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We are concerned with the estimation of the domain of attraction (DOA) for suboptimal immunity epidemic models. We
establish a procedure to determine the maximal Lyapunov function in the form of rational functions. Based on the definition
of DOA and the maximal Lyapunov function, a theorem and subsequently a numerical procedure are established to determine the
maximal Lyapunov function and the DOA. Determination of the domain of attraction for epidemic models is very important for
understanding the dynamic behaviour of the disease transmission as a function of the state of population distribution in different
categories of disease states. We focus on suboptimal immunity epidemic models with saturated treatment rate and nonlinear
incidence rate. Different from classical models, suboptimal immunity models are more realistic to explain the microparasite
infection diseases such as Pertussis and Influenza A. We show that, for certain values of the parameter, larger k value (i.e., the
model is more toward the SIR model) leads to a smaller DOA.

1. Introduction

The computing of domain of attraction (DOA), that is, the
regionwhere the dynamical system is asymptotically stable, is
an interesting research topic in the stability analysis of non-
linear systems such as the systems for compartmental ODE
epidemic models. In other words, the mathematical analysis
of epidemic models often involves computing the asymptotic
stability region for both the disease-free equilibrium and
endemic equilibrium. The set of initial states whose corre-
sponding trajectories converge to an asymptotically stable
equilibrium point as time increases is known as the stability
region or domain of attraction (DOA) of the equilibrium
under study. If the initial state lies within the DOA, the
disease will evolve towards an endemic state. On the contrary,
if the initial state is outside theDOA, the systemwill converge

to a disease-free state. Therefore, it is important to study the
DOA of endemic equilibrium.

Lyapunov’s second method (the direct method) is gener-
ally used to analyze the stability of epidemic models. In this
method, the asymptotic stability of the origin can be exam-
ined if a positive definite function whose derivative along
the solutions of the system is negative definite. However, it
is not only difficult to construct the Lyapunov Function, but
also hard to guarantee the asymptotical stability of the equi-
librium. Apart from that, it is known even if the Lyapunov
function exists in an autonomous ODE, it may not be unique.
Amaximal Lyapunov function is a special Lyapunov function
on 𝑆 (where 𝑆 denotes the DOA) which can be used to
determine the DOA for a given locally asymptotical stable
equilibrium point.
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Considerable work on DOA estimation and optimized
DOA for epidemic dynamical models has been done. In
[1], the authors had computed the DOA in epidemiological
models with constant removal rates of infected individuals.
An optimization approach for finding the DOA of a class of
SEIR models, based on the sum of square optimization, is
presented in [2]. Recently, the authors in [3] had adopted
a recurrence formula established by Kaslik et al. [4] by
using an 𝑅-analytical function and the sequence of its Taylor
polynomial to construct the Lyapunov function, and solved
the linear matrix inequality (LMI) relaxations of a global
optimization problem to obtain the DOA. However, all the
epidemic models in the papers mentioned above are limited
to relatively simple epidemic models, without taking into
account nonlinear incidence rates or saturated recovery rates.
In this paper, we study theDOA for the suboptimal immunity
models with nonlinear incidence rates and saturated recovery
rates, by utilizing the maximal Lyapunov function in [5].
Throughout the paper, we focus on DOA for the subopti-
mal immunity models. This kind of suboptimal immunity
models is more appropriate for the study of microparasite
infections which usually occurs during childhood. After a
primary infection, onemay get temporary immunity (namrly,
immune protection that will wane over time) or partial
immunity (namrly, immunity that is not fully protective).
Examples of this kind of diseases include Pertussis (tempo-
rary immunity) and Influenza (partial immunity).

The rest of the paper is organized as follows. In Section 2,
we will establish a theorem based on [5] and an iterative
procedure for the construction of the Maximal Lyapunov
Function. In Section 3, we will briefly explain the suboptimal
immunity model. In Section 4, two examples of suboptimal
immunity models are given to demonstrate the validity of the
procedure. A conclusion is then given in Section 5.

2. Maximal Lyapunov Function

Consider the following system
ẋ = 𝑓 (x) , (1)

where𝑓 : R𝑛 → R
𝑛 is an analytical function with the follow-

ing properties:
(a) 𝑓(0) = 0, that is, x = 0 is an equilibrium point of

system (1);
(b) all the eigenvalues of the Jacobianmatrix at x = 0, that

is, (𝜕𝑓/𝜕x)(0), have negative real parts, namely, x = 0
is an asymptotically stable equilibrium point.

It is well known that in the Lyapunov sense, if there exists
a Lyapunov function for the equilibrium point x = 0 of the
system (1), then x = 0 is asymptotically stable.

Definition 1 (Lyapunov function). Let𝑉(x) be a continuously
differentiable real-valued function defined on a domain
𝑅(0) ⊆ R

𝑛 containing the equilibrium point x = 0. The
function𝑉(x) is a Lyapunov function of the equilibrium x = 0
of the system (1) if the following conditions hold:

(a) 𝑉(x) is positive definite on 𝑅(0);
(b) the time derivative of 𝑉(ẋ) is negative definite on

𝑅(0).

If 𝑉(x) is a Lyapunov function which fulfills the condi-
tions in the Definition 1, the estimation of DOA is given by
the following definition.

Definition 2. Given an autonomous system (1), where x ∈ R
𝑛

and𝑓(0) = 0, the domain of attraction (DOA) of x = 0 is 𝑆
𝐴
=

{x0 ∈ R
𝑛

: lim
𝑡→∞

x(𝑡, x0) = 0}, where x(⋅, x0) denotes the
solution of the autonomous system corresponding to the
initial condition x(0) = x0.

The Lyapunov function is not unique. A maximal Lya-
punov function, 𝑉(x), is a special Lyapunov function on 𝑆
(where 𝑆 denotes the DOA) which can be used to determine
the DOA for a given locally asymptotically stable equilibrium
point.

Definition 3 (maximal Lyapunov function [5]). A function
𝑉
𝑚
(x) : R𝑛 → R

+

∪ {∞} is called a maximal Lyapunov func-
tion for the system (1) if

(a) 𝑉
𝑚
(0) = 0, 𝑉

𝑚
(x) > 0, for all x ∈ 𝑆, x ̸= 0;

(b) 𝑉
𝑚
(x) < ∞ if and only if x ∈ 𝑆;

(c) 𝑉
𝑚
(x) → ∞ as x → 𝜕𝑆 and/or ‖x‖ → ∞;

(d) �̇�
𝑚
is well defined and negative definite over 𝑆, where

𝑆 denotes the DOA.

We have the following definition for the DOA of an
asymptotically stable equilibrium point which derives from
the maximal Lyapunov function.

Definition 4. Suppose we can find a set𝐸 ⊆ R
𝑛 containing the

origin in its interior and a continuous function 𝑉(x) : 𝐸 →

R
+ such that

(a) 𝑉(x) is positive definite on 𝐸;
(b) �̇�(x) is negative definite on 𝐸;
(c) 𝑉(x) → ∞ as x → 𝜕𝑆 and/or as ‖x‖ → ∞. Then
𝐸 = 𝑆, where 𝑆 denotes the DOA.

From the above definition, based on the work in [5], we
derive the following theorem.

Theorem 5. Consider the nonlinear system of equations ẋ =
𝑓(x) = ∑∞

𝑖=1
𝐹
𝑖
(x), where 𝐹

𝑖
(⋅) is a homogeneous function of

degree 𝑖. Suppose that the linearized system ẋ = 𝐹
1
(x) = 𝐴x

is asymptotically stable at x = 0. Let 𝑅
𝑖
, 𝑄
𝑖
be homoge-

neous functions of degree 𝑖, and the functions 𝑅
𝑖
and 𝑄

𝑖
satisfy

the following recursive equations:

(∇𝑅
2
)
𝑇

𝐹
1
= −x𝑇𝑄x,

(∇𝑅
2
)
𝑇

𝐹
𝑘−1

+

𝑘

∑

𝑗=3

((∇𝑅
𝑗
)
𝑇

+

𝑗−2

∑

𝑖=1

(𝑄
𝑖
(∇𝑅
𝑗−𝑖
)
𝑇

− (∇𝑄
𝑖
)
𝑇

𝑅
𝑗−𝑖
))𝐹
𝑘−𝑗+1

= −𝑥
𝑇

𝑄𝑥(2𝑄
𝑘−2
+

𝑘−3

∑

𝑖=1

𝑄
𝑖
𝑄
𝑘−2−𝑖

) ,

(2)
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where𝑄 is a fixed positive definite matrix and 𝑘 ≥ 3. Then, one
has the following Lyapunov functions

𝑉
𝑛
(x) = 𝑅2 (x) + 𝑅3 (x) + ⋅ ⋅ ⋅ + 𝑅𝑛 (x)

1 + 𝑄
1
(x) + ⋅ ⋅ ⋅ + 𝑄

𝑛−2
(x)

. (3)

Proof. Rewrite

𝑉
𝑛
(x) = 𝑅2 (x) + 𝑅3 (x) + ⋅ ⋅ ⋅ + 𝑅𝑛 (x)

1 + 𝑄
1
(x) + ⋅ ⋅ ⋅ + 𝑄

𝑛−2
(x)

=
∑
∞

𝑖=2
𝑅
𝑖
(x)

1 + ∑
∞

𝑖=1
𝑄
𝑖
(x)
,

(4)

which satisfy condition (a) in theDefinition 3. Differentiating
(4) with respect to x, we have

�̇�
𝑛
(x) = (

(1 + ∑
∞

𝑖=1
𝑄
𝑖
(x))∑∞

𝑖=1
(∇𝑅
𝑖
(x))𝑇

(1 + ∑
∞

𝑖=1
𝑄
𝑖
(x))2

−

(∑
∞

𝑖=1
(∇𝑄
𝑖
(x))𝑇)∑∞

𝑖=2
𝑅
𝑖
(x)

(1 + ∑
∞

𝑖=1
𝑄
𝑖
(x))2

)

∞

∑

𝑖=1

𝐹
𝑖
(x) .

(5)

One choice to ensure that �̇�
𝑛
(x) is negative definite is �̇�

𝑛
(x) =

−x𝑇𝑄x. Then from (5), we have

((1 +

∞

∑

𝑖=1

𝑄
𝑖
(x))
∞

∑

𝑖=1

(∇𝑅
𝑖
(x))𝑇

−(

∞

∑

𝑖=1

(∇𝑄
𝑖
(x))𝑇)

∞

∑

𝑖=2

𝑅
𝑖
(x))
∞

∑

𝑖=1

𝐹
𝑖
(x)

= −x𝑇𝑄x(1 +
∞

∑

𝑖=1

𝑄
𝑖
(x))
2

.

(6)

Equating the coefficients of the same degree 𝑘 of the two sides
of (6), we get the following recursive relations:

(∇𝑅
2
)
𝑇

𝐹
1
= −x𝑇𝑄x, (7)

(∇𝑅
2
)
𝑇

𝐹
𝑘−1

+

𝑘

∑

𝑗=3

((∇𝑅
𝑗
)
𝑇

+

𝑗−2

∑

𝑖=1

(𝑄
𝑖
(∇𝑅
𝑗−𝑖
)
𝑇

− (∇𝑄
𝑖
)
𝑇

𝑅
𝑗−𝑖
))𝐹
𝑘−𝑗+1

= −x𝑇𝑄x(2𝑄
𝑘−2
+

𝑘−3

∑

𝑖=1

𝑄
𝑖
𝑄
𝑘−2−𝑖

) ,

(8)

where 𝑄 is a fixed positive definite matrix, and 𝑘 ≥ 3.

Based on Theorem 5, the procedure for obtaining the
maximal Lyapunov function and calculating the DOA is
established as follows.

Step 1. From the linearized system, 𝐹
1
= 𝐴x, find 𝑃 > 0 such

that 𝐴𝑇𝑃 + 𝑃𝐴 = −𝑄, then set

𝑉
2
(x) = 𝑅

2
= x𝑇𝑃x, (9)

where 𝑅
2
= 𝑎
1
𝑥
2

+ 𝑎
2
𝑥𝑦 + 𝑎

3
𝑦
2. In this case, 𝑄 is a fixed

positive definite matrix. Hence, one of the good choices for𝑄
is the identity matrix.

Step 2. For 𝑛 = 3, we have

(∇𝑅
2
)
𝑇

𝐹
2
+ ((∇𝑅

3
)
𝑇

+ 𝑄
1
(∇𝑅
2
)
𝑇

− (∇𝑄
1
)
𝑇

𝑅
2
) 𝐹
1

= −x𝑇𝑄x (2𝑄
1
) ,

(10)

where 𝑅
3
= 𝑎
1
𝑥
3

+ 𝑎
2
𝑥
2

𝑦 + 𝑎
3
𝑥𝑦
2

+ 𝑎
4
𝑦
3 and 𝑄

1
= 𝑏
1
𝑥 +

𝑏
2
𝑦. Equating the coefficients of same degree in (10), we will

obtain a system of linear equations in terms of 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
,

𝑏
1
and 𝑏
2
. The solution of these linear equations will be used

as constraints in theminimization problem to get 𝑒
𝑛
(𝑦) in the

later steps.

Step 3. For 𝑛 = 4, we have

(∇𝑅
2
)
𝑇

𝐹
3
+ ((∇𝑅

3
)
𝑇

+ 𝑄
1
(∇𝑅
2
)
𝑇

− (∇𝑄
1
)
𝑇

𝑅
2
) 𝐹
2

+ ((∇𝑅
4
)
𝑇

+ 𝑄
1
(∇𝑅
3
)
𝑇

− (∇𝑄
1
)
𝑇

𝑅
3

−𝑄
2
(∇𝑅
2
)
𝑇

− (∇𝑄
2
)
𝑇

𝑅
2
) 𝐹
1

= −x𝑇𝑄x (2𝑄
2
+ 𝑄
2

1
) ,

(11)

where 𝑅
4
= 𝑎
1
𝑥
4

+ 𝑎
2
𝑥
3

𝑦 + 𝑎
3
𝑥
2

𝑦
2

+ 𝑎
4
𝑥𝑦
3

+ 𝑎
4
𝑦
4 and

𝑄
2
= 𝑏
1
𝑥
2

+ 𝑏
2
𝑥𝑦 + 𝑏

3
𝑦
2. Then, we solve the system of linear

equations as in Step 2.

Step 4 (optional). For 𝑛 = 5, we have

(∇𝑅
2
)
𝑇

𝐹
4
+ ((∇𝑅

3
)
𝑇

+ 𝑄
1
(∇𝑅
2
)
𝑇

− (∇𝑄
1
)
𝑇

𝑅
2
) 𝐹
3

+ ((∇𝑅
4
)
𝑇

+ 𝑄
1
(∇𝑅
3
)
𝑇

− (∇𝑄
1
)
𝑇

𝑅
3

+𝑄
2
(∇𝑅
2
)
𝑇

− (∇𝑄
2
)
𝑇

𝑅
2
) 𝐹
2

+ {(∇𝑅
5
)
𝑇

+ 𝑄
1
(∇𝑅
4
)
𝑇

− (∇𝑄
1
)
𝑇

𝑅
4
+ 𝑄
2
(∇𝑅
3
)
𝑇

−(∇𝑄
2
)
𝑇

𝑅
3
+ 𝑄
3
(∇𝑅
2
)
𝑇

− (∇𝑄
3
)
𝑇

𝑅
2
} 𝐹
1

= −x𝑇𝑄x (2𝑄
3
+ 2𝑄
1
𝑄
2
) ,

(12)

where 𝑅
5
= 𝑎
1
𝑥
5

+ 𝑎
2
𝑥
4

𝑦 + 𝑎
3
𝑥
3

𝑦
2

+ 𝑎
4
𝑥
2

𝑦
3

+ 𝑎
5
𝑥𝑦
4

+ 𝑎
6
𝑦
5

and 𝑄
3
= 𝑏
1
𝑥
3

+ 𝑏
2
𝑥
2

𝑦 + 𝑏
3
𝑥𝑦
2

+ 𝑏
4
𝑦
3. Then, the system of

linear equations is solved. We should address that equations
similar to (12) can also be obtained for 𝑛 > 5.

For each of the Steps 2 and 4, one will lead to a number
of choices for the value of the coefficients for 𝑅

𝑛
and 𝑄

𝑛−2
.

Consider

�̇�
𝑛
(x) = −x𝑇𝑄x +

𝑒
𝑛
(𝑦)

(1 + ∑
𝑛−2

𝑖=1
𝑄
𝑖
(x))
2
, (13)

where 𝑒
𝑛
(𝑦) is the squared 2-norm of the coefficients of the

terms with degree greater than or equal to 𝑛 + 1 in the
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expression of �̇�
𝑛
. This ensures that �̇�

𝑛
(x) is negative definite

over a neighbourhood of the origin. To make it as similar as
possible to �̇�

2
(x) = −x𝑇𝑄x, we take 𝑒

𝑛
(𝑦) as small as possible.

Hence, it creates a new condition that can be formulated as
a minimization problem where the constraints are obtained
from the recursive relations in each of the steps above.

Step 5. Once we get 𝑒
𝑛
(𝑦) sufficiently small, say at Step 3, we

can have the maximal Lyapunov function as

𝑉
4
(x) = 𝑅2 (x) + 𝑅3 (x) + 𝑅4 (x)

1 + 𝑄
1
(x) + 𝑄

2
(x)

. (14)

To obtain the DOA, one needs to find the largest possible
value 𝐶∗ when 𝑉

4
(x) = 𝐶

∗ such that the interior of the
resulting ellipsoid is entirely boundedwithin the region given
byΩ = {x : �̇�

𝑛
(x) ≤ 0}. In this case, one can determine 𝐶∗ by

solving an optimization problem:

𝑉
4
(x) =

𝑅
2
(x) + 𝑅

3
(x) + 𝑅

4
(x)

1 + 𝑄
1
(x) + 𝑄

2
(x)

= 𝐶
∗

𝐶
∗

= min𝑉
4
(x)

subject to the constraints �̇�
4
(x) = 0.

(15)

Then, the set 𝑆
𝐴
= {x : 𝑉

4
(x) < 𝐶

∗

} is contained in the
DOA 𝑆. Appropriate 𝐶∗ also can be determined manually
as suggested in [6]. In this case, one can choose the largest
positive value 𝐶∗ such that the sublevel set 𝑆

𝐴
= {x : 𝑉

4
(x) <

𝐶
∗

} is contained in the region given by {x : �̇�
4
(x) < 0}. Hence,

we obtain the DOA in the form of 𝑆
𝐴
.

3. Suboptimal Immunity Epidemic Models

In this paper, we estimate the domain of attraction (DOA)
for suboptimal immunity epidemic models with saturated
treatment/recovery rate and nonlinear incidence rate. Apart
from using the saturated treatment/recovery rate, an addi-
tional parameter 𝜎 is used to form the suboptimal immunity
model as in [7]. The new model lies in between the SIS and
SIR models.

The suboptimal immunity model with nonlinear inci-
dence rate and saturated treatment/recovery rate is as follows:

𝑑𝑆

𝑑𝑡
= 𝐴 − 𝑔 (𝐼, 𝑆) + 𝜎𝑇 (𝐼) − 𝜇𝑆,

𝑑𝐼

𝑑𝑡
= 𝑔 (𝐼, 𝑆) − 𝑇 (𝐼) − 𝜇𝐼,

𝑑𝑅

𝑑𝑡
= (1 − 𝜎) 𝑇 (𝐼) − 𝜇𝑅,

(16)

where all the parameters are positive. We assume that the
population is fixed, namely, 𝐴/𝜇 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) and
where 𝑆 denotes susceptible population, 𝐼 represents infective
population, and 𝑅 is the recovered population. 𝐴 is the
recruitment rate of susceptible population, 𝛽 is the disease
transmission rate, 𝜇 is the natural death rate, and 𝑇(𝐼) is the
recovery rate. We take 𝑇(𝐼) = 𝑣𝐼 + 𝑐𝐼/(1 + 𝑎𝐼) as the recovery
rate function in which 𝑐/(1 + 𝑎𝐼) and 𝑣 are, respectively, the
recovery rate of the infected population with and with no
treatment. The function 𝑔(𝐼, 𝑆) denotes the incidence rate.

In comparison with previous models, our model presented
here has various new features and contributions. Firstly, it is
more general and includes some previous models as special
cases. For example, if we take 𝑔(𝐼, 𝑆) as 𝛽𝑆𝐼2, we will have
the nonlinear incidence rate. If we take 𝑔(𝐼, 𝑆) as a bilinear
function, then it reduces to the suboptimal immunity model
[7], while it reduces to the nonlinear SIR model if 𝑇(𝐼) is
taken to be zero. It should also be addressed that 𝜎 = 1

corresponds to the SIS model in which immunity is assumed
not to protect against reinfection, while 𝜎 = 0 corresponds
to the SIR model in which immunity is assumed to be
fully protective and prevents any reinfection.The suboptimal
immunity model where 𝜎 ∈ [0, 1] is more appropriate for
the study of microparasite infections which usually occur
during childhood. After a primary infection, one may get
temporary immunity (namely, immune protection thatwanes
over time) or partial immunity (namely, immunity that is not
fully protective). Examples of this kind of diseases include
Pertussis (temporary immunity) and Influenza A (partial
immunity) [8]. Secondly, due to the combination of the
nonlinearities in both incidence rate and recovery rate, it is
hard to obtain exact solution. Hence, estimating its domain
of attraction using the numerical procedure is important in
order to know whether the disease in a particular state will
evolve towards an endemic state or converge to a disease free
state.

4. Numerical Examples

Example 1. We consider the following reduced system for the
suboptimal immunity model with bilinear incidence rate and
saturated treatment rate:

𝑑𝐼

𝑑𝑡
= 𝛽(

𝐴

𝜇
− 𝐼 − 𝑅) 𝐼 − 𝑣𝐼 −

𝑐𝐼

1 + 𝑎𝐼
− 𝜇𝐼,

𝑑𝑅

𝑑𝑡
= 𝑘 (𝑣𝐼 +

𝑐𝐼

1 + 𝑎𝐼
) − 𝜇𝑅,

(17)

where (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) = (19.2, 0.5, 1, 10, 0.5, 1, 0.25) and
𝑘 = 1 − 𝜎. Rewrite 𝑋 and 𝑌 for 𝐼 and 𝑅, and translate the
equilibrium point to the origin by using 𝑥 = 𝑋+4.549349206
and 𝑦 = 𝑌 + 4.424023809. By using the numerical procedure
in Section 2, we have the following result:

𝑉
4
(x) = 𝑅2 (

x) + 𝑅
3
(x) + 𝑅

4
(x)

1 + 𝑄
1
(x) + 𝑄

2
(x)

,

𝑅
2
= 0.3022747584𝑥

2

− 0.5489131064𝑥𝑦

+ 0.7627668376𝑦
2

,

𝑅
3
= −0.1906560890547𝑥

3

+ 0.4815774872748𝑥
2

𝑦

− 0.6165924190417𝑥𝑦
2

+ 0.4585192403196𝑦
3

,

𝑅
4
= 0.007811814325017𝑥

4

− 0.03492153517471𝑥
3

𝑦

− 0.05336496715089𝑥
2

𝑦
2

+ 0.04128157637850𝑥𝑦
3

− 0.06092067012745𝑦
4

,
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𝑄
1
= −0.06282269989259𝑥 + 0.1095295671604𝑦,

𝑄
2
= −0.2970068157810𝑥

2

+ 0.3716413661196𝑥𝑦

− 0.4183114315558𝑦
2

,

(18)

and 𝐶∗ = 0.284. Thus, 𝑆
𝐴
= {x : 𝑉

4
(x) < 0.284} is an

estimate of 𝑆 for the system (17) when (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) =
(19.2, 0.5, 1, 10, 0.5, 1, 0.25). This estimate and its phase por-
trait are given in Figure 1.

Consider smaller 𝑘, which means the model is more
toward the SIS model. Let (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) = (19.2, 0.5, 1,

10, 0.5, 1, 0.15). Rewrite𝑋 and𝑌 for 𝐼 and𝑅, and translate the
equilibrium point to the origin by using 𝑥 = 𝑋+7.494893880
and 𝑦 = 𝑌 + 3.492315487. By using the numerical procedure
as given in Section 2, we have the following result:

𝑉
4
(x) =

𝑅
2
(x) + 𝑅

3
(x) + 𝑅

4
(x)

1 + 𝑄
1
(x) + 𝑄

2
(x)

,

𝑅
2
= 0.4648333096𝑥

2

− 0.07770850670𝑥𝑦

+ 0.2509240187𝑦
2

,

𝑅
3
= −0.0103476214205𝑥

3

+ 0.0197320143477𝑥
2

𝑦

− 0.0291440548148𝑥𝑦
2

+ 0.0390387604663𝑦
3

,

𝑅
4
= 0.000967433200671𝑥

4

− 0.00183392836942𝑥
3

𝑦

− 0.000331164573248𝑥
2

𝑦
2

− 0.00185999715174𝑥𝑦
3

+ 0.00320488908290𝑦
4

,

𝑄
1
= −0.0153579530898𝑥 + 0.0484049077942𝑦,

𝑄
2
= −0.0188227332305𝑥

2

+ 0.0118205411592𝑥𝑦

− 0.00704546632408𝑦
2

,

(19)

and 𝐶∗ = 0.4. Thus, 𝑆
𝐴
= {x : 𝑉

4
(x) < 0.4} is an estimate of

𝑆 for the system (17) when (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) = (19.2, 0.5, 1,
10, 0.5, 1, 0.15). This estimate and its phase portrait are given
in Figure 2.

Example 2. We consider the following reduced system for the
suboptimal immunity model with nonlinear incidence rate
and saturated treatment rate:

𝑑𝐼

𝑑𝑡
= 𝛽(

𝐴

𝜇
− 𝐼 − 𝑅) 𝐼

2

− 𝑣𝐼 −
𝑐𝐼

1 + 𝑎𝐼
− 𝜇𝐼,

𝑑𝑅

𝑑𝑡
= 𝑘 (𝑣𝐼 +

𝑐𝐼

1 + 𝑎𝐼
) − 𝜇𝑅.

(20)

0
0

1

2

3

4

5

6

2 4 6 8 10
𝑥

𝑦

Figure 1: The DOA when (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) = (19.2, 0.5, 1, 10, 0.5,
1, 0.25) for the model (17).

0
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Figure 2: The DOA when (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) = (19.2, 0.5, 1, 10, 0.5,
1, 0.15) for the model (17).

For this example, we consider the nonlinear incidence rate
𝛽𝑆𝐼
2. According to [9], one of the reasons to consider the

nonlinear incidence rate,𝛽𝑆𝑝𝐼𝑞, is to represent heterogeneous
mixing. Take (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) = (6, 0.5, 1.27, 2, 4, 1, 0.5).
Rewrite 𝑋 and 𝑌 for 𝐼 and 𝑅, and translate the equilibrium
point to the origin by using 𝑥 = 𝑋 + 2.046474176 and
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𝑦 = 𝑌 + 1.522295468. By using the numerical procedure in
Section 2, we have the following result:

𝑉
5
(x) = 𝑅2 (x) + 𝑅3 (x) + 𝑅4 (x) + 𝑅5 (x)

1 + 𝑄
1
(x) + 𝑄

2
(x) + 𝑄

3
(x)

,

𝑅
2
= 0.3762413699𝑥

2

− 0.8519913644𝑥𝑦

+ 0.9464782714𝑦
2

,

𝑅
3
= −0.126181821512𝑥

3

+ 0.173193705351𝑥
2

𝑦

+ 0.570250486120𝑥𝑦
2

+ 0.0690548525960𝑦
3

,

𝑅
4
= −0.105927461038𝑥

4

+ 0.356193079263𝑥
3

𝑦

− 0.518348042762𝑥
2

𝑦
2

+ 0.765173017380𝑥𝑦
3

− 0.518220094340𝑦
4

,

𝑅
5
= −0.0125629412858𝑥

5

− 0.278448382561𝑥
4

𝑦

+ 0.788615459079𝑥
3

𝑦
2

− 1.85902079923𝑥
2

𝑦
3

+ 1.38491789447𝑥𝑦
4

− 1.09987599898𝑦
5

,

𝑄
1
= 3.17302544294𝑥 − 4.63120513014𝑦,

𝑄
2
= −2.99749941519𝑥

2

+ 1.05587625048𝑥𝑦

− 5.75817945157𝑦
2

,

𝑄
3
= 1.48286905974𝑥

3

− 11.5305874770𝑥
2

𝑦

+ 10.9212904075𝑥𝑦
2

− 11.6184182953𝑦
3

,

(21)

and 𝐶∗ = 0.0002. Thus, 𝑆
𝐴
= {x : 𝑉

5
(x) < 0.0002} is an

estimate of 𝑆 for the system (20) when (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) =
(6, 0.5, 1.27, 2, 4, 1, 0.5). This estimate and its phase portrait
are given in Figure 3.

Here, we study the effect of the value 𝑎 on the DOA.With
the value of 𝑎 which is ten fold of previous calculation, let
(𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) = (6, 0.5, 1.27, 2, 40, 1, 0.5). Rewrite 𝑋 and
𝑌 for 𝐼 and𝑅, and translate the equilibriumpoint to the origin
by using 𝑥 = 𝑋 + 2.561174171 and 𝑦 = 𝑌 + 1.651103929. By
using the numerical procedure as in Section 2, we have the
following result:

𝑉
5
(x) = 𝑅2 (x) + 𝑅3 (x) + 𝑅4 (x) + 𝑅5 (x)

1 + 𝑄
1
(x) + 𝑄

2
(x) + 𝑄

3
(x)

,

𝑅
2
= 0.003578383960𝑥

2

− 0.004275326810𝑥𝑦

+ 0.01184451697𝑦
2

,

𝑅
3
= −0.00143947851169𝑥

3

+ 0.00137383162785𝑥
2

𝑦

+ 0.00388197475475𝑥𝑦
2

+ 0.000772525621974𝑦
3

,

𝑅
4
= 0.000276577054304𝑥

4

− 0.000324162597520𝑥
3

𝑦

− 0.000204916381848𝑥
2

𝑦
2

+ 0.000107606340123𝑥𝑦
3

− 0.0000451580448282𝑦
4

,

𝑅
5
= 0.0000533208751600𝑥

5

− 0.0000416190488560𝑥
4

𝑦𝑦
2

+ 0.0000894460564105𝑥
3

− 0.000374374857674𝑥
2

𝑦
3

− 0.000460737371773𝑥𝑦
4

− 0.000456992688012𝑦
5

,

0
0

1

2

3

4

2 4 6 8
𝑥

𝑦

(a)

1

1.2

1.4

1.6

1.8

2

1.6 1.8 2 2.2 2.4 2.6 2.8 3
𝑥
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(b)

Figure 3: (a) the DOA when (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) = (6, 0.5, 1.27, 2,

4, 1, 0.5) for the model (20), (b) a detailed look for the phase portrait
in (a).

𝑄
1
= 0.706952511101𝑥 − 0.577082269086𝑦,

𝑄
2
= −0.104792704737𝑥

2

− 0.246689057581𝑥𝑦

− 0.104749443691𝑦
2

,

𝑄
3
= −0.00279459100782𝑥

3

− 0.00352025797534𝑥
2

𝑦

− 0.00315115011888𝑥𝑦
2

− 0.0581955306735𝑦
3

,

(22)
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Figure 4: The DOA when 𝑎 = 40 for the model given by (20).
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Figure 5: The DOA when 𝑎 = 12 for model (20).

and 𝐶∗ = 0.043. Thus, 𝑆
𝐴
= {x : 𝑉

4
(x) < 0.043} is an estimate

of the DOA for the system (20) when (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) =
(6, 0.5, 1.27, 2, 40, 1, 0.5). This estimate and its phase portrait
are given in Figure 4.

By applying the same procedure, we calculate the DOA
when 𝑎 = 12, and we obtain the DOA as in Figure 5. It is
clear that with (𝐴, 𝛽, 𝑣, 𝑐, 𝑎, 𝜇, 𝑘) = (6, 0.5, 1.27, 2, 12, 1, 0.5),
increasing the value of 𝑎 will increase the DOA for the
suboptimal model given by (20).

5. Concluding Remarks

In this paper, we deal with the problem of estimating the
domain of attraction (DOA) for the suboptimal epidemic
model. We have successfully established a procedure to
determine the maximal Lyapunov function in the form of
rational functions and compute the domain of attraction for

epidemic models. Determination of the DOA is extremely
important in order to understand the dynamic behaviour
of the transmission of disease as a function of the initial
population distribution. In our first example, we show that,
for certain values of the parameter, a larger 𝑘 value (i.e., the
model ismore toward the SIRmodel) leads to a smaller DOA.
In our second example, we show that within certain values
of the parameter, decreasing the 𝑎 value will yield a smaller
DOA.
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