �̃�
𝑘
is a polynomial of degree at most 𝑘𝑞 − 1.

Proof. In case (a) for we have𝑓
0
= 0 and𝑓

1
= 𝑥
𝑞 (41) take the

form

−𝑘𝑞𝑓
𝑘
(𝑥) + 𝑥𝑓



𝑘
(𝑥) + 𝑔

𝑘
(𝑥) = 0, (48)

whose solution is given by

𝑓
𝑘
(𝑥) = 𝐶

𝑘
𝑥
𝑘𝑞

− 𝑥
𝑘𝑞

∫

𝑥

𝑠
−1−𝑘𝑞

𝑔
𝑘
(𝑠) 𝑑𝑠, (49)

and taking into account that 𝑔
𝑘
(𝑥), that depends on 𝑓

𝑖
for 𝑖 =

1, 2, . . . , 𝑘 − 1, is at most of degree 𝑘𝑞 − 1, we obtain that 𝑓
𝑘
is

a polynomial. Moreover, in this case system (5) becomes

�̇� = 𝑝𝑥 + 𝑦𝜙
1
(𝑥, 𝑦) ,

�̇� = −𝑞𝑦 + 𝑦𝜙
2
(𝑥, 𝑦) ,

(50)

where 𝜙
1
and 𝜙

2
are analytic functions.

In case (b), we have that 𝑓
0
= 0, 𝑓

1
= 𝑥
𝑞
(1 + 𝑎𝑥

𝑟
)
−𝑞/𝑟 and

(41) takes the form

−𝑘𝑞𝑓
𝑘
(𝑥) + 𝑥𝑓



𝑘
(𝑥) + 𝑎𝑥

𝑟+1
𝑓


𝑘
(𝑥) + 𝑔

𝑘
(𝑥) = 0, (51)

whose solution is given by

𝑓
𝑘
(𝑥) = 𝑥

𝑘𝑞
(1 + 𝑎𝑥

𝑟
)
−𝑘𝑞/𝑟

× (𝐶
𝑘
− ∫

𝑥

𝑠
−1−𝑘𝑞

(1 + 𝑎𝑠)
−1+𝑘𝑞/𝑟

𝑔
𝑘
(𝑠) 𝑑𝑠) ,

(52)

and taking into account the form of 𝑔
𝑘
(𝑥), we obtain that

𝑓
𝑘
(𝑥) is also of the form 𝑓

𝑘
(𝑥) = 𝑝

𝑘
(𝑥)/(1 + 𝑎𝑥

𝑟
)
−𝑘𝑞/𝑠 where

𝑝
𝑘
(𝑥) is a polynomial because the integral in (52) does not

give logarithmic terms.

Notice that in fact statement (a) is contained in statement
(b). However, we give the two statements in a separate
form in order to be applied directly to different examples.
Corollary 14 generalizes a lot of cases obtained in the liter-
ature when some concrete families of polynomials systems
were studied.We have notmade an exhaustive study of all the
cases included in these large families but for instance contains
the cases (3) and (4) of Theorem 3 in [17] and case (3) of
Theorem 2 in [16].

In resume, when we study a family that satisfies the
necessary conditions, we must impose if the family system
has a formal first integral of the form 𝐻

1
or 𝐻
2
. If none of

them work, we can look for the proper coordinates (𝑧
1
, 𝑧
2
)

defined by the stable and instable manifold of the 𝑝 : −𝑞

resonant singular point. In this way, we must study if at least
one of the separatrices of the resonant point is algebraic. The
best case is when both are algebraic.Therefore, the problem to
find proper coordinates (𝑧

1
, 𝑧
2
) becomes a problem of finding

the invariant algebraic curves of system (5) passing through
the 𝑝 : −𝑞 resonant singular point. The existence of invariant
algebraic curves takes a leading role in the formal integrability
theory and is the base to find the proper coordinates system.
This is shown in the examples provided in [12] that are
solved by ad hoc methods and where the changes of variables
proposed to solve the examples are always invariant algebraic
curves of the original system passing through the origin.
In fact, in [12], it recalled the Abhyankar-Moch theorem
[37]. This theorem establishes, assuming the existence of an
invariant rational algebraic curve passing through the origin,
the existence of a rational invertible change of variables such
that the invariant curve becomes one of the invariant axes.
In this paper, this result is generalized in the sense that any
𝑝 : −𝑞 resonant singular point is formal orbitally equivalent
to a system with 𝑦 = 0 as invariant algebraic curve; see
Lemma 5.

6. Examples

In this section, we present some examples where the results
developed in this paper are applied.

Example 15. We first consider the 1 : −1 resonant quadratic
system given by

�̇� = 𝑥 + 𝑎
20
𝑥
2
+ 𝑎
11
𝑥𝑦 + 𝑎

02
𝑦
2
,

�̇� = −𝑦 + 𝑏
20
𝑥
2
+ 𝑏
11
𝑥𝑦 + 𝑏

02
𝑦
2
.

(53)

The aim is not to do an exhaustive study of when system (53)
has a formal first integral in a neighborhood of the origin.
In fact, the complex center cases were studied by Dulac; see
[34]. The aim is only to show how to use the results given
in this paper. If we apply directly Corollary 14 statement (a),
we obtain 𝑏

20
= 0 (this condition implies that 𝑦 = 0 be an

algebraic invariant curve of system (53)) and 𝑎
20

= 𝑏
11

= 0. In
this case, the quadratic system (53) reads

�̇� = 𝑥 + 𝑎
11
𝑥𝑦 + 𝑎

02
𝑦
2
,

�̇� = −𝑦 + 𝑏
02
𝑦
2

(54)
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and admits a formal first integral, and by Theorem 2 system
(54) has an analytic first integral in a neighborhood of the
origin.

In fact, the associated equation to system (54) is a linear
equation with respect to 𝑥 and the system has a Darboux first
integral of the form

𝐻(𝑥, 𝑦)

= (𝑏
02
𝑦 − 1)

−1−(𝑎11/𝑏02)

× [2𝑎
02

− 2 (𝑎
02
𝑎
11

+ 𝑎
02
𝑏
02
) 𝑦

+ (𝑎
3

11
− 𝑎
11
𝑏
2

02
) 𝑥𝑦 + (𝑎

02
𝑎
2

11
+ 𝑎
02
𝑎
11
𝑏
02
) 𝑦
2
] .

(55)

Example 16. Consider the 1 :−1 resonant Lotka–Volterra
planar complex quartic system given by

�̇� = 𝑥 (1 − 𝑎
10
𝑥 − 𝑎
01
𝑦 − 𝑎
20
𝑥
2
− 𝑎
11
𝑥𝑦

−𝑎
02
𝑦
2
− 𝑎
30
𝑥
3
− 𝑎
21
𝑥
2
𝑦 − 𝑎
12
𝑥𝑦
2
− 𝑎
03
𝑦
3
) ,

�̇� = −𝑦 (1 − 𝑏
10
𝑥 − 𝑏
01
𝑦 − 𝑏
20
𝑥
2
− 𝑏
11
𝑥𝑦

−𝑏
02
𝑦
2
− 𝑏
30
𝑥
3
− 𝑏
21
𝑥
2
𝑦 − 𝑏
12
𝑥𝑦
2
− 𝑏
03
𝑦
3
) .

(56)

The Lotka–Volterra planar complex systems have been stud-
ied in several papers; see [7, 11, 13–15]. In any case, the Lotka–
Volterra planar complex quartic system is an open problem
computationally infeasible. However, with the results of this
paperwe are going to see that we can give some sufficient con-
ditions to have an analytic first integral without computing
any resonant focus value. We propose a formal first integral
of the form 𝐻

1
, that is, of the form (16). The recurrence that

gives𝑓
𝑖
(𝑥) is given by −𝑖𝑓

𝑖
(𝑥)+𝑥𝑓



𝑖
(𝑥)+𝑔

𝑖
(𝑥) = 0where 𝑔

𝑖
(𝑥)

is
(𝑖 − 3) 𝑏

03
𝑓
𝑖−3

(𝑥) + (𝑖 − 2) 𝑏
02
𝑓
𝑖−2

(𝑥) + (𝑖 − 2) 𝑏
12
𝑥𝑓
𝑖−2

(𝑥)

+ (𝑖 − 1) 𝑏
01
𝑓
𝑖−1

(𝑥) + (𝑖 − 1) 𝑏
11
𝑥𝑓
𝑖−1

(𝑥)

+ (𝑖 − 1) 𝑏
21
𝑥
2
𝑓
𝑖−1

(𝑥)

+ 𝑖𝑏
10
𝑥𝑓
𝑖
(𝑥) + 𝑖𝑏

20
𝑥
2
𝑓
𝑖
(𝑥)

+ 𝑖𝑏
30
𝑥
3
𝑓
𝑖
(𝑥) − 𝑎

03
𝑥𝑓


𝑖−3
(𝑥) − 𝑎

02
𝑥𝑓


𝑖−2
(𝑥)

− 𝑎
12
𝑥
2
𝑓


𝑖−2
(𝑥) − 𝑎

01
𝑥𝑓


𝑖−1
(𝑥) − 𝑎

11
𝑥
2
𝑓


𝑖−1
(𝑥)

− 𝑎
10
𝑥
2
𝑓


𝑖
(𝑥) − 𝑎

20
𝑥
3
𝑓


𝑖
(𝑥) − 𝑎

30
𝑥
4
𝑓


𝑖
(𝑥) .

(57)

Now we impose that 𝑔
𝑖
(𝑥) must be of degree ≤i −1. This

implies that 𝑎
10

= 𝑎
20

= 𝑎
30

= 𝑏
10

= 𝑏
20

= 𝑏
30

= 0 and
𝑏
21

= 𝑎
21

= 𝑏
11

= 𝑎
11

= 0 and in this case the recurrence is
−𝑖𝑓
𝑖
(𝑥) + 𝑥𝑓



𝑖
(𝑥) + 𝑔

𝑖
(𝑥) = 0 where 𝑔

𝑖
(𝑥) is given by

(𝑖 − 3) 𝑏
03
𝑓
𝑖−3

(𝑥) + (𝑖 − 2) (𝑏
02

+ 𝑏
12
𝑥)𝑓
𝑖−2

(𝑥)

+ (𝑖 − 1) 𝑏
01
𝑓
𝑖−1

(𝑥) − 𝑎
03
𝑥𝑓


𝑖−3
(𝑥) − 𝑎

02
𝑥𝑓


𝑖−2
(𝑥)

− 𝑎
12
𝑥
2
𝑓


𝑖−2
(𝑥) − 𝑎

01
𝑥𝑓


𝑖−1
(𝑥) .

(58)

We obtain that its solution is given by

𝑓
𝑖
(𝑥) = 𝐶

𝑖
𝑥
𝑖
− 𝑥
𝑖
∫

𝑥

𝑠
−1−𝑖

𝑔
𝑖
(𝑠) 𝑑𝑠, (59)

and taking into account that 𝑔
𝑖
(𝑥) is of degree ≤ 𝑖 − 1, we can

establish the following result.

Proposition 17. The system

�̇� = 𝑥 (1 − 𝑎
01
𝑦 − 𝑎
12
𝑥𝑦
2
− 𝑎
03
𝑦
3
) ,

�̇� = −𝑦 (1 − 𝑏
01
𝑦 − 𝑏
02
𝑦
2
− 𝑏
12
𝑥𝑦
2
− 𝑏
03
𝑦
3
)

(60)

has an analytic first integral in a neighborhood of the origin.

In fact, Proposition 17 is a consequence of Proposition 11.
This technique can be applied to several families of polyno-
mial systems and in fact gives a new mechanism to obtain
resonant centers and also real centers for the complex systems
that have a real preimage (when this preimage exists, see e.g.,
[18]).
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de Educaćıon y Ciencia de la Junta de Andalućıa (projects
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