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The (𝐺/𝐺)-expansion method is used for the first time to find traveling wave solutions for thin film equations, where it is found
that the related balance numbers are not the usual positive integers. The closed-form solution obtained via this method is in good
agreement with the previously obtained solutions of other researchers. It is also noted that, for appropriate parameters, new solitary
waves solutions are found.

1. Introduction

In this paper we are interested in the so-called standard thin
film equation of the form

𝑢
𝑡
= −(𝑢

𝑛
𝑢
𝑥𝑥𝑥
)
𝑥
, (1)

which in general has important applications in geology,
biophysics, physics, and engineering (see [1–3]). Also known
as the lubrication equation [4], it models the spreading
motion of the free surface of a thin film on a solid substrate
[5]. In particular, the function 𝑢(𝑥, 𝑡) is the thickness of the
fluid film at position 𝑥 and time 𝑡. Here the parameter 𝑛
denotes the kind of flow. In the case 𝑛 = 1, the equation
models the thickness of a thin film in a Hele-Shaw cell [6].
When 𝑛 = 2, it is the Navier slip thin film equation which
arises in the study of wetting films with a free contact line
between film and substrate [7]. Furthermore, when 𝑛 = 3, it
corresponds to the surface-tension-driven spreading of a thin
Newtonian fluid [8].

King [9] introduced a generalization of the above equa-
tion given by fourth-order nonlinear degenerate parabolic
equations of the following form:

𝑢
𝑡
= −(𝑢

𝑛
𝑢
𝑥𝑥𝑥
+ 𝛼𝑢
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𝑢
𝑥
𝑢
𝑥𝑥
+ 𝛽𝑢
(𝑛−2)

(𝑢
𝑥
)
3

)
𝑥
, (2)

where 𝑛, 𝛼, and 𝛽 are constants, while the second is a doubly
nonlinear equation:

𝑢
𝑡
= −(𝑢

𝑛


𝑢
𝑥𝑥𝑥






𝑘−1

𝑢
𝑥𝑥𝑥
)
𝑥

, (3)

where 𝑘 > 0 is a constant related to the flow. Note that when
𝛼 = 0, 𝛽 = 0, and 𝑘 = 1 each of the generalized thin film
equations turned into the standard thin film equation (1).
One of the most effective direct methods to build traveling
wave solution of nonlinear PDEs is the (𝐺/𝐺)-expansion
method, which was first proposed by Wang et al. [10]. It is
assumed that the traveling wave solutions can be expressed
by a polynomial in (𝐺/𝐺), where 𝐺 = 𝐺(𝜁) satisfies the
following second-order linear ordinary differential equation
𝐺

(𝜁) + 𝜆𝐺


(𝜁) + 𝜇𝐺(𝜁) = 0, where 𝜁 = 𝑥 − 𝑐𝑡, 𝜆, 𝜇, and 𝑐

are constants. Until now, (𝐺/𝐺)-expansion method has been
successfully applied to obtain exact solution for a variety of
nonlinear PDEs [11–21].

Our main objective in this paper is to apply the (𝐺/𝐺)
method to provide closed-form travelling wave solutions of
the generalized thin film equations and also standard thin
film equation. To the best of our knowledge, this is the first
time this method has been applied to such equations. In
solving these equations, we found an instance where the
related balance numbers are not the usual positive integers
(see Zhang [22]). It is also noted that for appropriate parame-
ters new solitary waves solutions are found. We compare our
solutions with the solutions previously obtained by Bertozzi
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and Pugh [23] and King [9], where they proved the existence
solution to thin film equation via separation of variables. The
closed-form solution obtained via this method is in good
agreement with the solutions reported in [9, 23].

Our paper is organized as follows: in Section 2, we present
the summary of the (𝐺/𝐺)-expansion method, in Section 3,
we describe the applications of the (𝐺/𝐺)-expansionmethod
for two generalization thin film equations, standard thin
film equation and a special case, and in Section 4, some
conclusions are given.

2. Summary of the (𝐺/𝐺)-Expansion Method

In this section, we describe the (𝐺/𝐺)-expansion method
for finding traveling wave solutions of nonlinear partial dif-
ferential equations (PDEs). Suppose that a nonlinear partial
differential equation, say in two independent variables 𝑥 and
𝑡, is given by the following:

𝑃 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑡
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑥
, . . .) = 0, (4)

where 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function and 𝑃 is a
polynomial in 𝑢 = 𝑢(𝑥, 𝑡) and its various partial derivatives,
in which highest-order derivatives and nonlinear terms are
involved.Theprocedure of the (𝐺/𝐺)-expansionmethod can
be presented in the following six steps.

Step 1. To find the traveling wave solutions of (4), we intro-
duce the wave variable

𝑢 (𝑥, 𝑡) = 𝑢 (𝜁) , 𝜁 = 𝑥 − 𝑐𝑡, (5)

where the constant 𝑐 is generally termed the wave velocity.
Substituting (5) into (4), we obtain the following ordinary dif-
ferential equations (ODE) in 𝜁 (which illustrates a principal
advantage of a traveling wave solution, i.e., a PDE is reduced
to an ODE) as follows.

𝑃 (𝑢, 𝑐𝑢

, 𝑢

, 𝑐𝑢

, 𝑐
2
𝑢

, 𝑢

, . . .) = 0. (6)

Step 2. If necessary we integrate (6) as many times as
possible and set the constants of integration to be zero
for simplicity. The solution process for (6) is based on the
auxiliary conditions that the dependent variable and its first,
second, and higher spatial derivatives tend to zero as 𝜁 → ∞,
that is,

𝑢 (𝜁 → ±∞) = 0,
𝑑𝑢 (𝜁 → ±∞)

𝑑𝜁

= 0,

𝑑
2
𝑢 (𝜁 → ±∞)

𝑑𝜁
2

= 0, . . . .

(7)

From these conditions, we can take the constants of integra-
tion to be zero.

Step 3. We suppose that the solution of nonlinear partial
differential equation can be expressed by a polynomial in
(𝐺

/𝐺) as follows:

𝑢 (𝜁) =

𝑚

∑

𝑖=0

𝑎
𝑖
(
𝐺


𝐺

)

𝑖

, (8)

where 𝐺 = 𝐺(𝜁) satisfies the second-order linear ordinary
differential equation as follows:

𝐺


(𝜁) + 𝜆𝐺


(𝜁) + 𝜇𝐺 (𝜁) = 0. (9)

Here the prime denotes the derivative respective to 𝜁, and
𝑎
𝑖
, 𝜆, and 𝜇 are real constants with 𝑎

𝑚
̸= 0. Using the general

solutions of (9), we have the following:
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−
𝜆

2

+

√𝜆
2
− 4𝜇

2

×
[
[

[

𝑐
1
sinh((√𝜆2 − 4𝜇/2) 𝜁)+𝑐

2
cosh((√𝜆2 − 4𝜇/2) 𝜁)

𝑐
1
cosh((√𝜆2 − 4𝜇/2) 𝜁)+𝑐

2
sinh((√𝜆2 − 4𝜇/2) 𝜁)

]
]

]

,

𝜆
2
− 4𝜇 > 0,

−
𝜆

2

+

√4𝜇 − 𝜆
2

2

×
[
[

[

−𝑐
1
sin((√4𝜇 − 𝜆2/2) 𝜁)+𝑐

2
cos((√4𝜇 − 𝜆2/2) 𝜁)

𝑐
1
cos((√4𝜇 − 𝜆2/2) 𝜁)+𝑐

2
sin((√4𝜇 − 𝜆2/2) 𝜁)

]
]

]

,

𝜆
2
− 4𝜇 < 0,

(
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

) −
𝜆

2

, 𝜆
2
− 4𝜇 = 0.

(10)

Step 4. The positive integer 𝑚 can be accomplished by
considering the homogeneous balance between the highest
order derivatives and nonlinear terms appearing in (6) as
follows: if we define the degree of 𝑢(𝜁) as 𝐷[𝑢(𝜁)] = 𝑚, then
the degree of other expressions is defined by

𝐷[𝑢
𝑟
(
𝑑
𝑞
𝑢

𝑑𝜁
𝑞
)

𝑠

] = 𝑚𝑟 + 𝑠 (𝑞 + 𝑚) , (11)

where 𝑠 is an integer. Therefore, we can get the value of 𝑚 in
(8).

Step 5. Substitute (8) into (6) and use (9) and collect all
terms with the same order of (𝐺/𝐺) together, then set each
coefficient of this polynomial to zero which yields a set of
algebraic equations for 𝑎

𝑖
, 𝑐, 𝜆, and 𝜇.

Step 6. Substitute 𝑎
𝑖
, 𝑐, 𝜆, and 𝜇 obtained in Step 5 and the

general solution of (9) into (8). Next, depending on the sign
of the discriminant 𝜆2−4𝜇, we get the solutions of (6). So, we
can obtain exact solutions of the given (4).

The advantages of the approach taken in this paper are as
follows.

(i) It will be more important to seek solutions of higher-
order nonlinear equations which can be reduced to
ODEs of the order greater than 3.

(ii) In the (𝐺/𝐺)-expansion method, there is no need
to apply the initial and boundary conditions at the
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outset. The method yields a general solution with
free parameters which can be identified by the above
conditions.

(iii) The general solution obtained by (𝐺/𝐺)-expansion
method without approximation.

(iv) Finally, the solution procedure can be easily imple-
mented in Mathematica or Maple.

3. Application of the
(𝐺

/𝐺)-Expansion Method

3.1. Exact Traveling Wave Solution of Standard Thin Film
Equation (1). Now we consider (1) which arises in the flow of
a surface-tension dominated thin liquid film. Substituting (5)
into (1) and integrating the result, and for simplicity equating
the integration constant equal to zero, we get the following

𝑢
𝑛
𝑢

− 𝑐𝑢 = 0. (12)

Suppose that the solution of (12) can be expressed by a
polynomial in (𝐺/𝐺) as follows:

𝑢 (𝜁) = 𝐸(
𝐺


𝐺

)

𝑚

, (13)

where 𝐸 is a real constant to be determined later and 𝐺
satisfies (9). Balancing between𝑢𝑛𝑢 and𝑢, we get𝑚 = −3/𝑛.
Now it is easy to deduce that

𝑢

=

3𝐸(𝐺

/𝐺)

(−3+𝑛)/𝑛

((𝐺

/𝐺)

2

+ 𝜆 (𝐺

/𝐺) + 𝜇)

𝑛

,

𝑢

= ((−3𝐸(

𝐺


𝐺

)

2

+ 𝜆(
𝐺


𝐺

) + 𝜇)

× ((
𝐺


𝐺

)

−3/𝑛

(𝑛 − 3) − 3(
𝐺


𝐺

)

(−3+𝑛)/𝑛

×𝜆 − (
𝐺


𝐺

)

(−3+2𝑛)/𝑛

(3𝜇 + 𝑛𝜇))) × (𝑛
2
)

−1

.

(14)

With the aid of symbolic computation, substituting (13) along
with (9) into (12), and setting the coefficients of all powers of

(𝐺

/𝐺) to zero, we obtain the following system of nonlinear

algebraic equations for 𝐸, 𝑐, 𝜆, 𝑛, and 𝜇:

(
𝐺


𝐺

)

−3/𝑛

: − 27𝐸
1+𝑛
𝜆𝜇 + 3𝐸

1+𝑛
𝑛
2
𝜆
2
𝜇 + 27𝐸

1+𝑛
𝑛𝜆
2
𝜇

+ 81𝐸
1+𝑛
𝜇
2
+ 54𝐸

1+𝑛
𝜆
2
𝜇 + 81𝐸

1+𝑛
𝜆
2

+ 81𝐸
1+𝑛
𝜇 + 3𝐸

1+𝑛
𝑛
2
𝜆
2
+ 27𝐸

1+𝑛
𝑛𝜇
2

+ 6𝐸
1+𝑛
𝜇𝑛
2
+ 6𝐸
1+𝑛
𝜇
2
𝑛
2
= 0,

(
𝐺


𝐺

)

(−3+𝑛)/𝑛

: 9𝐸
1+𝑛
𝑛
2
𝜆𝜇
2
+ 54𝐸

1+𝑛
𝜆𝑛𝜇
2
− 54𝐸

1+𝑛
𝜆𝑛

+ 9𝐸
1+𝑛
𝜆𝑛
2
+ 81𝐸

1+𝑛
𝜆 + 81𝐸

1+𝑛
𝜆𝜇
2
= 0,

(
𝐺


𝐺

)

−3(1+𝑛)/𝑛

: 6𝐸
1+𝑛
𝑛
2
𝜆𝜇
2
+27𝐸
1+𝑛
𝜆
3
+162𝐸

1+𝑛
𝜆𝜇=0,

(
𝐺


𝐺

)

3(𝑛−1)/𝑛

: 6𝐸
1+𝑛
𝑛
2
− 27𝐸

1+𝑛
𝑛 + 27𝐸

1+𝑛

− 𝑐𝐸
1+𝑛
𝑛
3
= 0,

(
𝐺


𝐺

)

(−3+2𝑛)/𝑛

: 27𝐸
1+𝑛
𝜇
3
+ 6𝐸
1+𝑛
𝜇
3
𝑛
2
+ 27𝐸

1+𝑛
𝜇
3
𝑛
2

+ 27𝐸
1+𝑛
𝜇
3
𝑛 = 0.

(15)

The solutions of this system are as follows:

𝜆 = 0, 𝜇 = 0, 𝑐 = (
3

𝑛

− 2) (
3

𝑛

− 1)
3

𝑛

𝐸
𝑛
, (16)

where 𝐸 and 𝑛 are arbitrary constants.
Consequently, we obtain the exact travelingwave solution

of (1),

𝑢 (𝑥, 𝑡) = 𝑢 (𝜁) = 𝐸(
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

)

−3/𝑛

, (17)

where 𝜁 = 𝑥 − 𝑐𝑡 = 𝑥 − ((3/𝑛) − 2)((3/𝑛) − 1)(3/𝑛)𝐸𝑛𝑡.
If we set 𝑐

1
= 0 and 𝑐

2
= 1 in (17), we obtain the solitary

wave solution

𝑢 (𝑥, 𝑡) = 𝑢 (𝜁) = 𝐸(𝜁)
3/𝑛

, (18)

where 𝜁 is as above.This is exactly the same solution obtained
by Bertozzi and Pugh [23]:

𝑢 (𝑥, 𝑡) = {
𝐴(𝑥 − 𝑐𝑡)

3/𝑛
, 𝑥 > 𝑐𝑡,

0, otherwise,
(19)

when 𝑐 = ((3/𝑛) − 2)((3/𝑛) − 1)(3/𝑛)𝐴𝑛.
We remark that if 𝑛 ≥ 3, the solution of the system using

the (𝐺/𝐺) cannot be solved due to the no-slip boundary
condition on the liquid solid surface, in one space dimension,
a similar result reached by Bertozzi and Pugh [24].
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3.2. Exact Traveling Wave Solution of the Generalized Thin
Film Equation (2). We study nonnegative solutions of the
generalized degenerate fourth-order parabolic equation of
thin film equation (2). The solution of (2) as found by King
[9] is as follows:

𝑢=[−
𝑛
3
𝑐

3[(3−𝑛) (3−2𝑛)+3 (3−𝑛) 𝛼+9𝛽]

[−(𝑥 − 𝑐𝑡)
3
]]

1/𝑛

,

(20)

requiring 𝑛 > 0 and 𝑐 > 0 for 8𝛽 < (1−𝛼)2with 3(𝛼−𝜈+3)/4 <
𝑛 < 3(𝛼 + 𝜈 + 3)/4.

We seek the traveling wave solution of (2) in the form (5).
Now upon substituting of (5) into (2), one gets

−𝑐𝑢

+ [𝑢
𝑛
𝑢

+ 𝛼𝑢
(𝑛−1)

𝑢

𝑢

+ 𝛽𝑢
(𝑛−2)

(𝑢

)

3

]



= 0, (21)

and by integrating (21) and, for simplicity, equating the
integration constant which is equal to zero, we get

−𝑐𝑢 + 𝑢
𝑛
𝑢

+ 𝛼𝑢
(𝑛−1)

𝑢

𝑢

+ 𝛽𝑢
(𝑛−2)

(𝑢

)

3

= 0. (22)

Balancing between 𝑢𝑛𝑢 and 𝑢, we get 𝑚 = −3/𝑛. Then,
suppose that (21) has the following formal solution:

𝑢 (𝜁) = 𝐸(
𝐺


𝐺

)

−3/𝑛

, (23)

where 𝐸 is an unknown constant to be determined later.
Substituting (23), along with (9), into (22), and setting the

coefficients of (𝐺/𝐺)𝑖, (𝑖 = 0, 1, . . . , 5) to zero, we obtain a
system of nonlinear algebraic equations as follows:

(
𝐺


𝐺

)

3(𝑛−1)/𝑛

: 27𝛽𝐸
1+𝑛
+ 27𝐸

1+𝑛
+ 6𝐸
1+𝑛
𝑛
2

− 27𝐸
1+𝑛
𝑛 − 𝑐𝐸𝑛

3
− 9𝛼𝐸

1+𝑛

+ 27𝛼𝐸
1+𝑛
= 0,

(
𝐺


𝐺

)

(𝑛−3)/𝑛

: 3𝐸
1+𝑛
𝑛
2
𝜆
2
− 27𝐸

1+𝑛
𝜆
2
𝑛 + 6𝐸

1+𝑛
𝜇𝑛
2

+ 6𝐸
1+𝑛
𝜇
2
𝑛
2
+ 81𝐸

1+𝑛
𝜆
2
𝜇 − 27𝐸

1+𝑛
𝑛𝜇

+ 27𝐸
1+𝑛
𝑛𝜇
2
+ 81𝐸

1+𝑛
𝜇 + 81𝐸

1+𝑛
𝜇
2

+ 81𝐸
1+𝑛
𝜆
2
+ 81𝐸

1+𝑛
𝜆
2
𝜇 + 3𝐸

1+𝑛
𝜆
2
𝑛𝜇

+ 9𝛼𝐸
1+𝑛
𝜇
2
𝑛 − 9𝛼𝐸

1+𝑛
𝑛𝜇 + 81𝛼𝐸

1+𝑛
𝜆
2
𝜇

− 9𝛼𝐸
1+𝑛
𝜆
2
𝑛𝜇 + 81𝛽𝐸

1+𝑛
𝜇 + 81𝛽𝐸

1+𝑛
𝜆
2

+ 81𝛽𝐸
1+𝑛
𝜇
2
+ 81𝛼𝐸

1+𝑛
𝜇
2
+ 81𝛼𝐸

1+𝑛
𝜇

+ 81𝛼𝐸
1+𝑛
𝜆
2
= 0,

(
𝐺


𝐺

)

−3/𝑛

: 126𝐸
1+𝑛
𝜆𝜇 + 27𝐸

1+𝑛
𝜆
3
+ 162𝛽𝐸

1+𝑛
𝜆𝜇

+ 6𝐸
1+𝑛
𝑛
2
𝜆𝜇 + 162𝛼𝐸

1+𝑛
𝜆𝜇 + 27𝛽𝐸

1+𝑛
𝜆
2

+ 27𝛼𝐸
1+𝑛
𝜆
3
= 0,

(
𝐺


𝐺

)

(2𝑛−3)/𝑛

: 81𝐸
1+𝑛
𝜆𝜇
2
− 54𝐸

1+𝑛
𝜆𝜇 + 9𝐸

1+𝑛
𝜆𝑛
2

+ 81𝐸
1+𝑛
𝜆𝜇
2
+9𝐸
1+𝑛
𝑛
2
𝜆𝜈
2
+54𝐸
1+𝑛
𝑛𝜆𝜇
2

+ 81𝛼𝐸
1+𝑛
𝜆𝜇
2
−18𝛼𝐸

1+𝑛
𝑛𝜆𝜇
2
+81𝐸
1+𝑛
𝛽𝜆

+ 81𝛼𝜆𝐸
1+𝑛
= 0,

(
𝐺


𝐺

)

−3(1+𝑛)/𝑛

: 27𝐸
1+𝑛
𝑛𝜇
3
+ 27𝐸

1+𝑛
𝜇
3
+ 9𝛼𝐸

1+𝑛
𝜇
3
𝑛

+ 6𝐸
1+𝑛
𝑛
2
𝜇
3
𝜆
3
+ 27𝛽𝐸

1+𝑛
𝜇
3

+ 27𝛼𝐸
1+𝑛
𝜇
3
= 0,

(24)

with the solutions

𝜆 = 0, 𝜇 = 0,

𝑐 =

3𝐸
𝑛
[(3 − 𝑛) (3 − 2𝑛) + 3 (3 − 𝑛) 𝛼 + 9𝛽]

𝑛
3

,

(25)

where 𝛽, 𝑛, and 𝛼 are arbitrary constants. Hence, we obtain
the exact traveling wave solution of (2) as follows:

𝑢 (𝜁) = 𝐸[
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

]

−3/𝑛

. (26)

For the comparison between our solution (26) with that of
King’s as given in (20), first we assume 𝑐

1
= 0 and 𝑐

2
= 1 and

then we get the same as that of King’s (20) if we take 𝑐 as in
(25) in (20).

3.3. Exact Traveling Wave Solution of the Second Generaliza-
tion of theThin Film Equation (3). This part is primarily con-
cerned with the Cauchy problem for the doubly degenerate
equation (3). King [9] gave the solution of (3) in the form:

𝑢 = −𝑐|𝐹|
𝑘−1
𝐹 [−(𝑥 − 𝑐𝑡)

3𝑘/(𝑛+𝑘−1)
] , (27)

where 𝐹 = (𝑘 + 𝑛 − 1)3/(3𝑘(2𝑘 + 1 − 𝑛)(𝑘 + 2 − 2𝑛)) and here
𝑘 = 𝑚 as in King [9].
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The traveling wave variable (5) permits us to convert (3)
into an ordinary differential equation as follows:

−𝑐𝑢 + 𝑢
𝑛



𝑢





𝑘−1

𝑢

= 0. (28)

Considering the homogeneous balance between 𝑢𝑛|𝑢|𝑘−1
𝑢
 and 𝑢 in (28), we obtain𝑚 = −3𝑘/(𝑛 + 𝑘 − 1). Therefore,

we can write the following:

𝑢 (𝜁) = 𝐸(
𝐺


𝐺

)

−3𝑘/(𝑛+𝑘−1)

, (29)

for the traveling wave solutions of (28). By substituting (29)
together with (9) into (28), clearing the denominator, and
setting the coefficients of (𝐺/𝐺)𝑖, (𝑖 = 0, 1, . . . , 7) to zero,
we have the following algebraic system for 𝐸, 𝜆, 𝜇, 𝑛, and 𝑘:

(
𝐺


𝐺

)

−3𝑛/(𝑛+𝑘−1)

: 6𝐸
1+𝑛
𝑘 + 15𝐸

1+𝑛
𝑘
2
+ 6𝐸
1+𝑛
𝑘
3

− 15𝐸
1+𝑛
𝑘
2
𝑛 + 6𝐸

1+𝑛
𝑘𝑛
2

− 12𝐸
1+𝑛
𝑘𝑛 − 𝑐𝐸 = 0,

(
𝐺


𝐺

)

−𝑘(5𝑛+5𝑘−2)/(𝑛+𝑘−1)

: − 18𝐸
1+𝑛
𝑘𝜆𝑛𝜇
2
+ 9𝐸
1+𝑛
𝑘𝜆𝜇
2
𝑛
2

+ 72𝐸
1+𝑛
𝑘
2
𝑛𝜇
2
𝜆
2
+ 9𝐸
1+𝑛
𝑘𝜆𝜇
2

− 72𝐸
1+𝑛
𝜆𝑘
2
𝜇
2

+ 144𝐸
1+𝑛
𝑘
3
𝜆𝜇
2
= 0,

(
𝐺


𝐺

)

−𝑘(4𝑛+4𝑘−1)/(𝑛+𝑘−1)

: − 6𝐸
1+𝑛
𝜆
2
𝑛𝜇 + 33𝐸

1+𝑛
𝜇𝜆
2
𝑘
2

+ 6𝐸
1+𝑛
𝑘𝜇
2
+ 114𝐸

1+𝑛
𝑘
3
𝜇
2

+ 3𝐸
1+𝑛
𝜇𝜆
2
𝑛
2
+ 6𝐸
1+𝑛
𝑘𝜇
2
𝑛
2

+ 111𝐸
1+𝑛
𝜇𝜆
2
𝑘
3
+39𝐸
1+𝑛
𝑛𝜇
2
𝑘
2

− 39𝐸
1+𝑛
𝑘
2
𝜇
2
− 33𝐸

1+𝑛
𝜇𝜆
2
𝑘
2

+ 3𝐸
1+𝑛
𝑘𝜇𝜆
2
−12𝐸
1+𝑛
𝑘𝑛𝜇
2
=0,

(
𝐺


𝐺

)

−3𝑘(𝑛+𝑘)/(𝑛+𝑘−1)

: 6𝐸
1+𝑛
𝑘𝜆𝜇𝑛
2
− 12𝐸

1+𝑛
𝑘𝜆𝜇𝑛

+ 12𝐸
1+𝑛
𝜆𝜇𝑛𝑘
2
+ 27𝐸

1+𝑛
𝑘
3
𝜆
3

+ 6𝐸
1+𝑛
𝑘𝜆𝜇 + 168𝐸

1+𝑛
𝜆𝜇𝑘
3

− 12𝐸
1+𝑛
𝜆𝜇𝑘
2
= 0,

(
𝐺


𝐺

)

−𝑘(𝑛+𝑘+2)/(𝑛+𝑘−1)

: 36𝐸
1+𝑛
𝜆𝑘
3
+ 9𝐸
1+𝑛
𝑘𝜆

+ 36𝐸
1+𝑛
𝜆𝑘
2
− 18𝐸

1+𝑛
𝑘𝑛𝜆

+𝐸
1+𝑛
𝑘𝜆𝑛
2
− 36𝐸

1+𝑛
𝜆𝑛𝑘
2
= 0,

(
𝐺


𝐺

)

−𝑘(2𝑛+2𝑘+1)/(𝑛+𝑘−1)

: 21𝐸
1+𝑛
𝜆
2
𝑘
2
+ 57𝐸

1+𝑛
𝜆
2
𝑘
3

+ 3𝐸
1+𝑛
𝑘𝜇 + 3𝐸

1+𝑛
𝑘𝜆
2

+ 15𝐸
1+𝑛
𝜇𝑘
2
+ 60𝐸

1+𝑛
𝜇𝑘
3

− 6𝐸
1+𝑛
𝑘𝑛𝜆
2
+ 6𝐸
1+𝑛
𝑘𝜇𝑛
2

− 15𝐸
1+𝑛
𝑛𝜇𝑘
2
− 21𝐸

1+𝑛
𝑛𝑘
2

+ 3𝐸
1+𝑛
𝑘𝑛
2
𝜆
2
−12𝐸
1+𝑛
𝑘𝑛𝜇=0,

(
𝐺


𝐺

)

−3𝑘(2𝑛+2𝑘−1)/(𝑛+𝑘−1)

: 60𝐸
1+𝑛
𝑘
3
𝜇
3
− 234𝐸

1+𝑛
𝑘
3
𝜇
6

+ 6𝐸
1+𝑛
𝑘𝜇
3
𝑛
2
−12𝐸
1+𝑛
𝑘𝑛𝜇
3

+ 39𝐸
1+𝑛
𝑛𝜇
3
𝑘
2
= 0.

(30)

Solving this algebraic system by the use of Maple, we get the
solutions for (3) as follows:

𝜆 = 0, 𝜇 = 0, 𝑐 = 3𝐸
𝑛
𝑘 (2𝑘 + 1 − 𝑛) (𝑘 + 2 − 2𝑛) ,

(31)

where 𝑘, 𝑛, and 𝐸 are arbitrary constants. From (31) and (29),
we obtain the exact traveling wave solution as follows:

𝑢 (𝑥, 𝑡) = 𝑢 (𝜁) = 𝐸[
𝑐
2

𝑐
1
+ 𝑐
2
𝜁

]

−3𝑘/(𝑛+𝑘−1)

. (32)

Choosing 𝑐
1
= 0 and 𝑐

2
= 1 in (32), we get

𝑢 (𝑥, 𝑡) = 𝑢 (𝜁) = 𝐸(𝜁)
−3𝑘/(𝑛+𝑘−1)

. (33)

Now this is exactly the same as (27) if we substitute 𝑐 as given
in (31) into (27).

4. Conclusion

In this paper, we provide another instance of the applications
of the (𝐺/𝐺)-expansion method to the still very limited case
whereby the balance numbers are not positive integers; see
Zhang [22].We have obtained some new exact traveling wave
solutions of the thin film equation and its two generalizations.
The solitary wave solutions are derived from these functions
when the parameters are taken as special values. The Zhang
technique [22] used in this paper is more effective and more
general than that originally proposed by Wang et al. [10].
In all the general solutions (17), (26), and (32), we have



6 Abstract and Applied Analysis

the additional arbitrary constants 𝑐
1
and 𝑐
2
. We note that the

special case 𝑐
1
= 0 and 𝑐

2
= 1 reproduced the results of

Bertozzi and Pugh [23] and King [9] with an appropriate
choice of 𝑐. The new type of exact traveling wave solutions
obtained in this paper for thin film equation and its two
generalizations could be of beneficial use in future studies.
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