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Content-addressable memory (CAM) has been described by collective dynamics of neural networks and computing with attractors
(equilibrium states). Studies of such neural network systems are typically based on the aspect of energy minimization. However,
when the complexity and the dimension of neural network systems go up, the use of energy functionsmight have its own limitations
to study CAM. Recently, we have proposed the decirculation process in neural network dynamics, suggesting a step toward the
reshaping of network structure and the control of neural dynamics without minimizing energy. Armed with the decirculation
process, a sort of decirculating maps and its structural properties are built here, dedicated to showing that circulation breaking
taking place in the connections amongmany assemblies of neurons can collaborate harmoniously toward the completion of network
structure that generates CAM.

1. Introduction

Hopfield in 1982 proposed a neural network model using a
global energy function to provide absolute stability of global
pattern formation [1]. Since then, the concept of content-
addressable memory (CAM) has been widely developed,
showing that neural networks are capable of yielding an entire
memory item on the basis of sufficient partial information
[2–6]. However, related lines of research in switched linear
networked systems have shown that networked systems can
be asymptotically stable, but no common quadratic Lyapunov
function exists through the use of a theoretical result of
optimal joint spectral radius range for the simultaneous
contractibility of coupled matrices [7] (see also [8, 9]). This
implies a limitation of the use of global energy functions to
explain the formation of CAM when the complexity and the
dimension of networked systems go up.

The above limitation motivates us to search for another
logical strategy to study neural network dynamics. More
recently, we have proposed the decirculation process in
neural network dynamics [10], in which a criterion that
describes and quantifies perturbations of network structure
and neural updating is given. The decirculation process is
stated as “the occurrence of a loop of neuronal active states

leads to a change in neural connections, which feeds back to
reinforce neurons to tend to break the circulation of neuronal
active states in this loop.” Furthermore, in the study of
operator control underlying the decirculation process [11], we
have introduced the decirculating maps of loops of neuronal
active states, with each measuring the effects of connection
changes and displaying the threshold of circulation breaking.
The study of the decirculation process suggests an initial but
critical step toward the reshaping of network structure and
the control of neural dynamics without minimizing energy.

Here we wish to use the decirculating maps to show that
circulation breaking taking place in the connections among
many assemblies of neurons can collaborate harmoniously
toward the completion of network structure that generates
CAM. Thus, in contrast with the explicit construction of
global energy functions, the theoretical framework of local
decirculating maps reflects, in a neural ensemble sense, that
CAM can be derived from the cooperation of connection
changes in neural assemblies.

In Section 2 we introduce the decirculating maps and
show the structural properties of the symmetric part of the
decirculating maps. In Section 3 we describe the neural
network dynamics and determine the network structure for
circulation breaking. In Section 4 we prove that circulation
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breaking taking place in the connections amongmany assem-
blies of neurons can collaborate harmoniously toward the
completion of network structure that generates CAM.

2. Decirculating Maps

We introduce the decirculating maps defined in [11] and
show that the symmetric part of the decirculating maps has
nonzero entries relative to some symmetric difference sets
and is positive semidefinite.

For this, let {0, 1}𝑛 denote the binary code consisting of all
01-strings of fixed-length 𝑛. Denote byΩ = [𝑥

0

, 𝑥
1

, . . . , 𝑥
𝑝

] a
loop of states in {0, 1}

𝑛, meaning that 𝑝 > 1, 𝑥0, 𝑥1, . . . , 𝑥𝑝 ∈

{0, 1}
𝑛, 𝑥0 = 𝑥

𝑝, and 𝑥
𝑖

̸= 𝑥
𝑗 for some 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑝}. For

every 𝑖, 𝑗 = 1, 2, . . . , 𝑛, we assign an integer, denoted 𝑐
𝑖𝑗
(Ω),

according to the rule

𝑐
𝑖𝑗
(Ω) = 𝑥

0

𝑗
(𝑥
0

𝑖
− 𝑥
1

𝑖
) + 𝑥
1

𝑗
(𝑥
1

𝑖
− 𝑥
2

𝑖
)

+ ⋅ ⋅ ⋅ + 𝑥
𝑝−1

𝑗
(𝑥
𝑝−1

𝑖
− 𝑥
𝑝

𝑖
) .

(1)

We refer to the resulting matrix 𝐶(Ω) = (𝑐
𝑖𝑗
(Ω)) as the

decirculating map of Ω. For example, let Ω = [1111100000,
0011111000, 0000111110, 0111110000, 0001111100, 1111100000].
Then

𝐶 (Ω) =

(
(
(
(
(
(
(
(

(

1 1 1 0 0 −1 −1 −1 0 0

1 2 2 1 0 −1 −2 −2 −1 0

0 1 2 1 0 0 −1 −2 −1 0

0 0 1 1 0 0 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0

−1 −1 −1 0 0 1 1 1 0 0

−1 −2 −2 −1 0 1 2 2 1 0

0 −1 −2 −1 0 0 1 2 1 0

0 0 −1 −1 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0

)
)
)
)
)
)
)
)

)

. (2)

Denote by 𝐶SY(Ω) = (1/2)(𝐶(Ω) + 𝐶(Ω)
𝑇

) and 𝐶SK(Ω) =

(1/2)(𝐶(Ω) − 𝐶(Ω)
𝑇

) the symmetric part and the skew-
symmetric part of 𝐶(Ω), respectively.

Consider the Hilbert space 𝑀
𝑛
(R) of all real 𝑛 × 𝑛

matrices endowed with the Hilbert-Schmidt inner product
⟨⋅, ⋅⟩, that is, if 𝐴 = (𝑎

𝑖𝑗
) and 𝐵 = (𝑏

𝑖𝑗
) ∈ 𝑀

𝑛
(R), then

⟨𝐴, 𝐵⟩ = tr(𝐴𝐵
𝑇

) = ∑
𝑖,𝑗

𝑎
𝑖𝑗
𝑏
𝑖𝑗
. Let us recall that the symmetric

difference of two sets 𝑈 and 𝑉 is the set 𝑈󳵻𝑉, each of whose
elements belongs to 𝑈 but not to 𝑉, or belongs to 𝑉 but not
to 𝑈. For any 01-string 𝑥 = 𝑥

1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛
we define

1 (𝑥) = {𝑖; 𝑥
𝑖
= 1, 1 ≤ 𝑖 ≤ 𝑛} ,

0 (𝑥) = {𝑖; 𝑥
𝑖
= 0, 1 ≤ 𝑖 ≤ 𝑛} .

(3)

Theorem 1. Let Ω = [𝑥
0

, 𝑥
1

, . . . , 𝑥
𝑝

] be a loop of states in
{0, 1}
𝑛. Then

(i) 𝐶SY(Ω)
𝑖𝑗

= 0 if (𝑖, 𝑗) ∉ ⋃
0≤𝑚<𝑝

((1(𝑥𝑚)󳵻1(𝑥𝑚+1)) ×

(1(𝑥𝑚)󳵻1(𝑥𝑚+1)));
(ii) 𝐶SY(Ω) is positive semidefinite.

Proof. According to [11, Lemma 1] with 𝐴 = 0, the assertion
of part (i) follows, sowe need to prove part (ii). Let𝐴 = (𝑎

𝑖𝑗
) ∈

𝑀
𝑛
(R). Then

⟨𝐴, 𝐶 (Ω)⟩ = ∑
𝑖,𝑗

𝑎
𝑖𝑗
( ∑
0≤𝑚<𝑝

𝑥
𝑚

𝑗
𝑥
𝑚

𝑖
− ∑
0≤𝑚<𝑝

𝑥
𝑚

𝑗
𝑥
𝑚+1

𝑖
)

= ∑
0≤𝑚<𝑝

(∑
𝑖,𝑗

𝑎
𝑖𝑗
𝑥
𝑚

𝑗
𝑥
𝑚

𝑖
− ∑
𝑖,𝑗

𝑎
𝑖𝑗
𝑥
𝑚

𝑗
𝑥
𝑚+1

𝑖
)

= ∑
0≤𝑚<𝑝

(⟨𝐴𝑥
𝑚

, 𝑥
𝑚

⟩ − ⟨𝐴𝑥
𝑚

, 𝑥
𝑚+1

⟩) .

(4)

Suppose 𝐴 is positive semidefinite. Then we have

∑
0≤𝑚<𝑝

(⟨𝐴𝑥
𝑚

, 𝑥
𝑚

⟩ − ⟨𝐴𝑥
𝑚

, 𝑥
𝑚+1

⟩)

=
1

2
( ∑
0≤𝑚<𝑝

(⟨𝐴𝑥
𝑚

, 𝑥
𝑚

⟩ + ⟨𝐴𝑥
𝑚+1

, 𝑥
𝑚+1

⟩)

− ∑
0≤𝑚<𝑝

(⟨𝐴𝑥
𝑚

, 𝑥
𝑚+1

⟩ − ⟨𝐴𝑥
𝑚+1

, 𝑥
𝑚

⟩))

=
1

2
∑
0≤𝑚<𝑝

⟨𝐴 (𝑥
𝑚

− 𝑥
𝑚+1

) , 𝑥
𝑚

− 𝑥
𝑚+1

⟩ ≥ 0.

(5)

Combining (4) and (5) shows that if𝐴 is positive semidefinite,
then

⟨𝐴, 𝐶SK (Ω)⟩ = ⟨𝐴, 𝐶SK (Ω) + 𝐶SY (Ω)⟩ = ⟨𝐴, 𝐶 (Ω)⟩ ≥ 0.

(6)

Let 𝑦 ∈ R𝑛. Then (𝑦
𝑖
𝑦
𝑗
) ∈ 𝑀

𝑛
(R) is positive semidefinite

and, by (6), we have

⟨𝐶SK (Ω) 𝑦, 𝑦⟩ = ∑
𝑖𝑗

𝑦
𝑖
𝑦
𝑗
𝐶SK(Ω)

𝑖𝑗
= ⟨(𝑦

𝑖
𝑦
𝑗
) , 𝐶SK (Ω)⟩ ≥ 0,

(7)

showing that 𝐶SY(Ω) is positive semidefinite.

3. Network Structure for Circulation Breaking

For network description, name the neurons 1, 2, . . . , 𝑛. The
dynamical system of the 𝑛 coupled neurons is modeled by the
nonlinear equation [10, 12]

𝑥 (𝑡 + 1) = 𝐻
𝐴
(𝑥 (𝑡) , 𝑠 (𝑡)) , 𝑡 = 0, 1, . . . , (8)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)) ∈ {0, 1}

𝑛 is a vector of
neuronal active states denoting the population response of
neurons at time 𝑡, 𝐴 = (𝑎

𝑖𝑗
) ∈ 𝑀

𝑛
(R) is the coupling matrix

of the network, 𝑠(𝑡) ⊂ {1, 2, . . . , 𝑛} denotes the neurons that
adjust their activity at time 𝑡, and 𝐻

𝐴
(⋅, 𝑠(𝑡)) is a function

whose 𝑖th component is defined by

[𝐻
𝐴
(𝑥, 𝑠 (𝑡))]

𝑖
= 1(

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
− 𝑏
𝑖
) if 𝑖 ∈ 𝑠 (𝑡) , (9)
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otherwise [𝐻
𝐴
(𝑥, 𝑠(𝑡))]

𝑖
= 𝑥
𝑖
, where 𝑏

𝑖
∈ R is the threshold of

neuron 𝑖 and the function 1 is the Heaviside function: 1(𝑢) =

1 for 𝑢 ≥ 0, otherwise 0, which describes an instantaneous
unit pulse. On each subsequent time 𝑡 = 0, 1, . . ., the network
generates a vector of neuronal active states according to (8),
resulting in the dynamic flow 𝑥(𝑡), 𝑡 = 0, 1, . . ..

Theorem 2. Let Ω = [𝑥
0

, 𝑥
1

, . . . , 𝑥
𝑝

] be a loop of states in
{0, 1}
𝑛. If 𝐴 ∈ 𝑀

𝑛
(R) satisfies

⟨𝐴, 𝐶 (Ω)⟩ ≥ 0, (10)

then for any threshold 𝑏 ∈ R𝑛, any initial neural active state
𝑥(0) ∈ {0, 1}

𝑛, and any updating 𝑠(𝑡) ⊂ {1, 2, . . . , 𝑛}, 𝑡 =

0, 1, . . ., the resulting dynamic flow 𝑥(𝑡) of (8) cannot behave
in

𝑥 (𝑇) = 𝑥
0

, 𝑥 (𝑇 + 1) = 𝑥
1

, . . . , 𝑥 (𝑇 + 𝑝) = 𝑥
𝑝 (11)

for each 𝑇 = 0, 1, . . ..

Proof. Suppose, by contradiction, that there exist 𝑏 ∈ R𝑛,
𝑥(0) ∈ {0, 1}

𝑛, 𝑠(𝑡) ⊂ {1, 2, . . . , 𝑛}, 𝑡 = 0, 1, . . ., and 𝑇 ≥ 0

such that 𝑥(𝑇) = 𝑥
0

, 𝑥(𝑇 + 1) = 𝑥
1

, . . . , 𝑥(𝑇 + 𝑝) = 𝑥
𝑝. Let

Λ
+

= {𝑡; 0 (𝑥 (𝑡)) ∩ 1 (𝑥 (𝑡 + 1)) ̸= 0, 𝑇 ≤ 𝑡 < 𝑇 + 𝑝} ,

Λ
−

= {𝑡; 1 (𝑥 (𝑡)) ∩ 0 (𝑥 (𝑡 + 1)) ̸= 0, 𝑇 ≤ 𝑡 < 𝑇 + 𝑝} .
(12)

Then Λ
+

̸= 0 and Λ
−

̸= 0. Indeed, if Λ+ = 0 or Λ− = 0, then

𝑥 (𝑇) = 𝑥 (𝑇 + 1) = ⋅ ⋅ ⋅ = 𝑥 (𝑇 + 𝑝) , (13)

contradicting the loop assumption 𝑥(𝑇 + 𝑖) ̸= 𝑥(𝑇 + 𝑗) for
some 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑝}. Since 0(𝑥(𝑡)) ∩ 1(𝑥(𝑡 + 1)) ⊂ 𝑠(𝑡) and
1(𝑥(𝑡)) ∩ 0(𝑥(𝑡 + 1)) ⊂ 𝑠(𝑡) for each 𝑡 = 0, 1, . . ., we conclude
from (4) and (8) that

⟨𝐴, 𝐶 (Ω)⟩ = ∑
0≤𝑚<𝑝

(⟨𝐴𝑥 (𝑇 + 𝑚) , 𝑥 (𝑇 + 𝑚)⟩

− ⟨𝐴𝑥 (𝑇 + 𝑚) , 𝑥 (𝑇 + 𝑚 + 1)⟩)

= ∑
0≤𝑚<𝑝

⟨𝐴𝑥 (𝑇 + 𝑚) , 𝑥 (𝑇 + 𝑚) − 𝑥 (𝑇 + 𝑚 + 1)⟩

< − ∑

𝑡∈Λ
+

∑
𝑗∈0(𝑥(𝑡))∩1(𝑥(𝑡+1))

𝑏
𝑗
+ ∑

𝑡∈Λ
−

∑
𝑗∈1(𝑥(𝑡))∩0(𝑥(𝑡+1))

𝑏
𝑗

= ∑
0≤𝑚<𝑝

⟨𝑏, 𝑥 (𝑇 + 𝑚) − 𝑥 (𝑇 + 𝑚 + 1)⟩ = 0,

(14)

contradicting (10), and that completes the proof.

4. Harmonious Collaboration for CAM

We now proceed to the proof that circulation breaking taking
place in the connections among many assemblies of neurons
can collaborate harmoniously toward the completion of
network structure that generates CAM.

We shall first introduce the Schur product theorem.
If 𝐴 = (𝑎

𝑖𝑗
) and 𝐵 = (𝑏

𝑖𝑗
) ∈ 𝑀

𝑛
(R), then the Schur

product of𝐴 and 𝐵 is the matrix𝐴∘𝐵 = (𝑎
𝑖𝑗
𝑏
𝑖𝑗
) ∈ 𝑀

𝑛
(R). We

have the following well-known theorem.

Theorem 3 (Schur product theorem). If 𝐴, 𝐵 ∈ 𝑀
𝑛
(R) are

positive semidefinite, then 𝐴 ∘ 𝐵 is also positive semidefinite.

Let 𝐴 ∈ 𝑀
𝑛
(R) and 𝐼 ⊂ {1, 2, . . . , 𝑛}. Denote by 𝐴(𝐼) the

principal submatrix of 𝐴 relative to 𝐼.

Theorem 4. Let 𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑞
be mutually disjoint subsets of

{1, 2, . . . , 𝑛}. If 𝐴 ∈ 𝑀
𝑛
(R) is symmetric and 𝐴(𝐼

𝑘
) is positive

semidefinite for each 𝑘 = 1, 2, . . . , 𝑞, then

(i) ⟨𝐴, 𝐶(Ω)⟩ ≥ 0 for each loop Ω = [𝑥
0

, 𝑥
1

, . . . , 𝑥
𝑝

]

satisfying for 𝑚 = 0, 1, . . . , 𝑝 − 1,

1 (𝑥
𝑚

) 󳵻1 (𝑥
𝑚+1

) ⊂ 𝐼
𝑘

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ {1, 2, . . . , 𝑞} ;

(15)

(ii) for any threshold 𝑏 ∈ R𝑛, any initial neural active state
𝑥(0) ∈ {0, 1}

𝑛, and any updating 𝑠(𝑡) ⊂ {1, 2, . . . , 𝑛},
𝑡 = 0, 1, . . ., satisfying

𝑠 (𝑡) ⊂ 𝐼
𝑘

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 ∈ {1, 2, . . . , 𝑞} , (16)

the resulting dynamic flow 𝑥(𝑡) of the network modeled
by (8) will converge to an equilibrium state.

Proof. To prove (i), let Ω = [𝑥
0

, 𝑥
1

, . . . , 𝑥
𝑝

] be a loop
satisfying (15). Then, by Theorem 1(i), we have 𝐶SY(Ω)

𝑖𝑗
= 0

if (𝑖, 𝑗) �∈ ⋃
1≤𝑘≤𝑞

(𝐼
𝑘
× 𝐼
𝑘
). Furthermore, since 𝐴 is symmetric,

it follows that

⟨𝐴, 𝐶 (Ω)⟩ = ⟨𝐴, 𝐶SY (Ω) + 𝐶SK (Ω)⟩ = ⟨𝐴, 𝐶SY (Ω)⟩

= ∑
1≤𝑘≤𝑞

⟨𝐴 (𝐼
𝑘
) , 𝐶SY (Ω)⟩ .

(17)

Since 𝐶SY(Ω) is positive semidefinite by Theorem 1(ii) and
𝐴(𝐼
𝑘
) is positive semidefinite for each 𝑘 = 1, 2, . . . , 𝑞, we

conclude from the Schur product theorem that𝐴(𝐼
𝑘
)∘𝐶SY(Ω)

is positive semidefinite. Let 𝑦 ∈ R𝑛 be a vector with all
components equal to 1. Then for each 𝑘 = 1, 2, . . . , 𝑞,

⟨𝐴 (𝐼
𝑘
) , 𝐶SY (Ω)⟩ = ⟨(𝐴 (𝐼

𝑘
) ∘ 𝐶SY (Ω)) 𝑦, 𝑦⟩ ≥ 0, (18)

implying that ⟨𝐴, 𝐶(Ω)⟩ ≥ 0.
To prove (ii), let 𝑏 ∈ R𝑛, 𝑥(0) ∈ {0, 1}

𝑛, 𝑠(𝑡) satisfying
(16), and 𝑥(𝑡) be the resulting dynamic flow of the network
modeled by (8). Suppose, by contradiction, that there exist
𝑝 > 1 and𝑇 ≥ 0 such thatΩ(𝑇, 𝑝) = [𝑥(𝑇), 𝑥(𝑇+1), . . . , 𝑥(𝑇+

𝑝)] forms a loop of states in {0, 1}
𝑛. Since 𝑠(𝑡) satisfies (16), it

follows that for each 𝑚 = 0, 1, . . . , 𝑝 − 1,

1 (𝑥 (𝑇 + 𝑚)) 󳵻1 (𝑥 (𝑇 + 𝑚 + 1)) ⊂ 𝐼
𝑘

for some 𝑘 ∈ {1, 2, . . . , 𝑞} .
(19)

Thus, by Theorem 4(i), we have ⟨𝐴, 𝐶(Ω(𝑇, 𝑝))⟩ ≥ 0. By
Theorem 2, we see that the dynamic flow 𝑥(𝑡) cannot form
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the loop Ω(𝑇, 𝑝) of states in the period of time 𝑡 = 𝑇, 𝑇 +

1, . . . , 𝑇 + 𝑝, which is a contradiction, and that completes the
proof.

Let 𝐼
𝑘

= {𝑘} for 𝑘 = 1, 2, . . . , 𝑛. If 𝐴 ∈ 𝑀
𝑛
(R) is

symmetric with nonnegative diagonal entries, then 𝐴(𝐼
𝑘
)

is positive semidefinite for each 𝑘 = 1, 2, . . . , 𝑛. Thus, by
Theorem 4(ii), we obtain the following basic theorem for
CAM, showing that a network structure can be harmoniously
collaborated by taking circulation breaking in all the loops
Ω = [𝑥

0

, 𝑥
1

, . . . , 𝑥
𝑝

] satisfying ♯(1(𝑥𝑚)󳵻1(𝑥𝑚+1)) ≤ 1 for
each 𝑚 = 0, 1, . . . , 𝑝 − 1.

Theorem 5 (Hopfield [1]). If 𝐴 ∈ 𝑀
𝑛
(R) is symmetric with

nonnegative diagonal entries, then each dynamic flow 𝑥(𝑡)

of the network modeled by (8), with each neuron adjusting
randomly and asynchronously (i.e., ♯𝑠(𝑡) = 1 for each 𝑡 =

0, 1, . . .), will converge to an equilibrium state.

Acknowledgment

This work was supported by the National Science Council of
Taiwan.

References

[1] J. J. Hopfield, “Neural networks and physical systems with
emergent collective computational abilities,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 79, no. 8, pp. 2554–2558, 1982.

[2] M. A. Cohen and S. Grossberg, “Absolute stability of global
pattern formation and parallel memory storage by competitive
neural networks,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 13, no. 5, pp. 815–826, 1983.

[3] S. Grossberg, “Nonlinear neural networks: principles, mecha-
nisms, and architectures,” Neural Networks, vol. 1, no. 1, pp. 17–
61, 1988.

[4] J. J. Hopfield, “Pattern recognition computation using action
potential timing for stimulus representation,” Nature, vol. 376,
no. 6535, pp. 33–36, 1995.

[5] R. Perfetti and E. Ricci, “Recurrent correlation associative
memories: a feature space perspective,” IEEE Transactions on
Neural Networks, vol. 19, no. 2, pp. 333–345, 2008.

[6] M.-H. Shih and F.-S. Tsai, “Hamming star-convexity packing in
information storage,” Fixed Point Theory and Applications, vol.
2011, Article ID 615274, 17 pages, 2011.

[7] T. Ando and M.-H. Shih, “Simultaneous contractibility,” SIAM
Journal on Matrix Analysis and Applications, vol. 19, no. 2, pp.
487–498, 1998.

[8] M.-H. Shih and C.-T. Pang, “Simultaneous Schur stability of
interval matrices,” Automatica, vol. 44, no. 10, pp. 2621–2627,
2008.

[9] A. Jadbabaie, J. Lin, andA. S.Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001,
2003.

[10] M.-H. Shih and F.-S. Tsai, “Decirculation process in neural
network dynamics,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 23, no. 11, pp. 1677–1689, 2012.

[11] M.-H. Shih and F.-S. Tsai, “Operator control of inter-neural
computing machines,” In Press.

[12] M.-H. Shih and F.-S. Tsai, “Growth dynamics of cell assemblies,”
SIAM Journal on Applied Mathematics, vol. 69, no. 4, pp. 1110–
1161, 2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


