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We present a new gradient method that uses scaling and extra updating within the diagonal updating for solving unconstrained
optimization problem. The new method is in the frame of Barzilai and Borwein (BB) method, except that the Hessian matrix is
approximated by a diagonal matrix rather than the multiple of identity matrix in the BB method. The main idea is to design a
new diagonal updating scheme that incorporates scaling to instantly reduce the large eigenvalues of diagonal approximation and
otherwise employs extra updates to increase small eigenvalues. These approaches give us a rapid control in the eigenvalues of the
updating matrix and thus improve stepwise convergence. We show that our method is globally convergent. The effectiveness of the
method is evaluated by means of numerical comparison with the BB method and its variant.

1. Introduction

In this paper, we consider the unconstrained optimization
problem

min𝑓 (𝑥) , 𝑥 ∈ 𝑅𝑛, (1)

where 𝑓(𝑥) is a continuously differentiable function from 𝑅𝑛

to 𝑅. Given a starting point 𝑥
0
, using notations 𝑔

𝑘
= 𝑔(𝑥

𝑘
) =

∇𝑓(𝑥
𝑘
) and 𝐵

𝑘
as an approximation to the Hessian 𝐺

𝑘
=

[∇2𝑓(𝑥
𝑘
)], the quasi-Newton-based methods for solving (1)

are defined by the iteration

𝑥
𝑘+1

= 𝑥
𝑘
− 𝛼
𝑘
𝐵−1
𝑘
𝑔
𝑘
, 𝑘 = 0, 1, 2, . . . , (2)

where the stepsize 𝛼
𝑘
is determined through an appropriate

selection.Theupdatingmatrix𝐵
𝑘
is usually required to satisfy

the quasi-Newton equation

𝐵
𝑘
𝑠
𝑘−1

= 𝑦
𝑘−1

, (3)

where 𝑠
𝑘−1

= 𝑥
𝑘
− 𝑥
𝑘−1

and 𝑦
𝑘−1

= 𝑔
𝑘
− 𝑔
𝑘−1

. One of the
widely used quasi-Newtonmethod to solve general nonlinear

minimization is the BFGS method, which uses the following
updating formula:

𝐵
𝑘+1

= 𝐵
𝑘
−
𝐵
𝑘
𝑠
𝑘
𝑠𝑇
𝑘
𝐵
𝑘

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

+
𝑦
𝑘
𝑦𝑇
𝑘

𝑠𝑇
𝑘
𝑦
𝑘

. (4)

On the numerical aspect, this method supersedes most of the
optimizationmethods; however, it needs𝑂(𝑛2) storage which
makes it unsuitable for large-scale problems.

On the other hand, an ingenious stepsizes selection for
gradient method was proposed by Barzilai and Borwein [1]
in which the updating scheme is defined by

𝑥
𝑘+1

= 𝑥
𝑘
− 𝐷−1
𝑘
𝑔
𝑘
, (5)

where𝐷
𝑘
= (1/𝛼

𝑘
)𝐼 and 𝛼

𝑘
= 𝑠𝑇
𝑘−1

𝑠
𝑘−1

/𝑠𝑇
𝑘−1

𝑦
𝑘−1

.
Since that, the study of new effectivemethods in the frame

of BB-like gradient methods becomes an interesting research
topic for a wide range of mathematical programming; for
example, see [2–10]. However, it is well known that BB
method cannot guarantee a descent in the objective function
at each iteration and the extent of the nonmonotonicity
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depends in some way on the size of the condition number
of objective function [11]. Therefore, the performance of BB
method is greatly influenced by the condition of the problem
(particularly, condition number of theHessianmatrix). Some
new fixed stepsizes gradient-type methods of BB kind are
proposed by [12–16] to overcome these difficulties. In contrast
with the BB approach in which the stepsize is computed
by means of a simple approximation of the Hessian in the
form of scalar multiple of identity, these proposed methods
consider approximation of the Hessian and its inverse in
diagonal matrix form based on the weak secant equation and
quasi-cauchy relation, respectively (for more details see [15,
16]). Though these diagonal updating methods are efficient,
their performance can be greatly affected by solving ill-
conditioned problems.Thus, there is room for improve on the
quality of the diagonal updates formulation. Since methods
as described in [15, 16] have useful theoretical and numerical
properties, it is desirable to derive a new and more efficient
updating frame for general functions.Therefore our aim is to
improve the quality of diagonal updating when it is poor in
approximating Hessian.

This paper is organized as follows. In the next section,
we describe our motivation and propose our new-gradient
type method. The global convergence of the method under
mild assumption will be established in Section 3. Numerical
evidence of the vast improvements due to the new approach
is given in Section 4. Finally, conclusion is made in the last
section.

2. Scaling and Extra Updating

Assume that𝐵
𝑘
is positive definite, and let {𝑦

𝑘
} and {𝑠

𝑘
} be two

sequences of 𝑛-vectors such that 𝑦𝑇
𝑘
𝑠
𝑘
> 0 for all 𝑘. Because

it is usually difficult to satisfy the quasi-Newton equation
(3) with a nonsingular 𝐵

𝑘+1
of the diagonal form, one can

consider satisfying it in some directions. If we project the
quasi-Newton equation (3) (also called the secant equation),
in a direction 𝜐 such that 𝑦𝑇

𝑘
𝜐 ̸= 0, then it gives

𝑠𝑇
𝑘
𝐵
𝑘+1

𝜐 = 𝑦𝑇
𝑘
𝜐. (6)

If 𝜐 = 𝑠
𝑘
is chosen, it leads to the so-called weak-secant

relation,

𝑠𝑇
𝑘
𝐵
𝑘+1

𝑠
𝑘
= 𝑦𝑇
𝑘
𝑠
𝑘
. (7)

Under this weak-secant equation, [15, 16] employ varia-
tional technique to derive updating matrix that approximates
theHessianmatrix diagonally.The resulting update is derived
to be the solution of the following variational problem:

min 1

2

𝐵𝑘+1 − 𝐵
𝑘


2

𝐹

s.t. 𝑠𝑇
𝑘
𝐵
𝑘+1

𝑠
𝑘
= 𝑠𝑇
𝑘
𝑦
𝑘
,

𝐵
𝑘+1

is diagonal

(8)

and gives the corresponding solution 𝐵
𝑘+1

as follows:

𝐵
𝑘+1

= 𝐵
𝑘
+
(𝑠𝑇
𝑘
𝑦
𝑘
− 𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
)

tr (𝐸2
𝑘
)

𝐸
𝑘
, (9)

where 𝐸
𝑘
= diag(𝑠2

𝑘,1
, 𝑠2
𝑘,2
, . . . , 𝑠2

𝑘,𝑛
), 𝑠
𝑘,𝑖

is the 𝑖th component
of the vector 𝑠

𝑘
, and tr denotes the trace operator.

Note that when 𝑠𝑇
𝑘
𝑦
𝑘
< 𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
, the resulting 𝐵

𝑘+1
is not

necessarily positive definite and it is not appropriate for use
within a quasi-Newton-based algorithm. Thus, it is desirable
to propose a technique tomeasure the quality of𝐵

𝑘
in terms of

its Rayleigh quotient and try to find a way to improve “poor”
quality 𝐵

𝑘
before calculating 𝐵

𝑘+1
. For this purpose, it will

be useful to propose, at first quality a criterion to distinguish
between poor, and acceptable quality of 𝐵

𝑘
.

Let us begin by considering the curvature of an objective
function, 𝑓 in direction 𝑠

𝑘
, which is represented by

𝑠𝑇
𝑘
𝐺
𝑘
𝑠
𝑘
= 𝑠𝑇
𝑘
𝑦
𝑘
, (10)

where 𝐺
𝑘
= ∫
1

0

∇2𝑓(𝑥
𝑘
+ 𝑡𝑠
𝑘
)𝑑𝑡 is the average Hessian matrix

along 𝑠
𝑘
. Since it is not practical to compute the eigenvalue

of the Hessian matrix in each iteration, we can estimate its
relative size on the basis of the scalar

𝜌
𝑘
=
(𝑠𝑇
𝑘
𝐺
𝑘
𝑠
𝑘
/𝑠𝑇
𝑘
𝑠
𝑘
)

(𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
/𝑠𝑇
𝑘
𝑠
𝑘
)
=
𝑠𝑇
𝑘
𝐺
𝑘
𝑠
𝑘

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

=
𝑠𝑇
𝑘
𝑦
𝑘

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

. (11)

If 𝜌
𝑘
> 1, it implies that the eigenvalues of 𝐵

𝑘
approximated

by its Rayleigh are relatively small compared to those of the
local Hessian matrix at 𝑥

𝑘
. In this condition, we find that the

strategy of extra update [17] seems to be useful for improving
the quality of 𝐵

𝑘
by rapidly increasing its eigenvalues up to

those of the actual Hessian relatively.This is done by updating
𝐵
𝑘
twice to obtain �̂�

𝑘+1,2
:

�̂�
𝑘+1,1

= 𝐵
𝑘
+
(𝑠𝑇
𝑘
𝑦
𝑘
− 𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
)

tr (𝐸2
𝑘
)

𝐸
𝑘
, (12)

�̂�
𝑘+1,2

= �̂�
𝑘+1,1

+
(𝑠𝑇
𝑘−1

𝑦
𝑘−1

− 𝑠𝑇
𝑘−1

�̂�
𝑘+1,1

𝑠
𝑘−1

)

tr (𝐸2
𝑘−1

)
𝐸
𝑘−1

, (13)

and use it to obtain, finally, the updated 𝐵
𝑘+1

:

𝐵
𝑘+1

= �̂�
𝑘+1,2

+
(𝑠𝑇
𝑘
𝑦
𝑘
− 𝑠𝑇
𝑘
�̂�
𝑘+1,2

𝑠
𝑘
)

tr (𝐸2
𝑘
)

𝐸
𝑘
. (14)

On the other hand, when 𝜌
𝑘

< 1, it implies that the
eigenvalue of 𝐵

𝑘
represented by its Rayleigh is relatively

large and we have 𝑠𝑇
𝑘
𝑦
𝑘
− 𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘

< 0. In this case, we
should suggest a useful strategy to encounter this drawback.
As we reviewed before, the updating scheme may generate
nonpositive definite 𝐵

𝑘+1
when 𝐵

𝑘
has large eigenvalues

relative to those possible values of 𝐺
𝑘
, that is, when 𝑠𝑇

𝑘
𝑦
𝑘
<

𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
. On the contrary, this argument disappears when the

eigenvalues of 𝐵
𝑘
are small (i.e., 𝑠𝑇

𝑘
𝑦
𝑘
> 𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
).This suggests

that the scaling should be made to scale down 𝐵
𝑘
, that is,

choosing 𝜌
𝑘
< 1 only when 𝑠𝑇

𝑘
𝑦
𝑘
−𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
< 0 and take 𝜌

𝑘
= 1,

whenever 𝑠𝑇
𝑘
𝑦
𝑘
> 𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
. Combining these two arguments,

we choose the scaling parameter 𝜌
𝑘
such that

𝛾
𝑘
= min (𝜌

𝑘
, 1) . (15)
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This scaling resembles the Al-Baali [18] scaling that is applied
within the Broyden family. Because the value of 𝛾

𝑘
is always

< 1, then by incorporating the scaling to 𝐵
𝑘
, it decreases the

large eigenvalues of 𝐵
𝑘
constantly, and consequently we can

keep positive definiteness of 𝐵
𝑘+1

(since 𝑠𝑇
𝑘
𝑦
𝑘
> 0), which is

an important property in descent method. In this case, the
following updating:

𝐵
𝑘+1

= 𝛾
𝑘
𝐵
𝑘
+
(𝑠𝑇
𝑘
𝑦
𝑘
− 𝛾
𝑘
𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
)

tr (𝐸2
𝑘
)

𝐸
𝑘
, (16)

will be used. To this end, we have the following general
updating scheme for 𝐵

𝑘+1
:

𝐵
𝑘+1

=

{{{{{{
{{{{{{
{

𝛾
𝑘
𝐵
𝑘
+
(𝑠𝑇
𝑘
𝑦
𝑘
− 𝛾
𝑘
𝑠𝑇
𝑘
𝐵
𝑘
𝑠
𝑘
)

tr (𝐸2
𝑘
)

𝐸
𝑘
; if 𝜌

𝑘
≤ 1,

�̂�
𝑘+1,2

+
(𝑠𝑇
𝑘
𝑦
𝑘
− 𝑠𝑇
𝑘
�̂�
𝑘+1,2

𝑠
𝑘
)

tr (𝐸2
𝑘
)

𝐸
𝑘
; if 𝜌

𝑘
> 1,

(17)

where �̂�
𝑘+1,2

and 𝛾
𝑘
are given by (13) and (15), respectively.

An advantage of using (17) is that the positive definiteness
of 𝐵
𝑘+1

can be guaranteed in all iterations. This property is
not exhibited in the other diagonal updating formula such as
those in [15, 16]. Note that there is no extra storage required
to impose our strategy and the cost of computing is also not
increased significantly throughout the entire iteration. Now
we can state the steps of our new diagonal-gradient method
algorithm with the safeguarding strategy for monotonicity as
follows.

2.1. ESDG Algorithm

Step 1. Choose an initial point 𝑥
0
∈ 𝑅𝑛 and a positive definite

matrix 𝐵
0
= 𝐼. Let 𝜃 ∈ (1, 2). Set 𝑘 := 0.

Step 2. Compute 𝑔
𝑘
. If ‖𝑔

𝑘
‖ ≤ 𝜖, stop.

Step 3. If 𝑘 = 0, set 𝑥
1
= 𝑥
0
− 𝑔
0
/‖𝑔
0
‖.

Step 4. Compute 𝑑
𝑘
= −𝐵−1

𝑘
𝑔
𝑘
, and calculate 𝛼

𝑘
> 0 such

that the following condition holds:𝑓(𝑥
𝑘+1

) ≤ 𝑓max
𝑘

+𝜎𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘

where 𝑓max
𝑘

= max{𝑓(𝑥
𝑘
), 𝑓(𝑥

𝑘−1
)} and 𝜎 ∈ (0, 1) is a given

constant.

Step 5. If 𝑘 ≥ 1, let 𝑥
𝑘+1

= 𝑥
𝑘
− 𝛼
𝑘
𝐵−1
𝑘
𝑔
𝑘
and compute 𝜌

𝑘
and

𝛾
𝑘
by (11) and (15), respectively. If 𝜌

𝑘
< 𝜃 then update 𝐵

𝑘+1
by

(16).

Step 6. If 𝜌
𝑘
≥ 𝜃 then compute �̂�

𝑘+1,1
and �̂�

𝑘+1,2
by (12), (13),

respectively, and then update as defined 𝐵
𝑘+1

(14).

Step 7. Set 𝑘 := 𝑘 + 1, and return to Step 2.

In Step 4, we employ the nonmonotone line search of
[19, 20] to ensure the convergence of the algorithm. However,
some other line search strategies may also be used.

3. Convergence Analysis

This section is devoted to study the convergence behavior
of ESDG method. We will establish the convergence of the
ESDG algorithm when applied to the minimization of a
strictly convex function. To begin, we give the convergence
result, which is due to Grippo et al. [21] for the step
generated by the nonmonotone line search algorithm. Here
and elsewhere, ‖ ⋅ ‖ denotes the Euclidean norm.

Theorem 1. Assume that 𝑓 is a strictly convex function and
its gradient 𝑔 satisfies the Lipschitz condition. Suppose that the
nonmonotone line search algorithm is employed in a case that
the steplength, 𝛼

𝑘
, satisfies

𝑓 (𝑥
𝑘+1

) ≤ 𝑓max
𝑘

+ 𝜎𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘
, (18)

where 𝑓max
𝑘

= max{𝑓(𝑥
𝑘
), 𝑓(𝑥

𝑘−1
), . . . , 𝑓(𝑥

𝑘−𝑚
)}, with 𝑚 ≤ 𝑘

and 𝜎 ∈ (0, 1), and the search direction 𝑑
𝑘
is chosen to obey

the following conditions. There exist positive constants 𝑐
1
and

𝑐
2
such that

−𝑔𝑇
𝑘
𝑑
𝑘
≥ 𝑐
1

𝑔𝑘

2

,
𝑑𝑘

 ≤ 𝑐
2

𝑔𝑘
 , (19)

for all sufficiently large 𝑘. Then the iterates 𝑥
𝑘
generated by the

nonmonotone line search algorithm have the property that

lim inf
𝑘→∞

𝑔𝑘
 = 0. (20)

To prove that the ESDG algorithm is globally convergent,
it is sufficient to show that the sequence {‖𝐵

𝑘
‖} generated

by (17) is bounded both above and below, for all finite 𝑘 so
that its associated search direction satisfies condition (19).
Since 𝐵

𝑘
is diagonal, it is enough to show that each element

of 𝐵
𝑘
, say 𝐵(𝑖)

𝑘
, 𝑖 = 1, . . . , 𝑛, is bounded above and below

by some positive constants. The following theorem gives the
boundedness of {‖𝐵

𝑘
‖}.

Theorem 2. Assume that 𝑓 is strictly convex function where
there exist positive constants𝑚 and𝑀 such that

𝑚‖𝑧‖
2 ≤ 𝑧𝑇∇2𝑓 (𝑥) 𝑧 ≤ 𝑀‖𝑧‖

2, (21)

for all 𝑥, 𝑧 ∈ 𝑅𝑛. Let {‖𝐵
𝑘
‖} be a sequence generated by the

ESDG method. Then ‖𝐵
𝑘
‖ is bounded above and below for all

finite 𝑘, by some positive constants.

Proof. Let 𝐵(𝑖)
𝑘

be the 𝑖th element of 𝐵
𝑘
. Suppose that 𝐵

0
is

chosen such that 𝜔
1

≤ 𝐵(𝑖)
0

≤ 𝜔
2
, 𝑖 = 1, . . . , 𝑛 where

𝜔
1
, 𝜔
2
are some positive constants. It follows from (17) and

the definition of 𝛾 in (15) that we have

𝐵
1
=
{{
{{
{

𝜌
0
𝐵
0
, if 𝜌

0
≤ 1,

�̂�
1,2

+
(𝑠𝑇
0
𝑦
0
− 𝑠𝑇
0
�̂�
1,2
𝑠
0
)

tr (𝐸2
0
)

𝐸
0
, if 𝜌

0
> 1,

(22)
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where

�̂�
1,1

= 𝐵
0
+
(𝑠𝑇
0
𝑦
0
− 𝑠𝑇
0
𝐵
0
𝑠
0
)

tr (𝐸2
0
)

𝐸
0
,

�̂�
1,2

= �̂�
1,1

+
(𝑠𝑇
0
𝑦
0
− 𝑠𝑇
0
�̂�
1,1
𝑠
0
)

tr (𝐸2
0
)

𝐸
0
.

(23)

Moreover, by (21) and (11), we obtain

𝑚
𝑠𝑘


2

≤ 𝑠𝑇
𝑘
𝑦
𝑘
≤ 𝑀

𝑠𝑘

2

, ∀𝑘. (24)

Case 1. When 𝜌
0
≤ 1: by (24), one can obtain

𝑚

𝜔
2

≤ 𝜌
0
=

𝑠𝑇
0
𝑦
0

𝑠𝑇
0
𝐵
0
𝑠
0

≤
𝑀

𝜔
1

. (25)

Thus, it implies that𝑚𝜔
1
/𝜔
2
≤ 𝐵(𝑖)
1

= 𝜌
0
𝐵(𝑖)
0

≤ 𝑀𝜔
2
/𝜔
1
.

Case 2. When 𝜌
0
> 1: from (3), we have

�̂�
(𝑖)

1,1
= 𝐵(𝑖)
0
+
(𝑠𝑇
0
𝑦
0
− 𝑠𝑇
0
𝐵
0
𝑠
0
)

tr (𝐸2
0
)

𝑠2
0,𝑖
. (26)

Because 𝜌
0
> 1 also implies that 𝑠𝑇

0
𝑦
0
− 𝑠𝑇
0
𝐵
0
𝑠
0
> 0, using this

fact and (24) give

𝐵(𝑖)
0

≤ �̂�
(𝑖)

1,1
≤ 𝐵(𝑖)
0
+
(𝑀 − 𝜔

1
)
𝑠0


2

tr (𝐸2
0
)

𝑠2
0,𝑖
. (27)

Let 𝑠
0,𝑀

be the largest component in magnitude of 𝑠
0
, that is,

𝑠2
0,𝑖

≤ 𝑠2
0,𝑀

, for all 𝑖. Then it follows that ‖𝑠
0
‖2 ≤ 𝑛𝑠2

0,𝑀
, and

(27) becomes

𝜔
1
≤ �̂�
(𝑖)

1,1
≤ 𝜔
2
+
𝑛 (𝑀 − 𝜔

1
)

tr (𝐸2
0
)

𝑠4
0,𝑀

≤ 𝜔
2
+ 𝑛 (𝑀 − 𝜔

1
) .

(28)

Using (28) and the same argument as previously mentioned,
we can also show that

𝜔
1
≤ �̂�
(𝑖)

1,2
≤ 𝜔
2
+ 𝑛 (𝑀 − 𝜔

1
) + 𝑛 [𝑀 − (𝜔

2
+ 𝑛 (𝑀 − 𝜔

1
))] .

(29)

Hence in both cases, 𝐵(𝑖)
1

is bounded above and below, by
some positive constants. Since the upper and lower bounds
for 𝐵(𝑖)
1

are independent of 𝑘, respectively, we can proceed
by using induction to show that 𝐵(𝑖)

𝑘
is bounded, for all finite

𝑘.

4. Numerical Results

In this section we present the results of numerical inves-
tigation for ESDG method on different test problems. We
also compare the performance of our new method with that
of the BB method and that of MDGRAD method which is
implemented using SMDQN of [22] with a same nonmono-
tone strategy as the ESDG method. Our experiments are

Table 1: Test problem and its dimension.

Problem References
Extended Freudenstein and Roth, Extended
Trigonometric,
Broyden Tridiagonal, Extended Beale, Generalized
Rosenbrock,

Moré et al.
[24]

Extended Tridiagonal 2, Extended Himmelblau,
Raydan 2, EG2,
ExtendedThree Exponential Terms, Raydan 1,
Generalized PSC1,
Quadratic QF2, Generalized Tridiagonal 1, Perturbed
Quadratic,
Diagonal 2, Diagonal 3, Diagonal 5, Almost
perturbed Quadratic,

Hager, diagonal 4 Andrei
[23]

1 2 3 4 5 6 7

BBMDGRADESDG

Number of iterations
1

0.8

0.6

0.4

0.2

0

𝜏

𝑝
(
𝑟
≤
𝜏
)

Figure 1: Performance profile based on iterations.

performed on a set of 20 nonlinear unconstrained problems
with dimensions ranging from 10 to 104 (Table 1).

These test problems are taken from [23, 24].The codes are
developed with Matlab 7.0. All runs are performed on a PC
with Core Duo CPU. For each test, the termination condition
is ‖𝑔(𝑥

𝑘
)‖ ≤ 10−4. The maximum number of iterations is set

to 1000.
Figures 1 and 2 show the efficiency of ESDGmethodwhen

compared to MDGRAD and BB methods. Note that ESDG
method increases the efficiency of Hessian approximation
devoid of increasing the number of storages. Figure 2 also
shows the implementation of the ESDG method with BB
and MDGRAD methods using the CPU time as a measure.
This figure shows that ESDG method is again faster than
MDGRAD method in most problems and requires reason-
able time to solve large-scale problems when compares to the
BB method. Finally, we can conclude that our experimental
comparisons indicate that our extension is very beneficial to
the performance.
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𝜏
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Figure 2: Performance profile based on CPU time per iteration.

5. Conclusion

We have presented a new diagonal gradient method for
unconstrained optimization. Numerical study of the pro-
posed method when compared with BB and MDGRAD
methods is also performed. Based on our numerical exper-
iments, we can conclude that ESDG method is significantly
preferable compared to the BB and MDGRAD methods.
Particularly, the ESDGmethod is proven to be a good option
for large-scale problems when high-memory locations are
required. In view of the remarkable performance of ESDG
method, globally converged and with only 𝑂(𝑛) storage, we
can expect that our proposed method would be useful for
unconstrained large-scale optimization problems.
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