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This paper is concerned with the study of a class of variational inequalities with multivalued D𝐽-pseudomonotone mappings in
reflexive Banach spaces by using theD𝐽-antiresolvent technique. An application to the multivalued nonlinearD𝐽-complementarity
problem is also presented. The results coincide with the corresponding results announced by many others for the gradient state.

1. Introduction and Preliminaries

Variational inequalities give a convenient mathematical
framework for discussing a large variety of interesting prob-
lems appearing in pure and applied sciences. It is well
known that the theory of pseudomonotone mappings plays
an important part in the study of the above-mentioned
variational inequalities.

In recent years, pseudomonotone theory has become an
attractive field for many mathematicians (see [1–8]).

In a very recent paper [9], by using the 𝐷𝐽-antiresolvent
technique (where 𝐽 is the dualitymapping) devised by the first
author, the author introduced a new concept ofmonotonicity,
which is called the𝐷𝐽-pseudomonotone type.

In the present paper, the concept of multivalued 𝐷𝐽-
pseudomonotone mappings in reflexive Banach spaces is
used to study awide class of variational inequalities, called the
multivalued𝐷𝐽-pseudomonotone variational inequalities.

Moreover, the results obtained in this paper can be
applied to the multivalued nonlinear 𝐷𝐽-complementarity
problem. This problem contains, in particular, a mathemat-
ical model arising in the study of the postcritical equilibrium
state of a thin plate resting, without friction on a flat
rigid support (see [10–12]). The results coincide with the
corresponding results (see [2, 13–15]) in the case of gradient
mappings.

Unless otherwise stated, 𝑉 stands for a real reflexive
Banach spacewith norm ‖⋅‖𝑉 and𝑉

⋆ stands for the uniformly
convex dual of 𝑉 with the dual norm ‖ ⋅ ‖𝑉⋆ . The duality
pairing between 𝑉 and 𝑉

⋆ is denoted by ⟨⋅, ⋅⟩. The set of
all nonnegative integers is denoted by N. The field of real
(resp., positive real) numbers is denoted by R (resp., R+).
Notation “→ ” stands for strong convergence and “⇀” for
weak convergence.

A mapping 𝐽 : 𝑉 → 𝑉
⋆ is said to be a duality mapping

(see, e.g., [16]) with gauge function Φ (i.e., Φ is continuous
strictly increasing real-valued function satisfying Φ(0) = 0

and lim𝑡→+∞Φ(𝑡) = +∞) if for every 𝑢 ∈ 𝑉, ⟨𝐽𝑢, 𝑢⟩ =

‖𝐽𝑢‖𝑉⋆‖𝑢‖𝑉 = Φ(‖𝑢‖𝑉)(‖𝑢‖𝑉). If 𝑉 = 𝐻 is a Hilbert space,
then 𝐽 ≡ 𝐼, the identity mapping.

Assume that 𝑉⋆ has a weakly sequentially continuous
duality mapping 𝐽 (i.e., if {𝑢𝑛}𝑛∈N is a sequence in 𝑉 which
weakly convergent to a point 𝑢, then the sequence {𝐽(𝑢𝑛)}𝑛∈N
converges to 𝐽(𝑢) (see, e.g., [17])).

Let 𝑔 : 𝑉 → R ∪ {+∞} be a function. The domain of
𝑔 is dom𝑔 = {𝑢 ∈ 𝑉 : 𝑔(𝑢) < +∞}. When dom𝑔 ̸= 𝜙, 𝑔 is
called proper (see, e.g., [18]). The interior of the domain of 𝑔
is denoted by int dom𝑔. The function 𝑔 is said to be Gâteaux
differentiable at 𝑢 ∈ int dom𝑔 (see, e.g., [18]), if

𝑔
󸀠
(𝑢, 𝜂) = lim

𝑡→0

𝑔 (𝑢 + 𝑡𝜂) − 𝑔 (𝑢)

𝑡
(1)

exists for all 𝜂 ∈ 𝑉.
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Let 𝑔 be proper, convex, lower semicontinuous, and
Gâteaux differentiable at 𝑢 ∈ int dom𝑔; then the gradient of
𝑔 at 𝑢 is the function ∇𝑔(𝑢) which is defined by ⟨∇𝑔(𝑢), 𝜂⟩ =
𝑔
󸀠
(𝑢, 𝜂) for any 𝜂 ∈ 𝑉. It is known (see, e.g., [19]) that the

conjugate 𝑔⋆ : 𝑉⋆ → R ∪ {+∞} is also proper, convex, and
lower semicontinuous.

The convex function 𝑔 is said to be of Legendre type (see,
e.g., [20]) if the following conditions hold:

(𝐿1) int dom(𝑔) ̸= 𝜙, 𝑔 is Gâteaux differentiable on
int dom(𝑔) and dom∇𝑔 = int dom𝑔;

(𝐿2) int dom(𝑔
⋆
) ̸= 𝜙, 𝑔

⋆ is Gâteaux differentiable on
int dom(𝑔⋆) and dom∇𝑔

⋆
= int dom(𝑔⋆).

It is well known (see, e.g., [21]) that if𝑔 is a proper, convex,
lower semicontinuous, and Legendre type, then ∇𝑔

⋆
=

(∇𝑔)
−1 and range ∇𝑔⋆ = dom∇𝑔.
Throughout this paper, the function 𝑔 : 𝑉 → R+∪{+∞}

is proper, convex, and lower semicontinuous which is also
Legendre on int dom(𝑔).

The Bregman distance (see, e.g., [22]) is the function𝐷𝑔 :
𝑉 × int dom(𝑔) → R ∪ {+∞} defined by

𝐷𝑔 (], 𝑢) = 𝑔 (]) − 𝑔 (𝑢) − ⟨∇𝑔 (𝑢) , ] − 𝑢⟩ , (2)

with

dom𝐷𝑔 = (dom𝑔) × int dom𝑔. (3)

It should be pointed out that if 𝑉 = 𝐻 is a Hilbert space and
𝑔 = (1/2)‖ ⋅ ‖

2

𝐻
, then ∇𝑔 = 𝐼 (the identity mapping) and

𝐷𝐽(], 𝑢) = (1/2)‖] − 𝑢‖
2

𝐻
.

For a multivalued mapping 𝑇 : 𝑉 → 2
𝑉
⋆

, the associated
𝐷𝐽-antiresolvent (where 𝐽 : 𝑉 → 𝑉

⋆ is the duality mapping)
of 𝐽 − 𝑇 (see [9]) is the mapping 𝑇𝐽 : 𝑉 → 2

𝑉, defined by

𝑇
𝐽
= ∇𝑔
⋆
(𝐽 − 𝑇) . (4)

Such a mapping is known as (see [23]) a 𝐷𝑔-antiresolvent
mapping of 𝑇 when 𝐽 = ∇𝑔 (in this case, the mapping 𝑇𝐽
is denoted by 𝑇𝑔).

In light of the above-mentioned discussion, we note that
if 𝐽 − 𝑇 = ∇𝑔, then 𝑇𝐽 is the identity mapping 𝐼.

Following [9], the mapping 𝐽 − 𝑇 : 𝑉 → 2
𝑉
⋆

is said to be
𝐷𝐽-pseudomonotone, if for every 𝑢, 𝜂 ∈ dom 𝐽 ∩ dom𝑇, ] ∈
(𝐽 − 𝑇)(𝑢), 𝜔 ∈ (𝐽 − 𝑇)(𝜂), and every sequence {𝑢𝑛}𝑛∈N ⊂

dom 𝐽 ∩ dom𝑇 and ]𝑛 ∈ (𝐽 − 𝑇)(𝑢𝑛) the conditions

∇𝑔
⋆
(]𝑛) ⇀ ∇𝑔

⋆
(]) ,

lim sup
𝑛→∞

⟨]𝑛, ∇𝑔
⋆
(]𝑛) − ∇𝑔

⋆
(])⟩ ≤ 0

(5)

imply that

lim inf
𝑛→∞

⟨]𝑛, ∇𝑔
⋆
(]𝑛) − ∇𝑔

⋆
(𝜔)⟩ ≥ ⟨𝜔, ∇𝑔

⋆
(]) − ∇𝑔

⋆
(𝜔)⟩ .

(6)

As remarked in [9], the 𝐷𝐽-pseudomonotonicity of the
mapping 𝐽−𝑇 coincides with the pseudomonotonicity (or the

𝐷𝑔-pseudomonotonicity in the sense of Bregman distance
𝐷𝑔) of the mapping ∇𝑔, if 𝐽 − 𝑇 = ∇𝑔.

Themultivalued variational inequality defined by the𝐷𝐽-
mapping (or multivalued 𝐷𝐽-variational inequality) 𝐽 − 𝑇 :

𝑉 → 2
𝑉
⋆

and the set 𝐾 ⊂ 𝑉 is to find 𝑢 ∈ 𝐾 such that

∃] ∈ (𝐽 − 𝑇) (𝑢) , 𝜔

∈ (𝐽 − 𝑇) (𝜂) :

⟨] − 𝑓, ∇𝑔
⋆
(𝜔) − ∇𝑔

⋆
(])⟩ ≥ 0, ∀𝜂 ∈ 𝐾,

(7)

where 𝑓 ∈ 2
𝑉
⋆

.
The multivalued nonlinear complementarity problem

defined by the 𝐷𝐽-mapping (or multivalued nonlinear 𝐷𝐽-
complementarity problem) 𝐽 − 𝑇 : 𝑉 → 2

𝑉
⋆

and the set
𝐾 is to find 𝑢 ∈ 𝐾 such that

⟨] − 𝑓, ∇𝑔
⋆
(])⟩ = 0,

⟨] − 𝑓, ∇𝑔
⋆
(𝜔) − ∇𝑔

⋆
(])⟩ ≥ 0, ∀𝜂 ∈ 𝐾,

(8)

where 𝑓 ∈ 2
𝑉
⋆

, ] ∈ (𝐽 − 𝑇)(𝑢), and 𝜔 ∈ (𝐽 − 𝑇)(𝜂).
The multivalued 𝐷𝐽-variational inequality and multival-

ued nonlinear𝐷𝐽-complementarity problem are very general
in the sense that they include, as special cases, multivalued
variational inequality and multivalued nonlinear comple-
mentarity problem.

The following definition and results will be used in the
sequel.

Definition 1 (see, e.g., [15, p. 84]). The mapping 𝐴 : 𝑉 →

2
𝑉
⋆

is continuous on finite dimensional subspaces if for any
finite dimensional subspace 𝑉0 ⊂ 𝑉, the restriction of 𝐴 to
𝑉0 ∩ dom(𝐴) is weakly continuous.

Corollary 2 (see [24]). Let 𝑗 : 𝑉0 ⊂ 𝑉 → 𝑉 be the injection
mapping. Let 𝑗⋆ : 𝑉⋆ → 𝑉

⋆

0
be its dual mapping.Then, 𝑗⋆𝐴𝑗 :

dom(𝐴) ∩ 𝑗𝑉0 → 2
𝑉
⋆

0 is continuous.

Corollary 3 (see [25]). Let 𝐾 be a nonempty compact convex
set of R𝑛 and let 𝑆 : 𝐾 → 2

𝐾 be continuous. Then 𝑆 admits a
fixed point.

2. Main Results

Theorem 4. Let 𝐾 be a closed convex set in 𝐻 and let 𝑇 :

𝐾 → 2
𝐻 be a multivalued mapping. Then the following are

equivalent:

(1) ∇𝑔
⋆
(]
󸀠
) ∈ 𝑃𝑟𝐾 (𝑥)

= arg min {𝐷𝐼 (∇𝑔
⋆
(𝜔
󸀠
) , 𝑥)

=
1

2

󵄩󵄩󵄩󵄩󵄩
∇𝑔
⋆
(𝜔
󸀠
) − 𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝐻
: ∇𝑔
⋆
(𝜔
󸀠
)

∈ 𝐾, 𝜔
󸀠
∈ (𝐼 − 𝑇) (𝜂) , 𝜂 ∈ 𝐾} ,

(9)
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the multivalued projection for 𝐾;

(2) ∇𝑔
⋆
(]
󸀠
) ∈ 𝐾 : ⟨∇𝑔

⋆
(]
󸀠
) − 𝑥, ∇𝑔

⋆
(𝜔
󸀠
)

−∇𝑔
⋆
(]
󸀠
)⟩ ≥ 0

∀∇𝑔
⋆
(𝜔
󸀠
) ∈ 𝐾,

where 𝜔󸀠 ∈ (𝐼 − 𝑇) (𝜂) ,

]
󸀠
∈ (𝐼 − 𝑇) (𝑦) , 𝑦, 𝜂 ∈ 𝐾.

(10)

Proof. Assume that (1) holds. Let 𝑥 ∈ 2
𝐻 and ∇𝑔

⋆
(]󸀠) ∈

𝑃𝑟𝐾(𝑥) ⊂ 𝐾. For every ∇𝑔
⋆
(𝜔
󸀠
) ∈ 𝐾 and 𝑡 ∈ (0, 1], we have

𝐷𝐼 (𝑥, ∇𝑔
⋆
(]
󸀠
))

≤ 𝐷𝐼 (𝑥, (1 − 𝑡) ∇𝑔
⋆
(]
󸀠
) + 𝑡∇𝑔

⋆
(𝜔
󸀠
))

= 𝐷𝐼 (𝑥, ∇𝑔
⋆
(]
󸀠
))

− 𝑡 ⟨𝑥 − ∇𝑔
⋆
(]
󸀠
) , ∇𝑔
⋆
(𝜔
󸀠
) − ∇𝑔

⋆
(]
󸀠
)⟩

+ 𝑡
2
𝐷𝐼 (∇𝑔

⋆
(𝜔
󸀠
) , ∇𝑔
⋆
(]
󸀠
)) .

(11)

This implies

⟨𝑥 − ∇𝑔
⋆
(]
󸀠
) , ∇𝑔
⋆
(𝜔
󸀠
) − ∇𝑔

⋆
(]
󸀠
)⟩

≤ 𝑡𝐷𝐼 (∇𝑔
⋆
(𝜔
󸀠
) , ∇𝑔
⋆
(]
󸀠
)) .

(12)

Hence, 𝑡 → 0
+ implies (2).

On the other hand, assume that (2) holds. For every
∇𝑔
⋆
(𝜔
󸀠
) ∈ 𝐾, we have

𝐷𝐼 (∇𝑔
⋆
(𝜔
󸀠
) , 𝑥)

= 𝐷𝐼 (∇𝑔
⋆
(𝜔
󸀠
) , ∇𝑔
⋆
(]
󸀠
))

+ ⟨∇𝑔
⋆
(𝜔
󸀠
) − 𝑥, ∇𝑔

⋆
(𝜔
󸀠
) − ∇𝑔

⋆
(]
󸀠
)⟩

+ 𝐷𝐼 (∇𝑔
⋆
(]
󸀠
) , 𝑥) ≥ 𝐷𝐼 (∇𝑔

⋆
(]
󸀠
) , 𝑥) .

(13)

This implies (1).

Remark 5. In the particular situation when 𝐼 − 𝑇 = ∇𝑔

Theorem 4 coincides (in gradient setting) with Theorem 2.3
in [15] and also with Proposition 2.1 (1) and (2) in [2].

Theorem6. In addition to conditions on𝑉, 𝑉⋆, 𝑔⋆, and 𝐽, one
assumes that 𝑉 is separable, 𝐾 ⊂ 𝑉 is nonempty closed and
convex, 𝑇 : 𝐾 → 2

𝑉
⋆

, ∇𝑔
⋆ are weakly continuous mappings,

and either 𝑇 or ∇𝑔⋆ is continuous. Moreover, assume that the
mapping 𝐽 − 𝑇 : 𝐾 → 2

𝑉
⋆

is a bounded 𝐷𝐽-pseudomonotone
mapping and that, for each 𝜂 ∈ 𝐾, there exist 𝜂0 ∈ 𝐾, 𝜔0 ∈

(𝐽 − 𝑇)(𝜂0), 𝜔 ∈ (𝐽 − 𝑇)(𝜂), and 𝑟 > 0 such that

⟨𝜔, ∇𝑔
⋆
(𝜔) − ∇𝑔

⋆
(𝜔0)⟩ > ⟨𝑓, ∇𝑔

⋆
(𝜔) − ∇𝑔

⋆
(𝜔0)⟩ ,

𝑓 ∈ 2
𝑉
⋆

,
󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜔)

󵄩󵄩󵄩󵄩𝑉 ≥ 𝑟.

(14)

Then there exists a solution to the multivalued 𝐷𝐽-variational
inequality (7).

Proof. Suppose that {𝑥1, 𝑥2, 𝑥3, . . .} is an infinite dense set in
𝐾 and 𝑉𝑚, 𝑚 ∈ N, is the linear span of {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑚}.

Let 𝐾𝑚 = con{𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑚} = {∑
𝑚

𝑖=1
𝜆𝑖𝑥𝑖, 𝜆𝑖 ≥

0,∑
𝑚

𝑖=1
𝜆𝑖 = 1}. Let 𝑗𝑚 : 𝑉𝑚 → 𝑉 be the injection mapping

and let 𝑗⋆
𝑚
: 𝑉
⋆
→ 𝑉
⋆

𝑚
be its restriction dual. Observe that

∪𝐾𝑚 is dense in 𝐾, for𝑚 ∈ N.
Now, fix an integer 𝑚 ≥ 1 and consider the finite

dimensional problem.
Find 𝑢𝑚 ∈ 𝐾𝑚 such that for each 𝜂 ∈ 𝐾𝑚, there exist

𝑠𝑚 ∈ 𝑗
⋆

𝑚
(𝐽 − 𝑇)𝑗𝑚(𝑢𝑚), ]𝑚 ∈ (𝐽 − 𝑇)(𝑢𝑚), and 𝜔 ∈ (𝐽 − 𝑇)(𝜂)

such that

⟨𝑠𝑚 − 𝑗
⋆

𝑚
𝑓, ∇𝑔
⋆
(𝜔) − ∇𝑔

⋆
(]𝑚)⟩ ≥ 0. (15)

The equivalent form of problem (15) is to find 𝑢𝑚 ∈ 𝐾𝑚 such
that for each 𝜂 ∈ 𝐾𝑚, there exist 𝑠𝑚 ∈ 𝑗

⋆

𝑚
(𝐽 − 𝑇)𝑗𝑚(𝑢𝑚), ]𝑚 ∈

(𝐽 − 𝑇)(𝑢𝑚), and 𝜔 ∈ (𝐽 − 𝑇)(𝜂) such that

⟨∇𝑔
⋆
(]𝑚) , ∇𝑔

⋆
(𝜔) − ∇𝑔

⋆
(]𝑚)⟩

≥ ⟨∇𝑔
⋆
(]𝑚) + 𝑗

⋆

𝑚
𝑓 − 𝑠𝑚, ∇𝑔

⋆
(𝜔) − ∇𝑔

⋆
(]𝑚)⟩ .

(16)

Using the identification of 𝑉𝑚 with R𝑚 and 𝑉⋆
𝑚
and Theo-

rem 4 (withR𝑚 = 𝐻 and 𝐽 = 𝐼), we see that (16) is equivalent
to ∇𝑔⋆(]𝑚) ∈ 𝑃𝑟𝐾

𝑚

(∇𝑔
⋆
(]𝑚) + 𝑗

⋆

𝑚
𝑓 − 𝑠𝑚).

Let 𝐵𝑟(0) be any closed ball containing 𝐾𝑚. It is well
known (see, e.g., [26, p. 54, 224]) that 𝐵𝑟(0) is compact and
convex in𝐾𝑚; thus it is weakly closed.

From Corollary 2, 𝑗⋆(𝐽 − 𝑇)𝑗 : 𝐵𝑟(0) → 2
𝐵
𝑟
(0) is

continuous; hence the function ∇𝑔⋆(]) 󳨃→ 𝑃𝑟
𝐵
𝑟
(0)
(∇𝑔
⋆
(]) +

𝑗
⋆

𝑚
𝑓 − 𝑠𝑚) is continuous from 𝐵𝑟(0) into 2

𝐵
𝑟
(0).

Hence, by Corollary 3, this equation admits a solution. If
the closed convex set 𝐾 is assumed to be bounded, then by
the reflexivity of 𝑉 it is weakly compact (by employing the
Banach -Alaoglu theorem (see, e.g., [16, p. 3]).

Then we have a subsequence denoted by {𝑢𝑚}𝑚∈N such
that 𝑢𝑚 ⇀ 𝑢 ∈ 𝐾. Since 𝐽 − 𝑇 is bounded, we have ‖]𝑚‖𝑉⋆ ≤
𝑀 for all 𝑚 ∈ N. Since 𝐽 − 𝑇 is weakly continuous and since
either 𝐽 − 𝑇 or ∇𝑔⋆ is continuous by hypothesis, it follows
that 𝑇𝐽 is weakly continuous by [27, Lemma 1]. So, we have
∇𝑔
⋆
(]𝑚) ⇀ ∇𝑔

⋆
(]).

Now, we prove that

lim sup
𝑚→∞

⟨]𝑚, ∇𝑔
⋆
(]𝑚) − ∇𝑔

⋆
(])⟩ ≤ 0. (17)

For any 𝜖 > 0, choose𝑁 so large and �̃� ∈ 𝐾𝑁 such that

󵄩󵄩󵄩󵄩∇𝑔
⋆
(]) − ∇𝑔

⋆
(]̃)
󵄩󵄩󵄩󵄩𝑉 < 𝜖 for ]̃ ∈ (𝐽 − 𝑇) (�̃�) . (18)

Therefore, we have

⟨]𝑚 − 𝑓, ∇𝑔
⋆
(]𝑚) − ∇𝑔

⋆
(]̃)⟩ ≤ 0 for 𝑚 ≥ 𝑁. (19)
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Since𝐾𝑁 ⊂ 𝐾𝑚, we have

lim sup
𝑚→∞

⟨]𝑚, ∇𝑔
⋆
(]𝑚) − ∇𝑔

⋆
(])⟩

= lim sup
𝑚→∞

[⟨]𝑚, ∇𝑔
⋆
(]𝑚) − ∇𝑔

⋆
(]̃)⟩

+ ⟨]𝑚, ∇𝑔
⋆
(]̃) − ∇𝑔

⋆
(])⟩]

≤ (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉⋆ +𝑀) 𝜖.

(20)

Since 𝜖 is arbitrary, this shows the desired inequality.
By the𝐷𝐽-pseudomonotonicity of 𝐽 − 𝑇, it follows that

lim inf
𝑚→∞

⟨]𝑚, ∇𝑔
⋆
(]𝑚) − ∇𝑔

⋆
(𝜔)⟩ ≥ ⟨], ∇𝑔

⋆
(]) − 𝑔

⋆
(𝜔)⟩

(21)

for all 𝜂 ∈ dom 𝐽 ∩ dom𝑇 and 𝜔 ∈ (𝐽 − 𝑇)(𝜂).
If 𝜂 ∈ 𝐾𝑛, 𝑚 ≥ 𝑛, we have

⟨]𝑚, ∇𝑔
⋆
(]𝑚) − ∇𝑔

⋆
(𝜔)⟩ ≤ ⟨𝑓, ∇𝑔

⋆
(]𝑚) − ∇𝑔

⋆
(𝜔)⟩ .

(22)

Hence

⟨], ∇𝑔
⋆
(]) − ∇𝑔

⋆
(𝜔)⟩ ≤ ⟨𝑓, ∇𝑔

⋆
(]) − ∇𝑔

⋆
(𝜔)⟩ (23)

for every 𝜂 in𝐾𝑛, 𝑛 ∈ N, 𝜔 ∈ (𝐽 − 𝑇)(𝜂).
Since ∪𝑛𝐾𝑛 is dense in 𝐾𝑛, so we have that 𝑢 is a solution

to (7).
Now, to complete the proof, we consider the case when𝐾

is unbounded.
In this case we consider the set 𝐾𝜌 = {𝜂 ∈ 𝐾 :

‖∇𝑔
⋆
(𝜔)‖𝑉 ≤ 𝜌}, where 𝜌 = max{‖∇𝑔⋆(𝜔0)‖𝑉, 𝑟}.

Since𝐾𝜌 is bounded, there exists at least one 𝑢𝜌 ∈ 𝐾𝜌:

⟨]𝜌 − 𝑓, ∇𝑔
⋆
(𝜔) − ∇𝑔

⋆
(]𝜌)⟩ ≥ 0 (24)

for ]𝜌 ∈ (𝐽 − 𝑇)(𝑢𝜌) and 𝜂 ∈ 𝐾𝜌.
Since 𝜂0 ∈ 𝐾𝜌, we have

⟨]𝜌 − 𝑓, ∇𝑔
⋆
(]𝜌) − ∇𝑔

⋆
(𝜔0)⟩ ≤ 0 for 𝜔0 ∈ (𝐽 − 𝑇) (𝜂0) .

(25)

This, together with (14), implies that ‖∇𝑔⋆(]𝜌)‖𝑉 < 𝜌.
To clarify that 𝑢𝜌 is also a solution to original problem on

𝐾, for any 𝜂 ∈ 𝐾, set ∇𝑔⋆(𝜔𝑡) = (1 − 𝑡)∇𝑔
⋆
(]𝜌) + 𝑡∇𝑔

⋆
(𝜔) for

𝑡 > 0 is sufficiently small, where 𝜔𝑡 ∈ (𝐽 − 𝑇)(𝜂𝑡) and 𝜂𝑡 ∈ 𝐾𝜌.
Consequently

𝑢𝜌 ∈ 𝐾𝜌 ⊂ 𝐾 : 0 ≤ ⟨]𝜌 − 𝑓, ∇𝑔
⋆
(𝜔𝑡) − ∇𝑔

⋆
(]𝜌)⟩

= 𝑡 ⟨]𝜌 − 𝑓, ∇𝑔
⋆
(𝜔) − ∇𝑔

⋆
(]𝜌)⟩

for 𝜂 ∈ 𝐾.

(26)

This completes the proof.

Remark 7. In the particular situation when 𝐽 − 𝑇 = ∇𝑔,
Theorem 6 coincides with the Brezis Theorem (see, e.g., [13,
14]) for the case of gradient mapping.

We are now in a position to state and prove the following
theorem.

Theorem 8. Let all assumptions of Theorem 6 hold, except for
condition (14) let it be replaced by the 𝐷𝐽-coercive condition:
for 𝜔 ∈ (𝐽 − 𝑇)(𝜂),

lim
‖∇𝑔⋆(𝜔)‖

𝑉
→∞

[
⟨𝜔, ∇𝑔

⋆
(𝜔) − ∇𝑔

⋆
(𝜔0)⟩

󵄩󵄩󵄩󵄩∇𝑔
⋆ (𝜔)

󵄩󵄩󵄩󵄩𝑉

] = +∞,

𝜔0 ∈ (𝐽 − 𝑇) (𝜂0) , 𝜂, 𝜂0 ∈ 𝐾.

(27)

Suppose further that 𝐾 has the following property (W):
𝛼∇𝑔
⋆
(𝜔) ∈ 𝐾 for all ∇𝑔⋆(𝜔) ∈ 𝐾 and 𝛼 ≥ 0.

Then for every 𝑓 ∈ 2
𝑉
⋆

there exist 𝑢 ∈ 𝐾, ] ∈ (𝐽 − 𝑇)(𝑢)

such that

⟨] − 𝑓, ∇𝑔
⋆
(])⟩ = 0, ⟨] − 𝑓, ∇𝑔

⋆
(𝜔) − ∇𝑔

⋆
(])⟩ ≥ 0

(28)

for all 𝜂 ∈ 𝐾, 𝜔 ∈ (𝐽 − 𝑇)(𝜂).

Proof. Let 𝑓 ∈ 2
𝑉
⋆

satisfy ‖𝑓‖𝑉⋆ < 𝑀 and

󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜔0)

󵄩󵄩󵄩󵄩𝑉 <
2𝑀 −

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉⋆

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉⋆

𝜌. (29)

The𝐷𝐽-coercivity of 𝐽−𝑇 implies that there exists 𝜌 > 0 such
that

⟨𝜔, ∇𝑔
⋆
(𝜔) − ∇𝑔

⋆
(𝜔0)⟩ ≥ 2𝑀

󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜔)

󵄩󵄩󵄩󵄩𝑉 (30)

for 𝜔 ∈ (𝐽 − 𝑇)(𝜂), 𝜂 ∈ 𝐾 with ‖∇𝑔⋆(𝜔)‖𝑉 ≥ 𝜌.
So we conclude

⟨𝜔 − 𝑓, ∇𝑔
⋆
(𝜔) − ∇𝑔

⋆
(𝜔0)⟩

≥2𝑀
󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜔)

󵄩󵄩󵄩󵄩𝑉−
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉⋆

󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜔)

󵄩󵄩󵄩󵄩𝑉−
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉⋆

󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜔0)

󵄩󵄩󵄩󵄩𝑉

≥ (2𝑀 −
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉⋆) 𝜌 −

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑉⋆

󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜔0)

󵄩󵄩󵄩󵄩𝑉

> 0 for 𝜂 ∈ 𝐾, 𝜔 ∈ (𝐽 − 𝑇) (𝜂) 𝑤𝑖𝑡ℎ
󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜔)

󵄩󵄩󵄩󵄩𝑉 ≥ 𝜌.

(31)

The second part of (28) thus follows fromTheorem 6.
To prove the first part of (28), observe that we can choose

a point 𝜂 in𝐾 and𝜔 ∈ (𝐽−𝑇)(𝜂) and assume that∇𝑔⋆(𝜔) = 0.
Therefore, fromTheorem 6, we have

⟨] − 𝑓, ∇𝑔
⋆
(])⟩ ≤ 0 (32)

for all ] ∈ (𝐽 − 𝑇)(𝑢), 𝑢 ∈ 𝐾.
On the other hand, setting∇𝑔⋆(𝜔) = 𝛼∇𝑔⋆(]), where 𝛼 >

1, we get

0 ≤ ⟨] − 𝑓, ∇𝑔
⋆
(𝜔) − ∇𝑔

⋆
(])⟩ = (𝛼 − 1) ⟨] − 𝑓, ∇𝑔

⋆
(])⟩ .

(33)

This implies

⟨] − 𝑓, ∇𝑔
⋆
(])⟩ ≥ 0. (34)

So,

⟨] − 𝑓, ∇𝑔
⋆
(])⟩ = 0. (35)

This completes the proof of (28).
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The following proposition gives a characterization of the
sum of two𝐷𝐽-Pseudomonotone mappings.

Proposition 9. Let𝑉, 𝑉⋆, and 𝐽 be as above and let𝑇𝑖 : 𝑉 →

2
𝑉
⋆

, 𝑖 = 1, 2, and ∇𝑔⋆ be weakly continuous mappings. If 𝐽−
𝑇𝑖 : 𝑉 → 2

𝑉
⋆

, 𝑖 = 1, 2, are 𝐷𝐽-pseudomonotone mappings
such that dom 𝐽 ∩ dom𝑇𝑖 ̸= 𝜙, 𝑖 = 1, 2, then ∑2

𝑖=1
(𝐽 − 𝑇𝑖) is

𝐷𝐽-pseudomonotone.

Proof. Let �̃�
𝑛
∈ ∑
2

𝑖=1
(𝐽−𝑇𝑖)(𝜂𝑛), �̃� ∈ ∑

2

𝑖=1
(𝐽−𝑇𝑖)(𝜂), 𝜂𝑛, 𝜂 ∈

dom 𝐽 ∩ dom𝑇𝑖, 𝑖 = 1, 2, with ∇𝑔
⋆
(�̃�
𝑛
) ⇀ ∇𝑔

⋆
(�̃�) and

lim sup
𝑛→∞

⟨�̃�
𝑛
, ∇𝑔
⋆
(�̃�
𝑛
) − ∇𝑔

⋆
(�̃�)⟩ ≤ 0. (36)

Now, we prove for 𝑦(𝑖)
𝑛
∈ (𝐽 − 𝑇𝑖)(𝜂𝑛), 𝑦

(𝑖)
∈ (𝐽 − 𝑇𝑖)(𝜂), 𝑖 =

1, 2, that

lim sup
𝑛→∞

⟨𝑦
(1)

𝑛
, ∇𝑔
⋆
(𝑦
(1)

𝑛
) − ∇𝑔

⋆
(𝑦
(1)
)⟩ ≤ 0,

lim sup
𝑛→∞

⟨𝑦
(2)

𝑛
, ∇𝑔
⋆
(𝑦
(2)

𝑛
) − ∇𝑔

⋆
(𝑦
(2)
)⟩ ≤ 0.

(37)

If
lim sup
𝑛→∞

⟨𝑦
(2)

𝑛
, ∇𝑔
⋆
(𝑦
(2)

𝑛
) − ∇𝑔

⋆
(𝑦
(2)
)⟩ = 𝜖 > 0, (38)

(note that otherwise, by symmetry), then there exists a
subsequence {𝑦(2)

𝑛
𝑘

}𝑘∈N ⊂ {𝑦
(2)

𝑛
}𝑛∈N such that

lim sup
𝑘→∞

⟨𝑦
(2)

𝑛
𝑘

, ∇𝑔
⋆
(𝑦
(2)

𝑛
𝑘

) − ∇𝑔
⋆
(𝑦
(2)
)⟩ = 𝜖. (39)

This implies that

lim sup
𝑘→∞

⟨𝑦
(1)

𝑛
𝑘

, ∇𝑔
⋆
(𝑦
(1)

𝑛
𝑘

) − ∇𝑔
⋆
(𝑦
(1)
)⟩

= lim sup
𝑘→∞

[ ⟨�̃�
𝑛
𝑘

, ∇𝑔
⋆
(�̃�
𝑛
𝑘

) − ∇𝑔
⋆
(�̃�)⟩

− ⟨𝑦
(2)

𝑛
𝑘

, ∇𝑔
⋆
(𝑦
(2)

𝑛
𝑘

) − ∇𝑔
⋆
(𝑦
(2)
)⟩]

≤ 0 − 𝜖.

(40)

From the𝐷𝐽-pseudomonotonicity of 𝐽−𝑇1, we get for all 𝑦
󸀠
∈

(𝐽 − 𝑇1)(𝜂
󸀠
), 𝜂
󸀠
∈ dom 𝐽 ∩ dom𝑇1

⟨𝑦
(1)
, ∇𝑔
⋆
(𝑦
(1)
) − ∇𝑔

⋆
(𝑦
󸀠
)⟩

≤ lim inf
𝑘→∞

⟨𝑦
(1)

𝑛
𝑘

, ∇𝑔
⋆
(𝑦
(1)

𝑛
𝑘

) − ∇𝑔
⋆
(𝑦
󸀠
)⟩ .

(41)

Letting 𝑦󸀠 = 𝑦(1), we obtain

0 ≤ lim inf
𝑘→∞

⟨𝑦
(1)

𝑛
𝑘

, ∇𝑔
⋆
(𝑦
(1)

𝑛
𝑘

) − ∇𝑔
⋆
(𝑦
(1)
)⟩ ≤ 0 − 𝜖, (42)

a contradiction.
Hence,

lim sup
𝑘→∞

⟨𝑦
(1)

𝑛
𝑘

, ∇𝑔
⋆
(𝑦
(1)

𝑛
𝑘

) − ∇𝑔
⋆
(𝑦
(1)
)⟩ ≤ 0,

lim sup
𝑘→∞

⟨𝑦
(2)

𝑛
𝑘

, ∇𝑔
⋆
(𝑦
(2)

𝑛
𝑘

) − ∇𝑔
⋆
(𝑦
(2)
)⟩ ≤ 0.

(43)

This holds for any subsequence, so (37) holds and the proof
follows immediately by the superadditivity of the lim inf.

3. Application to Multivalued Nonlinear 𝐷𝐽-
Complementarity Problem

As applications of Theorem 8 we consider the multivalued
nonlinear 𝐷𝐽-complementarity problem (8) with 𝑇 = 𝜆𝑇1 +

𝑇2 − 𝜆𝐽, where 𝑇𝑖, 𝑖 = 1, 2 are two nonlinear multivalued
mappings from𝐾 to 2𝑉

⋆

, and 𝜆 ∈ (0,∞).

Theorem 10. Let 𝑉, 𝑉⋆, 𝑔⋆, 𝐽, and 𝐾 be the same as in
Theorem 6, and suppose that 𝐾 has the property (W). Let the
mappings ∇𝑔⋆ and 𝑇𝑖, 𝑖 = 1, 2 be weakly continuous and let
either ∇𝑔⋆ or both 𝑇𝑖, 𝑖 = 1, 2 be continuous. Let 𝐽 − 𝑇𝑖 : 𝐾 →

2
𝑉
⋆

, 𝑖 = 1, 2 be two bounded 𝐷𝐽-pseudomonotone mappings.

Let

1

𝜌1
= inf

𝑛∈𝐾

‖∇𝑔
⋆

(𝜆𝑤1+𝑤2)‖
𝑉

̸= 0

(⟨𝑤1, ∇𝑔
⋆
(𝜆𝑤1 + 𝑤2)

−∇𝑔
⋆
(𝜆𝑤
(1)

0
+ 𝑤
(2)

0
)⟩

×(
󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜆𝑤1 + 𝑤2)

󵄩󵄩󵄩󵄩
2

𝑉
)
−1

) ,

𝑎 = lim inf
𝑛∈𝐾

‖∇𝑔
⋆

(𝜆𝑤1+𝑤2)‖
𝑉

→∞

(⟨𝑤2, ∇𝑔
⋆
(𝜆𝑤1 + 𝑤2)

−∇𝑔
⋆
(𝜆𝑤
(1)

0
+ 𝑤
(2)

0
)⟩

×(
󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜆𝑤1 + 𝑤2)

󵄩󵄩󵄩󵄩
2

𝑉
)
−1

) ,

𝑏 = lim inf
𝑡→∞

Φ (𝑡)

𝑡

(44)

Be such that 𝑎 < 𝑏, where 𝑤𝑖 ∈ (𝐽 − 𝑇𝑖)(𝜂), 𝑤
(𝑖)

0
∈ (𝐽 −

𝑇𝑖)(𝜂0), 𝑖 = 1, 2, 𝜂, 𝜂0 ∈ 𝐾, 𝜌1 > 0 and Φ is the gauge
function. Then for every 𝜆 > 𝜌1(𝑏 − 𝑎) problem (8) with
𝑇 = 𝜆𝑇1 + 𝑇2 − 𝜆𝐽 has a solution in𝐾.

Proof. By Proposition 9, 𝐽 − 𝑇 = 𝜆(𝐽 − 𝑇1) + (𝐽 − 𝑇2) is 𝐷𝐽-
pseudomonotone for every 𝜆 ≥ 0. Set 𝜆 > 𝜌(𝑏 − 𝑎). Then

lim inf
𝜂∈𝐾

‖∇𝑔
⋆

(𝜆𝑤
1
+𝑤
2
)‖
𝑉
→∞

( ⟨𝜆𝑤1 + 𝑤2, ∇𝑔
⋆
(𝜆𝑤1 + 𝑤2)

−∇𝑔
⋆
(𝜆𝑤
(1)

0
+ 𝑤
(2)

0
)⟩

×(
󵄩󵄩󵄩󵄩∇𝑔
⋆
(𝜆𝑤1 + 𝑤2)

󵄩󵄩󵄩󵄩
2

𝑉
)
−1

)

≥
𝜆

𝜌1
+ 𝑎 > 𝑏 > 0.

(45)

This implies that the mapping 𝐽 − 𝑇 = 𝜆(𝐽 − 𝑇1) + (𝐽 − 𝑇2) is
𝐷𝐽-coercive.

The conclusion follows fromTheorem 8.
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