Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2013, Article ID 514174, 7 pages
http://dx.doi.org/10.1155/2013/514174

Hindawi

Research Article

A Generalization of Lacunary Equistatistical Convergence of
Positive Linear Operators

Yusuf Kaya and Nazmiye Goniil

Department of Mathematics, Faculty of Arts and Sciences, Bulent Ecevit University, 67100 Zonguldak, Turkey
Correspondence should be addressed to Nazmiye Goniil; nazmiyegonul8l@hotmail.com

Received 25 January 2013; Revised 17 April 2013; Accepted 18 April 2013

Academic Editor: Adem Kiligman

Copyright © 2013 Y. Kaya and N. Gontil. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In this paper we consider some analogs of the Korovkin approximation theorem via lacunary equistatistical convergence. In
particular we study lacunary equi-statistical convergence of approximating operators on H,, spaces, the spaces of all real valued

continuous functions f dened on K = [0, 00)™ and satisfying some special conditions.

1. Introduction

Approximation theory has important applications in the
theory of polynomial approximation, in various areas of
functional analysis, numerical solutions of integral and
differential equations [1-6]. In recent years, with the help
of the concept of statistical convergence, various statistical
approximation results have been proved [7]. In the usual
sense, every convergent sequence is statistically convergent,
but its converse is not always true. And, statistical convergent
sequences do not need to be bounded.

Recently, Aktuglu and Gezer [8] generalized the idea of
statistical convergence to lacunary equi-statistical conver-
gences. In this paper, we first study some Korovkin type
approximation theorems via lacunary equi- statistical conver-
gence in H,, spaces. Then using the modulus of continuity,
we study rates of lacunary equi-statistically convergence in
H,,.

We recall here the concepts of equi-statistical conver-
gence and lacunary equi-statistical convergence.

Let f and f, belong to C(X), which is the space of
all continuous real valued functions on a compact subset
X of the real numbers. {f,} is said to be equi-statistically
convergent to f on X and denoted by f, — f (equistat) if
for every € > 0, the sequence of real valued functions

Pre (%) = ! fm<r:f,,(x)-f(x)>¢e} o)

r

converges uniformly to the zero function on X, which means
that
lim [ p, . (')”c(x) =0. (2)

r— 00

A lacunary sequence 0 = {k,} is an integer sequence such that

ky =0, h,=k,—k,_, — 0o asr—o0. (3)

In this paper the intervals determined by 6 will be denoted by
I, = (k,_,,k,], and the ratio k, /k,_, will be abbreviated by g,..

Let 0 be a lacunary sequence then {f,},. is said to be
lacunary equi-statistically convergent to f on X and denoted
by f, - f (0-equistat) if for every ¢ > 0, the sequence of
real valued functions {s, .} _ defined by

Hmel:f,(x)-fx) = (@4

1
Spe(x) = h_r
uniformly converges to zero function on X, which means that

A flsre Ol = 0- (5)
A Korovkin type approximation theorem by means of
lacunary equi-statistical convergence was given in [8]. We can
state this theorem now. An operator L defined on a linear
space of functions Y is called linear if L(af + fBg,x) =
aL(f,x) + BL(g,x), for all f,g € Y, o, B € R and is called
positive,if L(f, x) > 0,forall f € Y, f > 0.Let X beacompact
subset of R, and let C(X) be the space of all continuous real
valued functions on X.



Lemma 1 (see [8]). Let 0 be a lacunary sequence, and let
L,: C(X) — C(X) be a sequence of positive linear operators

satisfying
L,(t' x) > x", (0-equistat), v=0,1,2, (6)
then for all f € C(X),

L, (fx) ~

We turn to introducing some notation and the basic
definitions used in this paper. Throughout this paper I =
[0, 00). Let

f, (6-equistat) . (7)

C(I):={f: f is a real-valued continuous function on I},

(8)
and
Cg(I):= {f eC(I): fis bounded function on I}.

Consider the space H,, of all real-valued functions f defined
on I and satisfying

@0 <w(f

2

I+x 1+y

where w is the modulus of continuity defined by

w(f36) := sup |f )= f ()]

x-y|<s

for any § > 0
)

(see [9]). Let K := I* =
Cy(K) is given by
Il=sup |f(xy)l.

(xy)eK

[0,00) x [0, 0), then the norm on

f € CB (K) > (12)

and also denote the valued of Lf at a point (x,y) € K is
denoted by L( f; x, y) [10, 11].

w,(f;8,,0,) is the type of modulus of continuity for the
functions of two variables satisfying the following properties:
for any real numbers §;, J,, 61, 6;, 81’, and 6;’ >0,

(i) w,(f;6y,-) and w,(f; -, §,) are nonnegative increasing
functions on [0, 00),

(i) w,(f; 8] + 81, 8,) < wy(f;8],8,) + w,(f: 8], 8,),

(i) w,(f38,, 85 +85) < wy(£36,,85) + w,(f;81,85),

(iv) limg 5 _, ow,(f36,,8,) =0

The space H,,
K and satisfying

|f (wv) = f (x9)]

<f’1+u 1+x|

Itis clear that any function in H,, is continuous and bounded

on K.

, is of all real-valued functions f defined on

vy D (13)
l+v 1+yl|)’
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2. Lacunary Equistatistical Approximation

In this section, using the concept of Lacunary equistatistical
convergence, we give a Korovkin type result for a sequence
of positive linear operators defined on C(I"), the space of all
continuous real valued functions on the subset I'"" of R”, and
the real m-dimensional space. We first consider the case of
m = 2. Following [7] we can state the following theorem.

Theorem 2. Let 0 = {k,} be a lacunary sequence, and let
{L,} be a sequence of positive linear operators from H,, into
Cy(K). L, is satisfying L.(f,;x,y) = f,(x,y) (0- equzstat)

v—Oltherefk(uv)e 0y ,k=0,1,2,3,
fow,v) =1,
u
Frwy) = u+1’
£ ) = v (14)
ER I b
u \? v o2
f3(u,v)—(u+1) +<v+1) ’
then for all f € H,,,
L, (fix,y) > f(x,y), (6-equistat). (15)
Proof. Let (x, y) € K be a fixed point, f € H,, ,and assume

that (14) holds For every ¢ > 0, there exist 61, 8, > 0 such

that | f(u,v) — f(x, y)| < e holds for all (u, v) eKsansfymg
u x % y
-— , - < 0,.
|u+1 x+1 ! v+l y+1 ’ (16)
Let
X
Ks,s, = {() € K5 |2 | <a.
o6, 1= 6Y) € 1+u 1+x<1
17)
LN/ P 82}.
v+l y+1
Hence,

7@~ Gl = I @ = F G

Hf @)= F oDy wn 08)

<e+2M

Xk, 5, (V)

where xp denotes the characteristic function of the set P.
Observe that

() < 1<L_L>2+L<L_L>z
AR\ T8\1+u  l+x/)  &2\v+l y+1)
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Using (18), (19), and M :=

|f )= f ()]

2M ( u X )2 ( % y >2
<e+ —- - + - ,
8% (\1+u 1+x v+l y+1

(20)

| 1l we have

where § := min{é;, §,}.
By the linearity and positivity of the operators {L,} and by
(18), we have

(s (5280
<L, (f5%y)
—z[lfo, (fxy)+ 'x,y)]Lr(fs;xJ’)
—2[1j (fisxy) + ——L, (fz;x’)’)]

" [(ljx>2+<1fy>2]Lr(fo§X,y).

Hence, we get
L, (fix9) = f (% 9)]
<L, (If wv) = f (e p)|5% )
+1f G L (fos 2 3) = fo (%)

(oM (JL___g;)Z
T 82 l+u l+x

2
+< v >};x,y>
v+l 1+y

+ ML, (fo; %) = fo (%, )|

SLr(e 1(1‘1 )
+(f2 L+y fO)} )

+ ML, (fo; %, ¥) = fo (%, 9)

(21)

=Lr(£;x,y)+Lr( (f1 1+xf)2

+<f2_1yyf°>2;x’y)

+M|L,(f0;x,}’)_f0(x’y)|

4ﬁgu4@%w—ﬁ&wﬂ
48—1\24 L, (fs2,9) = f>(x9)|
+ 48—1\2/1 |Lr (fuxy)-fi (x,y)|

+<s+M+

>|L (forx.9) = fo (. 7)]
= 28—]\2/[|L,(f3;x>J’)—f3 (% p)|
+%¥uxﬁmﬂ—ﬁﬁwﬂ

S (5% 2) - fi )

+e+ N |L, (fox ) - fo (x,y)| >
(22)

where N := & + M + 4M/&”. For a given y > 0, choose & > 0
such that & < p. Define the following sets:

(i) = [ (o
D (x.y) = {m e N3 [L,, (i 7) - £ (x.9)] 2

D,(x,y)={meN:|L

y)| = u},

#—8}
4N |’

(23)

where v = 0, 1, 2, 3. Then from (22) we clearly have

3

D,(xy)c|JD

v=0

(6 9). (24)

Therefore define the following real valued functions:

Soad (503) = - [ € 1 Ly (Fiy) = £ ()] 2
S:,y (x,y)
=i e ) - rGenl2 57

(25)
where v = 0, 1, 2, 3. Then by the monotonicity and (24) we get
3

S (%7) < Z

(x, y) (26)

for all x € X, and this implies the inequality

3
Srou ()"K = Z

S:M (')"K' (27)

Taking limit in (27) as ¥ — 00 and using (14) we have

lim
r — 00

S O] = 0. (28)



Then forall f € H,, , we conclude that

L.(fix,y) > f(x,y), (6-equistat). (29)

O

Now replace I* by I = [0,00) X --+ x [0,00) and by

an induction, we consider the modulus of continuity type

function w,, as in the function w,. Then let H,, be the space
of all real-valued functions f satisfying

|f (uistigs 1) = f (152505 X))
U X1 Umn Xm
< ; - .
_w2<f’u1+1 x+ 17w, + 1 xm+1>

(30)

Therefore, using a similar technique in the proof of
Lemma 1 one can obtain the following result immediately.

Theorem 3. Let 0 = {k,} be a lacunary sequence, and let
{L,} be a sequence of positive linear operators from H,, into
Cyx(I™). L, is satisfying

L, (fsxy) = f,(xy), (0-equistat),

(31)
v=0,1,2,....m+1,
where fi(u,u,,...,u,) €H, , k=0,1,2,...m+1,
fo(uptigs.suy) = 1,
U
Ui, Uyy oo s U = >
fi (uyuy m) w1
u
fm(ul’u2>""um): um'-:l-l,
u 2
fm+1 (ul’uZ"">um) = <u1_:_1)

Then forall f € H,, ,

L, (fiupthy, ... JUy,), (0-equistat).

(33)

sUy) > f (g1,

Assume that I = [0,00), K := IxI. One considers the following
positive linear operators defined on H,, (K):

1
(1+x)"(1+y)"

22 () (1) (1)

k=01=0
(34)

B,(fix,y) =

where f € H,,, (x,y) € Kandn € N.
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Lemma 4. Let 0 = {k,} be a lacunary sequence, and let

1
(1+x)"(1+ y)"

22 () () (1)

k=01=0
(35)

B,(fix,y) =

be a sequence of positive linear operators from H,, into Cg(K).
If B, is satisfying

B,(f;x,y) > f,(x,y), (0-equistat), v=0,1,2,3,
fO (u) V) = 1)
u
Sl =

v
u,v) = ——,
fz( ) v+ 1

po= () +(537):

(36)
then for all f € H,, ,

B,(fix.y) > f(x.y), (6-equistat). (37)

Proof. Assume that (36) holds, and let f € H,, . Since

(1+x)”=i<z>xk, (1+y)”=§<7)yl, (38)

k=0

it is clear that, for alln € N,

e b))y
T /1. \n X y
(1+2)"(1+y) kzolzzo k)= I

- (1+x)”1(1+y)" <,§;’) (Z) Xk>g<7) =1

Bn(fo;x’y) =

Now, by assumption we have

B, (fos%,y) = fo (x,7), (6-equistat).  (40)
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Using the definition of B,,, we get

Bn (fl;x’y)
B 1
T a +x)"(1+ )"

o ks(n-k+1) n\ xe (1) 1
Z: ksn-k+1))+1 <k>x Z<l>y

- +x)“1(1 +y)"inli1 <Z) xké (’l’>yl (41)

k=1
1 Tkl n )\ ke
_(1+x)”k;)n+1<k+1>x
_ x "1k+1< n >xk
_(1+x)”k=0n+1 k+1)™"
Since
n n—-1 n
(k+1>=< k >k+1 (42)
we get
x Sk+1 n (n-1\ &
B 3%, y) =
n (fi5%7) (1+x)”k§')n+lk+1< k )x
x S on (n-1\ &
:(1+x)”];0n+1< k )x
X - (n—1\ &
. X
(1+x)(1+x)”1 n+1 Z( >
- ()
Tn+1\x+1/°
(43)
So, we have
x n
B X, V) — N = —-1]. 44
B, (fix )= fi (e = 2| -1 @)

The fact that lim, _, . ,(n/(n + 1)) = 1 and using a similar
technique as in the proof of Lemma 1, we get

By (fisx ) = fi(x )| z el = 0

r (45)
Hence we have
B, (fyx,y) > f,(x,y), (B-equistat). (46)
Also we have
B,(fsx.y) > f(x,7), (6-equistat).  (47)

5
To see this, by the definition of B,,, we first write
B (o ())(1)=/
(i) = (1+x)" 1+y) kz();
k? ?
* [(n+1)2 ' (n+1)2]
1 n kn ( >
(1+x Y"1+ y)" kl(n+1) ( >x;
1 " In k
' (1+x)"(1+y ",;,() z(rz+l) < )
1l - kg
a (1+x)”k;(n+l)2x
1 Sk(k-1) (n) k
+(1+x)"kz§(n+1)2 k)™
1 —I(-1) <n> I
+(1+y)n;(n+l)2 1)’
1 <« !
+(1+y)”;(n+1)2y'
(48)
Then,
) _nn-1) x?
By (fix.) = (n+1)* (x+ 1)
L x _,_m y
1 x+1) (me1py+1
)/2 n(n—l)
(y+1)" (s 1)’
which implies that
|B,,(f3;x,y)—f3(x,y)|
B x* N )/2 n(n—l)_l‘
S\ (1)) 1) (50)
L x Y
n+1)?%x+1 y+1|
Since
nn-1) . n
T, lim ——— =0,
ng%o (n+ 1)2 1 n1—>ngo(n+1)2 0 (51
we get
lim H—| {mel :|B,(fyx9) - f3(x,y)| = €}|| =0.
(52)
Thus B,(f5;x,¥) — f3(x,¥), (0-equistat). Therefore we

obtain that for all f ¢

sz’ Bn(f; x:y) - f(x))/),
(0-equistat). O



3. Rates of Lacunary
Equistatistical Convergence

In this section we study the order of lacunary equi-statistical
convergence of a sequence of positive linear operators acting
on H,, (K), where K = I ™ _To achieve this we first consider
the case of m = 2.

Definition 5. A sequence {f,} is called lacunary equi-
statistically convergent to a function f with rate 0 < 8 < 1if
for every € > 0,

e G (53)

r— 00 r*ﬁ

where s, .(x, y) is given in Lemma 1. In this case it is denoted
by

fi—-f=o (riﬁ), (0-equistat) on K=IxI.  (54)

Lemma 6. Let {f,} and {g,} be two sequences of functions in
H,, (K), with

f,—f=o (r_ﬁl) , (0-equistat),

gr—9g=o (r_ﬁz), (6-equistat) .

(55)

Then one has
(f,+g,)-(f+g)=o0 (r_ﬁ) , (6-equistat), (56)
where 3 = min{f3,, 3,}.

Proof. Assume that f, — f = o(r™"), (f-equistat) and g, —
g = o(r_ﬁz), (6-equistat) on K. For all ¢ > 0, consider the
following functions:

Sr,s (.X, y)

- hi [fne L [(fu+ 9.) (% 9) = (f +9) (. p)[ 2 &}

r

s:)s(x,y) = hlr {ne L |f, (%)= f(x)] 2 %H,

{n el : |gn (x)—g(x)| > EH
(57)

1
Sf,s (.X, y) = h_

r

Then we have

) ||5r,s (x, J’)”sz (K)
m —— =

r— 00 r—ﬁ

e e )|

r— 00 r—ﬁ

y s7e (% 9)]
+ % rB ?

(58)

sr,e (x’ y) < Si,s (X,y) + Sf,s (X, y)
B T P P

_Se(0) N o (%)
- r’ﬁl r’ﬁz ’
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and hence

"Sr,e (x, )’)“Hw2 (K) Si@ (x, y)“sz(K) Sf,s (x, y)“Hw2 (K)
< + .

r_ﬁ - r_ﬁl r_/gz

(59)

Taking limit as # — 00 and using the assumption complete
the proof.

Now we give the rate of lacunary equi-statistical conver-
gence of a positive linear operators L,.(f; x, ¥) to f(x, y) with
the help of modulus of continuity.

Theorem 7. Let K = I X I, and let L, : H, (K) — H, (K)
be a sequence of positive linear operators. Assume that

@) L.(fos%9) = fo = o(r Pn), (B-equistat) on K,
(i) w( f; 8,)x,8m,) =o(r ), (0-equistat) on K with

2
6,x=\jL,<< 4 —L>,x>,
’ 1+u 1+x
2
v Yy
S6,,=1|L - V).
24 \]'(<l+v 1+y> y)

L (fix.y) = f(x.y) =o(rF), (-equistat) on K, (61)
where p = min{B,, B,}.
Proof. Let f € H,, (K)and x € K. Use
L, (fix, ) = f (%, 9)]
<L (|f )= f(xp)sxp)
+1f oy Ly (fos % 3) = f (7))

(60)

Then

u x | % y
- 5

SLr<w2<ﬁl1+u 1+v_l+yl>;x’y)
+1f G L (fos 2 9) = fo (%, 9)]

<(1+L, (fos %) wy (f: 8,061,y
+MIL, (fos % ¥) = fo (x: ¥)|

= 2w, (f38,,0:8,,) + ML, (fos ) = fo (x. )]

T w, (f;Sr,w(Sr,y) |Lr (fO;x’y) - fO (X,y)l >

1+x

(62)

where M = | f] H, (k) Using inequality (62), conditions (i)
and (ii) we get

:0)

r—ocopP

tim L | Hr € 3 2, () - £ ()] 28l
r (63)
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so we have
L.(fix.y)-f(xy)=0 (r_ﬁ) , (6-equistat) on K.
(64)
O
Finally we give the rate of lacunary equi-statistical con-
vergence for the operators L,(f,x) by using the Peetre’s K-

functional in the space H,, (K). The Peetre K-functional of
function f € H,, (K) is defined by

K (f; Orie Ory ) B gGIi{nf(K)
wy

{”f - g”CB(K) + 8”g"CB(K)} )
(65)
where

”f"CB(K) = sup |f (% )] (66)
x,y)EK

Theorem 8. Let f € H,, (K) and {K(f;6,,,9, )} be the
sequence of Peetre’s K-functional. If

ool )
7,X r fl 1+x Xy Co(K)
x 2
L - T 5 X >
" ’((fl 1+x> x y) cB(K)"g”CB(K)
Yy
= L - 5 X
6r,y r<<f2 1+)’> X y> ) (67)
y 2
e ((a-25) 0] el

dim |8, .|| = 0, (6-equistat)

lim

r— 00

3.,

| =0, (0-equistat)
onx,y €K, then

I, (Fx9) = f (6 Pleyuo < K (f:8,00,,) . (68)
Proof. For each g € H,, (K), we get

1L, (g5 % ¥) = 9 (% e,
X

L - ]%

r(<f1 1+x> xy) Cy(K)
x 2

L((n- ) e0)))

y
+|g L,<f——>;x,y )
oleo [1- (- 725)50],

S(E)

= (Sr,x’ 8r,y) "g"CB(K).

< Ioleyao (

+

(69)

+
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