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We investigate the spatiotemporal dynamics induced byAllee effect in a reaction-diffusion predator-preymodel. In the case without
Allee effect, there is nonexistence of diffusion-driven instability for the model. And in the case with Allee effect, the positive equili-
briummay be unstable under certain conditions.This instability is induced by Allee effect and diffusion together. Furthermore, via
numerical simulations, the model dynamics exhibits both Allee effect and diffusion controlled pattern formation growth to holes,
stripes-holes mixture, stripes, stripes-spots mixture, and spots replication, which shows that the dynamics of the model with Allee
effect is not simple, but rich and complex.

1. Introduction

In 1952, Turing published one paper [1] on the subject called
“pattern formation”—one of the central issues in ecology
[2], putting forth the Turing hypothesis of diffusion-driven
instability. Pattern formation in mathematics refers to the
process that, by changing a bifurcation parameter, the spa-
tially homogeneous steady states lose stability to spatially
inhomogeneous perturbations, and stable inhomogeneous
solutions arise [3]. Turing’s revolutionary idea was that
passive diffusion could interact with the chemical reaction in
such away that even if the reaction by itself has no symmetry-
breaking capabilities, diffusion can destabilize the symmetry,
so that the system with diffusion can have them [4]. From
then on, pattern formation has become a very active area
of research, motivated in part by the realization that there
are many common aspects of patterns formed by diverse
physical, chemical, and biological systems and by cellular
automata and reaction-diffusion equations [5–7]. And the
appearance and evolution of these patterns have been a focus
of recent research activity across several disciplines [8–15].

Segel and Jackson [16] were the first to call attention to
the Turing’s ideas that would be also applicable in population

dynamics. At the same time, Gierer and Meinhardt [17] gave
a biologically justified formulation of a Turing model and
studied its properties by employing numerical simulation.
Levin and Segel [18, 19] suggested this scenario of spatial
pattern formation as a possible origin of planktonic patchi-
ness.

The understanding of patterns andmechanisms of spatial
dispersal of interacting species is an issue of significant cur-
rent interest in conservation biology, ecology, and biochem-
ical reactions [20–22]. The spatial component of ecological
interaction has been identified as an important factor in how
ecological communities are shaped. Empirical evidence sug-
gests that the spatial scale and structure of environment can
influence population interactions [23]. A significant amount
of work has been done by using this idea in the field of
mathematical biology byMurray [20], Okubo and Levin [21],
Cantrell and Cosner [23], and others [3, 24–27].

In general, assume that the species prey and predator
move randomly on spatial domain, and the spatial movement
of the individuals ismodeled by diffusionwith diffusion coef-
ficients 𝑑

1
> 0, 𝑑

2
> 0 for the prey 𝑢 and predator

V, respectively. As an example, a prototypical predator-prey
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interaction model with logistic growth rate of the prey in the
absence of predation is of the following form [28, 29]:

d𝑢
d𝑡
= 𝑢 (𝛼 − 𝛽𝑢) − 𝑓 (𝑢) 𝑔 (V) + 𝑑

1
Δ𝑢,

dV
d𝑡
= 𝜎𝑓 (𝑢) 𝑔 (V) − 𝑧 (V) + 𝑑

2
ΔV,

(1)

where 𝑢(𝑡) and V(𝑡) are the densities of the prey and predator
at time 𝑡 > 0, respectively. And Δ = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2 is the
Laplacian operator in two-dimensional space.

In recent years, many studies, for example, [30–40] and
the references therein, show that the reaction-diffusion pre-
dator-prey model (e.g., model (1)) is an appropriate tool for
investigating the fundamental mechanism of complex spa-
tiotemporal predation dynamics. Of them, Alonso et al.
[30] studied how diffusion affects the stability of predator-
prey coexistence equilibria and show a new difference bet-
ween ratio- and prey-dependent models; that is, the prey-
dependent models cannot give rise to spatial structures
through diffusion-driven instabilities; however, predator-
dependent models with the same degree of complexity can.
Baurmann et al. [31] investigated the emergence of spatiotem-
poral patterns in a generalized predator-prey system, derived
the conditions for Hopf and Turing instabilities without
specifying the predator-prey functional responses discussed
their biological implications, identified the codimension-
2 Turing-Hopf bifurcation and the codimension-3 Turing-
Takens-Bogdanov bifurcation, and found that these bifurca-
tions give rise to complex pattern formation processes in their
neighborhood. And Banerjee and Petrovskii [36] studied
possible scenarios of pattern formation in a ratio-dependent
predator-prey system and found that the emerging patterns
are stationary in the large time limit and exhibit only an
insignificant spatial irregularity, and spatiotemporal chaos
can indeed be observed but only for parameters well inside
the Turing-Hopf parameter domain, away from the bifurca-
tion point. Rodrigues et al. [40] paid their attentions to system
properties in a vicinity of the Turing-Hopf bifurcation of
the predator-prey and found that the asymptotical stationary
pattern arises as a sudden transition between two different
patterns.

On the other hand, in the research of population dynam-
ics, Allee effect in the population growth has been studied
extensively. Allee effect, named after ecologist Allee [41], is
a phenomenon in biology characterized by a positive corre-
lation between population size or density and the mean indi-
vidual fitness (often times measured as per capita population
growth rate) of a population or species [42] and may occur
under several mechanisms, such as difficulties in finding
mates when population density is low, social dysfunction
at small population sizes, and increased predation risk due
to failing flocking or schooling behavior [43–45]. In an
ecological point of view, Allee effect has been modeled into
strong and weak cases. The strong Allee effect introduces a
population threshold, and the population must surpass this
threshold to grow. In contrast, a population with a weak Allee
effect does not have a threshold. It has been attracting much
more attention recently owing to its strong potential impact

on the population dynamics of many plants and animal
species [46]. Detailed investigations relating to Allee effect
may be found in [47–59].

In most predation models, it has been considered that
Allee effect influences only the prey population. For instance,
in model (1), corresponding to the function of prey growth
rate of the prey 𝑢(𝛼 − 𝛽𝑢), to express Allee effect, the most
usual continuous growth of the equation that is given as:

𝐺 (𝑢) = 𝑢 (𝛼 − 𝛽𝑢 −
𝑞

𝑢 + 𝑏
) , (2)

is called additive Allee effect, which was first deduced in [43]
and applied in [60–62]. Here, 𝑞𝑢/(𝑢+𝑏) is the termof additive
Allee effect and 𝑏 ∈ (0, 1) and 𝑞 ∈ (0, 1) are Allee-effect
constants. If 𝑞 < 𝑏𝛼, then 𝐺(0) = 0, 𝐺(0) > 0, and 𝐺(𝑢) is
called weak Allee effect; if 𝑞 > 𝑏𝛼, then 𝐺(0) = 0, 𝐺(0) < 0,
and 𝐺(𝑢) is strong Allee effect.

Corresponding tomodel (1), a prototypical predator-prey
interaction model with Allee effect on the prey is given by

d𝑢
d𝑡
= 𝑢 (𝛼 − 𝛽𝑢 −

𝑞

𝑢 + 𝑏
) − 𝑓 (𝑢) 𝑔 (V) + 𝑑

1
Δ𝑢,

dV
d𝑡
= 𝜎𝑓 (𝑢) 𝑔 (V) − 𝑧 (V) + 𝑑

2
ΔV.

(3)

According to Turing’s idea [1], for model (1)—the special
case of model (3) without Allee effect (i.e., 𝑞 = 0)—if the
positive equilibrium point 𝐸∗ = (𝑢∗, V∗) is stable in the case
𝑑
1
= 𝑑
2
= 0 (the nonspatial model) but unstable with

respect to solutions in the cases 𝑑
1
> 0 and 𝑑

2
> 0 (the

spatial model), then 𝐸∗ is called diffusion-driven instability
(i.e., Turing instability or Turing bifurcation), and model (1)
may exhibit Turing pattern formation. In contrast, if 𝐸∗ =
(𝑢
∗
, V∗) is stable in the cases 𝑑

1
> 0 and 𝑑

2
> 0, then there

is nonexistence of diffusion-driven instability for model (1),
and the model cannot exhibit any pattern formation. And in
this situation, for model (3), with Allee effect on the prey,
there comes a question: is there any instability of the positive
equilibrium occurring? Or, is there any diffusion-driven
instability of the positive equilibrium occurring? In addition,
does model (3) exhibit any pattern formation controlled by
Allee effect?

The goal of this paper is to make an insight into the
instability induced by the Allee effect in model (3). Our main
interest is to check whether the Allee effect is a plausible
mechanism of developing spatiotemporal pattern in the
model.

The paper is organized as follows. In the next section, we
give the model and stability of the equilibria. In Section 3,
we discuss the stability/instability of the spatial model with/
without Allee effect, derive the conditions for the occurrence
of Allee-diffusion-driven instability of the case with Allee
effect, and illustrate typical Turing patterns via numerical
simulations. Finally, conclusions and remarks are presented
in Section 4.
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2. The Model System

Inmodel (1), the product𝑓(𝑢)𝑔(V) gives the rate atwhich prey
is consumed. The prey consumed per predator, 𝑓(𝑢)𝑔(V)/V,
was termed as the functional response by Solomon [63].
These functions can be defined in differentways. In this paper,
following Lotka [64], we adopt

𝑓 (𝑢) = 𝑐𝑢, (4)

which is a linear functional response without saturation,
where 𝑐 > 0 denotes the capture rate [65]. And followingHar-
rison [28, 29], we set

𝑔 (V) =
V

𝑚V + 1
, (5)

where 𝑚 > 0 represents a reduction in the predation rate at
high predator densities due tomutual interference among the
predators while searching for food.

The proportionality constant 𝜎 is the rate of prey con-
sumption. And the function 𝑧(V) is given by

𝑧 (V) = 𝛾V + 𝑙V
2
, 𝛾 > 0, 𝑙 ≥ 0, (6)

where 𝛾 denotes the natural death rate of the predator, and
𝑙 > 0 can be used tomodel predator intraspecific competition
that is not the direct competition for food, such as some type
of territoriality [28]. In this paper, we will discuss the case
𝑙 = 0, which is used in a much more traditional case.

Based on the previous discussions, we can establish the
following predation model of two partial differential equa-
tions with additive Allee effect on prey:

𝜕𝑢

𝜕𝑡
= 𝑢 (𝛼 − 𝛽𝑢 −

𝑞

𝑢 + 𝑏
) −

𝑐𝑢V

𝑚V + 1
+ 𝑑
1
Δ𝑢,

𝜕V

𝜕𝑡
= V (−𝛾 +

𝑠𝑢

𝑚V + 1
) + 𝑑
2
ΔV,

(7)

with the positive initial conditions:

𝑢 (𝑥, 𝑦, 0) > 0, V (𝑥, 𝑦, 0) > 0,

(𝑥, 𝑦) ∈ Ω = (0, 𝐿) × (0, 𝐿) ,

(8)

and the zero-flux boundary conditions:

𝜕𝑢

𝜕𝜐
=
𝜕V

𝜕𝜐
= 0, (𝑥, 𝑦) ∈ 𝜕Ω, (9)

where 𝑠 denotes conversion rate, and Ω is a bounded open
domain in R2

+
with boundary 𝜕Ω. 𝜐 is the outward unit

normal vector on 𝜕Ω, and zero-flux conditions reflect the
situationwhere the population cannotmove across the boun-
dary of the domain.

Themain purpose of this paper is to focus on the impacts
of diffusion or/andAllee effect on themodel system about the
positive equilibrium, especially for the instability and pattern
formation.

3. Stability Analysis

3.1.The Case without Allee Effect. Wefirst consider the stabil-
ity of the positive equilibria of model (7) without Allee effect;
that is, 𝑞 = 0, and the model is given by

𝜕𝑢

𝜕𝑡
= 𝑢 (𝛼 − 𝛽𝑢) −

𝑐𝑢V

𝑚V + 1
+ 𝑑
1
Δ𝑢,

𝜕V

𝜕𝑡
= V (−𝛾 +

𝑠𝑢

𝑚V + 1
) + 𝑑
2
ΔV.

(10)

Easy to know that model (10) has a unique positive equi-
librium 𝐸∗ = (𝑢∗, V∗) with 𝑠𝛼 > 𝛽𝛾, where

𝑢
∗
=
𝑚𝑠𝛼 − 𝑐𝑠 + √𝑠2(𝑚𝛼 − 𝑐)

2
+ 4𝑐𝑚𝑠𝛽𝛾

2𝑚𝑠𝛽
,

V
∗
=

s𝑢∗ − 𝛾
𝑚𝛾

,

(11)

which is locally asymptotically stable. Next, we will discuss
the effect of diffusion on 𝐸∗.

Set 𝑈
1
= 𝑢 − 𝑢

∗
, 𝑉
1
= V − V∗, and the linearized system

(10) around 𝐸∗ = (𝑢∗, V∗) is as follows:

𝜕𝑈
1

𝜕𝑡
= 𝑑
1
Δ𝑈
1
− 𝛽𝑢
∗
𝑈
1
−

𝑐𝑢
∗

(𝑚V∗ + 1)2
𝑈
2
,

𝜕𝑈
2

𝜕𝑡
= 𝑑
2
Δ𝑈
2
+

𝑠V∗

𝑚V∗ + 1
𝑈
1
−
𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
𝑈
2
,

𝜕𝑈
1

𝜕]

𝜕Ω
=
𝜕𝑈
2

𝜕]

𝜕Ω
= 0.

(12)

FollowingMalchow et al. [66], we know that any solution
of system (12) can be expanded into a Fourier series as follows:

𝑈
1
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝑢
𝑛𝑚
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝛼
𝑛𝑚
(𝑡) sin kr,

𝑈
2
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

V
𝑛𝑚
(r, 𝑡) =

∞

∑

𝑛,𝑚=0

𝛽
𝑛𝑚
(𝑡) sin kr,

(13)

where r = (𝑥, 𝑦) and 0 < 𝑥 < 𝐿, 0 < 𝑦 < 𝐿. k = (𝑘
𝑛
, 𝑘
𝑚
) and

𝑘
𝑛
= 𝑛𝜋/𝐿, 𝑘

𝑚
= 𝑚𝜋/𝐿 are the corresponding wavenumbers.

Having substituted 𝑢
𝑛𝑚

and V
𝑛𝑚

into (12), we obtain

𝑑𝛼
𝑛𝑚

𝑑𝑡
= (−𝛽𝑢

∗
− 𝑑
1
𝑘
2
) 𝛼
𝑛𝑚
+ −

𝑐𝑢
∗

(𝑚V∗ + 1)2
𝛽
𝑛𝑚
,

𝑑𝛽
𝑛𝑚

𝑑𝑡
=

𝑠V∗

𝑚V∗ + 1
𝛼
𝑛𝑚
+ (−

𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
− 𝑑
2
𝑘
2
)𝛽
𝑛𝑚
,

(14)

where 𝑘2 = 𝑘2
𝑛
+ 𝑘
2

𝑚
.

A general solution of (14) has the form 𝐶
1
exp(𝜆

1
𝑡) +

𝐶
2
exp(𝜆

2
𝑡), where the constants 𝐶

1
and 𝐶

2
are determined
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by the initial conditions (8) and the exponents 𝜆
1
, 𝜆
2
are the

eigenvalues of the following matrix:

𝐽
𝐸
∗ = (

−𝛽𝑢
∗
− 𝑑
1
𝑘
2

−
𝑐𝑢
∗

(𝑚V∗ + 1)2

𝑠V∗

𝑚V∗ + 1
−
𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
− 𝑑
2
𝑘
2

). (15)

Correspondingly, 𝜆
𝑖
(𝑖 = 1, 2) arises as the solution of fol-

lowing equation:

𝜆
2

𝑖
− tr (𝐽

𝐸
∗) 𝜆
𝑖
+ det (𝐽

𝐸
∗) = 0, (16)

where the trace and determinant of 𝐽
𝐸
∗ are, respectively,

tr (𝐽
𝐸
∗) = − (𝑑

1
+ 𝑑
2
) 𝑘
2
− 𝛽𝑢
∗
−
𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
,

det (𝐽
𝐸
∗) = 𝑑

1
𝑑
2
𝑘
4
+ (𝑑
2
𝛽𝑢
∗
+
𝑑
1
𝑚𝑠𝑢
∗V∗

(𝑚V∗ + 1)2
)𝑘
2

+
𝑏𝑚𝛽𝑢

∗2V∗

(𝑚V∗ + 1)2
+

𝑏𝑐𝑢
∗V∗

(𝑚V∗ + 1)3
.

(17)

It is easy to know that tr(𝐽
𝐸
∗) < 0 and det(𝐽

𝐸
∗) > 0.

Hence, the positive equilibrium𝐸∗ ofmodel (10) is uniformly
asymptotically stable.

Obviously, there is no effect on the stability of the positive
equilibrium whether model (10) with diffusion or not. That
is to say, there is nonexistence of diffusion-driven instability
in model (10), which is the special case of model (7) without
Allee effect.

3.2. The Case with Allee Effect

3.2.1. Allee-Diffusion-Driven Instability. In this subsection,
we restrict ourselves to the stability analysis of spatial model
(7), which is in the presence of Allee effect on prey.

For the sake of learning the effect of Allee effect on the
positive equilibrium of model (7), we first give a definition
called Allee-diffusion-driven instability as follows.

Definition 1. If a positive equilibrium is uniformly asymptot-
ically stable in the reaction-diffusion model without Allee-
effect (e.g., model (10)) but unstable with respect to solutions
of the reaction-diffusion model with Allee effect (e.g., model
(7)), then this instability is called Allee-diffusion-driven
instability.

Next, we will only investigate the stability of the positive
equilibrium of model (7). For simplicity, we take the weak
Allee effect case (0 < 𝑞 < 𝑏𝛼) as an example, and the unique
positive equilibrium is named 𝐸

𝑤
= (𝑢
𝑤
, V
𝑤
) = (𝑢

𝑤
, (𝑠𝑢
𝑤
−

𝛾)/𝑚𝛾). We first give the stability of 𝐸
𝑤
in the case without

diffusion as follows that is, 𝑑
1
= 𝑑
2
= 0 in model (7):

d𝑢
d𝑡
= 𝑢 (𝛼 − 𝛽𝑢 −

𝑞

𝑢 + 𝑏
) −

𝑐𝑢V

𝑚V + 1
≜ 𝑓 (𝑢, V) ,

dV
d𝑡
= V (−𝛾 +

𝑠𝑢

𝑚V + 1
) ≜ 𝑔 (𝑢, V) .

(18)

The Jacobianmatrix of (18) evaluated in the positive equi-
librium 𝐸

𝑤
takes the form:

𝐽
𝐸
𝑤

= (

−𝛽𝑢
𝑤
+

𝑞𝑢
𝑤

(𝑢
𝑤
+ 𝑏)
2

−
𝑐𝛾
2

𝑠2𝑢
𝑤

𝑠𝑢
𝑤
− 𝛾

𝑚𝑢
𝑤

(𝛾 − 𝑠𝑢
𝑤
) 𝛾

𝑠𝑢
𝑤

). (19)

Suppose that (𝑢
𝑤
+ 𝑏)
2
(𝑐𝛾 + 𝑚𝑠𝛽𝑢

2

𝑤
) − 𝑚𝑞𝑠𝑢

2

𝑤
> 0, and set

𝑞
[𝑢
𝑤
]
= (𝛽𝑢

𝑤
−
(𝛾 − 𝑠𝑢

𝑤
) 𝛾

𝑠𝑢
𝑤

)
(𝑢
𝑤
+ 𝑏)
2

𝑢
𝑤

. (20)

By some computational analysis, we obtain tr(𝐽
𝐸
𝑤

) < 0,
det(𝐽
𝐸
𝑤

) > 0. Hence 𝐸
𝑤
= (𝑢
𝑤
, (𝑠𝑢
𝑤
− 𝛾)/𝑚𝛾) is locally

asymptotically stable.
And the Jacobian matrix of model (7) at 𝐸

𝑤
= (𝑢
𝑤
, V
𝑤
) is

given by

�̃�
𝐸
𝑤

= (

(−𝛽 +
𝑞

(𝑢
𝑤
+ 𝑏)
2
)𝑢
𝑤
− 𝑑
1
𝑘
2

−
𝑐𝛾
2

𝑠2𝑢
𝑤

𝑠𝑢
𝑤
− 𝛾

𝑚𝑢
𝑤

−
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑠𝑢
𝑤

− 𝑑
2
𝑘
2

)

(21)

and the characteristic equation of �̃�
𝐸
𝑤

at 𝐸
𝑤
is

𝜆
2
− tr (�̃�

𝐸
𝑤

) 𝜆 + det (�̃�
𝐸
𝑤

) = 0, (22)

where

tr (�̃�
𝐸
𝑤

) = tr (𝐽
𝐸
𝑤

) − (𝑑
1
+ 𝑑
2
) 𝑘
2
,

det (�̃�
𝐸
𝑤

) = det (𝐽
𝐸
𝑤

) + 𝑑
1
𝑑
2
𝑘
4

+ (
𝑑
1
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑠𝑢
𝑤

+(𝛽 −
𝑞

(𝑢
𝑤
+ 𝑏)
2
)𝑑
2
𝑢
𝑤
)𝑘
2
.

(23)

And the instability sets in when at least tr(�̃�
𝐸
𝑤

) > 0 or
det(�̃�
𝐸
𝑤

) < 0 is violated.
Since tr(𝐽

𝐸
𝑤

) < 0,

tr (�̃�
𝐸
𝑤

) = tr (𝐽
𝐸
𝑤

) − (𝑑
1
+ 𝑑
2
) 𝑘
2
< 0 (24)

is always true. Hence, only violation of det(�̃�
𝐸
𝑤

) < 0 gives rise
to Allee-diffusion-driven instability, which leads to

𝑑
1
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑠𝑢
𝑤

+ (𝛽 −
𝑞

(𝑢
𝑤
+ 𝑏)
2
)𝑑
2
𝑢
𝑤
≜ Θ < 0, (25)

otherwise, det(�̃�
𝐸
𝑤

) > 0 for all 𝑘 if det(𝐽
𝐸
𝑤

) > 0.
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Figure 1: Typical Turing patterns of 𝑢 in model (7) with parameters 𝛼 = 1, 𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35, 𝑠 = 1.75,
𝑑
1
= 0.015, and 𝑑

2
= 1. Times: (a) 0; (b) 50; (c) 250; (d) 2500.

Notice that det(�̃�
𝐸
𝑤

) achieves its minimum

min
𝑘

det (�̃�
𝐸
𝑤

) =
4𝑑
1
𝑑
2
det (𝐽

𝐸
𝑤

) − Θ
2

4𝑑
1
𝑑
2

(26)

at the critical value 𝑘∗2 > 0 where

𝑘
∗2

= −
Θ

2𝑑
1
𝑑
2

. (27)

And Θ < 0 is equivalent to

(
𝑑
1
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑑
2
𝑠𝑢2
𝑤

+ 𝛽) (𝑢
𝑤
+ 𝑏)
2
< 𝑞 < 𝑏𝛼, (28)

where min
𝑘
det(�̃�
𝐸
𝑤

) < 0 is equivalent to 4𝑑
1
𝑑
2
det(𝐽
𝐸
𝑤

) −

Θ
2
< 0, which is equivalent to

𝑞 > (𝑢
𝑤
+ 𝑏)
2

(𝛽 +
𝑑
1
𝛾 (𝑠𝑢
𝑤
− 𝛾)

𝑑
2
𝑠𝑢2
𝑤

+

2√𝑑
1
𝑑
2
det (𝐽

𝐸
𝑤

)

𝑑
2
𝑢
𝑤

).

(29)

And from det(�̃�
𝐸
𝑤

) = 0, we can determine 𝑘
1
and 𝑘
2
as

𝑘
2

1
=

−Θ + √Θ2 − 4𝑑
1
𝑑
1
det (𝐽

𝐸
𝑤

)

2𝑑
1
𝑑
2

,

𝑘
2

2
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−Θ − √Θ2 − 4𝑑
1
𝑑
1
det (𝐽

𝐸
𝑤

)

2𝑑
1
𝑑
2

.

(30)

In conclusion, if 𝑘2
1
< 𝑘
2
< 𝑘
2

2
, then det(�̃�

𝐸
𝑤

) < 0, and the
positive equilibrium 𝐸

𝑤
of model (7) is unstable.That’s to say,
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Figure 2: Typical Turing patterns of 𝑢 in model (7) with parameters 𝛼 = 1, 𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35, 𝑠 = 2,
𝑑
1
= 0.015, and 𝑑

2
= 1. Times: (a) 0; (b) 50; (c) 250; (d) 2500.

Allee-diffusion-driven instability occurs, and model (7) may
exhibit Turing pattern formation.

3.2.2. Pattern Formation. In this subsection, in two-dimen-
sional space, we perform extensive numerical simulations of
the spatially extended model (7) in the case with weak Allee
effect and show qualitative results. All of the numerical simu-
lations employ the zero-flux boundary conditions (9) with a
system size of 200× 200. Other parameters are fixed as 𝛼 = 1,
𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35,
𝑑
1
= 0.015, and 𝑑

2
= 1.

The numerical integration of model (7) is performed by
using an explicit Euler method for the time integration [67]
with a time step size Δ𝑡 = 1/100 and the standard five-point
approximation [68] for the 2𝐷 Laplacian with the zero-flux
boundary conditions.The initial conditions are always a small
amplitude random perturbation around the positive constant

steady state solution𝐸
𝑤
. After the initial period during which

the perturbation spreads, the model goes into either a time-
dependent state or an essentially steady state solution (time-
independent state).

In the numerical simulations, different types of dynamics
can be observed, and it is found that the distributions of
predator and prey are always of the same type. Consequently,
we can restrict our analysis of pattern formation to one
distribution. We only show the distribution of prey 𝑢 as an
instance.

In Figure 1, with 𝑠 = 1.75, there is a pattern consisting of
blue hexagons (minimum density of 𝑢) in a red (maximum
density of 𝑢) background, that is, isolated zones with low
population densities. We call this pattern as “holes.”

When increasing 𝑠 to 𝑠 = 2, the model dynamics exhibits
a transition from stripes-holes growth to stripes replication;
that is, holes decay and the stripes pattern emerges (c.f.,
Figure 2).



Abstract and Applied Analysis 7

0.177

0.1765

0.176

0.1755

0.175

0.1745

0.174

0.1735

(a)

0.3

0.25

0.2

0.15

0.1

(b)

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

(c)

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

(d)

Figure 3: Typical Turing patterns of 𝑢 in model (7) with parameters 𝛼 = 1, 𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35, 𝑠 = 3.0,
𝑑
1
= 0.015, and 𝑑

2
= 1. Times: (a) 0; (b) 50; (c) 250; (d) 2500.

When 𝑠 increasing to 𝑠 = 3.0, the later random pertur-
bations make these stripes decay, end with the time-indepen-
dent regular spots (c.f., Figure 3), which is isolated zones with
high prey densities.

In Figure 4, we show patterns of time-independent
stripes-holes and stripes-spots mixture obtained with model
(7). These two patterns are similar to each other. With 𝑠 =
1.9 (c.f., Figure 4(a)), the stripes-holes mixture pattern is at
relatively low prey densities, while 𝑠 = 2.45 (c.f., Figure 4(b)),
at high prey densities.

From Figures 1 to 4, one can see that, on increasing the
control parameter 𝑠, the pattern sequence “holes → stripes-
holes mixture → stripes → stripes-spots mixture → spots”
is observed.

From the viewpoint of population dynamics, “spots” pat-
tern (c.f., Figure 3) shows that the prey population is driven by
predator to a very low level in those regions. The final result
is the formation of patches of high prey density surrounded
by areas of low prey densities [30]. That is to say, under the

control of these parameters, the prey is predominant in the
domain. In contrast, “holes” pattern (c.f., Figure 1) indicates
that the predator is predominant in the domain.

4. Conclusions and Remarks

In summary, in this paper, we have investigated the spa-
tiotemporal dynamics of a predator-prey model that involves
Allee effect on prey analytically and numerically.

For model (7), in the case without Allee effect, there is
no effect on the stability of the positive equilibrium whether
with diffusion or not. That is to say, there is nonexistence of
diffusion-driven instability in the model without Allee effect.
More precisely, the distribution of species converge to a spa-
tially homogeneous steady state which varies in time.

And in the case with Allee effect, the positive equilibrium
may be unstable.This instability is induced byAllee effect and
diffusion together, so we give a new definition called “Allee-
diffusion-driven instability” and present the analysis of this
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Figure 4: Typical Turing patterns of 𝑢 in model (7) with parameters 𝛼 = 1, 𝛽 = 0.3, 𝛾 = 0.3, 𝑏 = 0.5, 𝑐 = 0.6, 𝑚 = 0.6, 𝑞 = 0.35, 𝑑
1
= 0.015,

and 𝑑
2
= 1. (a) 𝑠 = 1.9; (b) 𝑠 = 2.45.

instability of the model in details. To the best of our knowl-
edge, this is the first reported case. Furthermore, via numer-
ical simulations, it is found that the model dynamics exhibits
both Allee effect and diffusion controlled pattern formation
growth to holes, stripes-holes mixtures, stripes, stripes-spots
mixtures, and spots replication.That is to say, the distribution
of species is aggregation. This indicates that the pattern for-
mation of the model with Allee effect is not simple, but rich
and complex.

In fact, for a predator-prey system, Okubo and Levin [21]
noted Allee effect on the functional response, and a density-
dependent death rate of the predator is necessary to generate
spatial patterns. And in this paper, we show that a predator-
prey system with Allee effect on prey can generate complex
Turing spatial patterns, which may be a supplementary to
[21].

It is needed to note that, in this paper, we investigate the
dynamics of localized patterns inmodel (7). Such patterns are
characterized by a highly spatially heterogeneous solutions
and are far from the spatially uniform state. These patterns
occur in two-component systems when the ratio of the two
diffusion coefficients are very large. In the numerical simula-
tions, we take the diffusivity ratio as 1/0.015 ≫ 1, and so we
are close to the regime of localized patterns. And the existence
of these spatial patterns can be rigorously proved using
tools from nonlinear functional analysis such as Liapunov-
Schmidt reduction and fixed-point theorems [13, 14], this is
desirable in future studies.
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