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In the present paper, we consider a subclass of p-valent analytic functions and obtain certain simple sufficiency criteria by using
three different methods for the functions belonging to this class. Many known results appear as special consequences of our work.

1. Introduction

Let A ,(n) be the class of functions f(z) analytic and p-valent
in the open unit disk U = {z : |z| < 1} and of the form

f@=2"+ Y az (peN). M
k=p+n
In particular, Ap(l) = AP’ A (n) = A(n),and A (1) = A. By
é’;(n, b) and %p(n, b),n,p € Nand b € C\ {0}, we mean the
subclasses of A ,(n) which are defined, respectively, by

Re{1+ ! (zf (Z)—p>}>0, (zel),

p+b-1\ f(2)
Re{1+p+llg_1 (ZJJ:,((ZZ))—p+1)}> >0, (zel).
(2)

Forb = 1, p = 1, n = 1, the previous two classes defined in
(2) reduce to the well-known classes of starlike and convex,
respectively.

For functions f(z), g(z) € Ap(n) of the form (1), we de-
fine the convolution (Hadamard product) of f(z) and g(z)

by

(f*g)(z)=2"+ Z ab ", (zeU). 3)

k=p+n

Now we define the subclass M (1, b; g(2)) opr(n) by

1 2(f (2) % g(2))
R - >
e{1+p+b—1< @) %9 p>}>0 @)
(zel).

Sufficient conditions were studied by various authors for
different subclasses of analytic and multivalent functions, for
some of the related work see [1-8]. The object of the present
paper is to obtain sufficient conditions for the subclass
./%P(n, b; g(2)) ofAP(n). We also consider some special cases
of our results which lead to various interesting corollaries and
relevances of some of these with other known results also
being mentioned.

We will assume throughout our discussion, unless other-
wise stated, thatn € N, p e N, b e C\ {0}.

2. Preliminary Results

To obtain our main results, we need the following Lemma.

Lemma 1 (see [9]). Ifq(z) € A(n) with n > 1 and satisfies the
condition

n+1

Vin+ 1) +1

|q’ (Z) - 1. < (Z € [U) N (5)



then
q(z) e " (n,1). (6)
Lemma 2 (see [10]). If q(z) € A(n) satisfing the condition
org 4' @] < 36, (< V), 7)
where 6, is the unique root of the equation
2tan”" [n(1-9,)] +7(1-28,) =0, (8)
then
q(z)e S (n1). 9

Lemma 3 (see [11]). Let Q be a set in the complex plane C, and
suppose that ¥ is a mapping from C* x U to C which satisfies
Y(ix, y,z) ¢ Q for z € U and for all real x, y such that y <
(-n/2)(1 + x2). Ifq(z) = 1 +¢,2" + -+ is analytic in U and
v (q(z),zq'(z),z) € Qforallz e U, then Re g(z) > 0.

3. Main Results
Theorem 4. If f(z) € A ,(n) satisfies

<f(z) % g(2) )”‘P*b‘” 2f (@) % g(2)
zP f(2)*g(2)

+b—1]»

—(p+b—1)| (10)

n+1

< —
i+ 1)+ 1

then f(z) € /%p(n, b; g(2)).

lp+b-1] (zeU),

Proof. Let us set a function p(z) by
_ (@ g\
p2)=z (z—l’
(11)

a..b
}’l+p }’l+p zn+
(p+b-1)

for f(z) € Ap(n). Then clearly (11) shows that p(z) € A(n).
Differentiating (11) logarithmically, we have

=z+

P 1 [f@xg@ pl. 1
P2 ptb-1 [f(z)*g(z) z] ty W
which gives
P (=) -1
_ (f (2) * g(z))"‘*’*"‘” 1
- 2P p+b-1 (13)

U@ g@)
f (@) *g(2)

+b—1}—1.
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Thus using (10), we have

n+1

\(n+ 1%+ 1,

Hence, using Lemma 1, we have p(z) € $*(n, 1).
From (12), we can write

' () 1 A(f@+g)
piz) p+b-1| f(2)xg(2)

Since p(z) € §*(n,1), it implies that Re(zp'(z)/p(z)) > 0.
Therefore, we get

] 2(f (2) * g (2))
Re{”pw—l( @)+ g ‘P>}
zp' (z)

p(2)

and this implies that f(z) € /lp(n, b; g(2)).
Settingn = p = 1 and g(z) = z/(1 — z) in Theorem 4, we
get the following. O

P (2)-1| < (z € V). (14)

p:| +1. (15)

(16)

= Re >0,

Corollary 5. If f(z) € A satisfies
1/b '
(f(z)> {Zf (z)+b—1}—b‘<ib| (zel),

z f(2) V5

17)

then f(z) € & (b), the class of starlike functions of complex
order b.

Puttingn = p = 1 and g(z) = z/(1 - z)? in Theorem 4,
we have the following.

Corollary 6. If f(z) € A satisfies
(7 @)™ fef" @+ b @) -] < 21l

NS (zel),

(18)

then f(z) € G(b), the class of convex functions of complex
order b.

Remark 7. Ifwe putb = 1-a in Corollaries 5 and 6, we get the
results proved by Uyanik et al. [1]. Furthermore, for b = 1, we
obtain the results studied by Mocanu [2] and Nunokawa et al.
[3], respectively. Also if we setb = 1-a with g(z) = zf/(1-2")
and g(z) = zP/(1 - z”)z‘i7 in Theorem 4, we obtain the results
due to Goyal et al. [4].

Theorem 8. If f(z) € A,(n) satisfies
. 1/(p+b-1)
g (LE209)"

zP

] 2(f (2) * g (2))
”rg{pw—l( f@x9@

+b—1>H (19)

where §,, is the unique root of (8), then f(z) € ﬂp(n, b; g(2)).

< gan (z € U),
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Proof. Let p(z) be given by (11), which clearly belongs to the
class A(n).
Now differentiating (11), we have

p o (f@) g\
o (L299)
(20)

1 [sf@+*g@)
Xp+b—1{ F@+9@ ”’_1}
which gives
|argp'(z)|
N 1/(p+b-1)
=larg<f(z) g(z)>

zP

+arg 1 z(f (z) = g(z))' .
p+b-1 f(2)*g(z)

(21)

i

larg p' (2)] < gan (zeU), (22)

Thus using (19), we have

where §,, is the root of (8). Hence, using Lemma 2, we have
p(z) € $*(n, 1).
From (20), we can write

2(f (2) * g(2))
f(2)*g(z)

Since p(z) € §*(n, 1), it implies that Re(zp'(2)/p(z)) > 0.

Therefore, we get (16), and hence f(z) € /%P(n, b; g(2)).
Makingn = 1,b = 1 —a with0 < a < pand g(z) =

zP /(1 - z), we have the following. O

zp'(z)_ 1
p(z) p+b-1

-pl+1. ()

Corollary 9. If f(z) € A, satisfies

f(2 zf' (2)
arg<z—p>+(p—oc)arg{ @ —oc}

(24)
< gal (p-a) (zel),

where 8, is the unique root of (8) withn = 1, then f(z) €
é’; (), the class of p-valent starlike functions of order «.

Alsoifwetaken = 1,b = 1 —a with0 < o < pand
g(z) = zP/(1 - 2)*F in Theorem 8, we obtain the following
result.

Corollary 10. If f(z) € A, satisfies

22}
arg(pzp_1 +(p-«a)arg s +1-« o)

< gél(p—a) (z €U,

where 8, is the unique root of (8) withn = 1, then f(z) €
€ (), the class of p-valent convex functions of order a.

Remark 11. For putting p = 1, « = 0 in Corollary 10 and p =
1 in Corollary 9, we obtain the results proved by Mocanu [10]
and Uyanik et al. [1], respectively.

Theorem 12. If f(z) € A »(n) satisfies

1 [2(f(2)*g(2) ( 2(f (2)%g(2)" )}
R 1
e[zﬂb—l{ @@ \"(F@a@)

M
+b—1] >—+N,

4L
(26)
where 0 < p < 1 and
n
L:p<p+Re b—1+5>,
M=2pImb,
N = p((((Re b)* - (Im b)* — Re b) (27)

x(p+Reb-1)+(Imb)*(2Reb-1)
x((p+ Re b—-1)" + (Im b)z)_1> —g)
then f(z) € /%P(n, b; g(2)).
Proof. Let us set

2(f (2) * g(2))
f(2)*xg(2)
Then p(z) is analytic in U with p(0) = 1.

Taking logarithmic differentiation of (28) and then by
simple computation, we obtain

=(p+b-1)p(z)-b+1. (28)

1 2(f (2) * g(2))
p+b-1 f(z)*g(z)

(o)) e
= Azp' (2) + Bp’ (2) + Cp (2) + D
=¥ (p(2),2p' (2),2)
with
A=p, B=p(p+b-1),

_pb*—pb
Cp+b-1

(30)
C=-2pb+p+1, D

Now for all real x and y satisfying y < —(n/2)(1+ x?), we have

¥ (ix, y,z) = Ay - Bx” + C (ix) + D. (31)



Reputing the values of A, B, C, D and then taking real part,
we obtain

Re ¥ (ix, y,z) < —-Lx* + Mx + N

M\ M
=—<\/L_X—ﬁ> +E+N (32)

2
< —+N,
4L
where L, M, N are given in (27).
Let Q = {w: Re w > (M?/4L)+N}. Then ¥ (h(z), zh' (2),
z) € Qand ¥(ix, y,z) ¢ Q, for all real x and y satisfying y <
-(n/2)(1 + x%), z € U. Using Lemma 3, we have Re p(z) > 0.
This implies that

Re{H 1 <Z(f(z)*g(z)) _p>}>0, -

p+o-1\ f(2)*g(2)

and hence f(z) € /%P(n, b; g(2)).

Ifweputp =n=1,b=1-aand g(z) = z/(1 - 2)*" @ in
Theorem 12, we obtain the following result proved in [12]. [

Corollary 13. If f(z) € A satisfies
zf' (2) [ zf"(2) )}
Re{ f(z) (p f’(z) +1

ap(a D)o (a-8).

then f(z) € ™ (x).

(34)

Furthermore, for « = 0 in Corollary 13, we have the
following result proved in [13].

Corollary 14. If f(z) € A satisfies

zf' (@) [ zf" (2)
{ 7@ (P @

then f(z) € §*.
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