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Theparameter space associated to the parametric family of Chebyshev-Halley on quadratic polynomials shows a dynamical richness
worthy of study. This analysis has been initiated by the authors in previous works. Every value of the parameter belonging to the
same connected component of the parameter space gives rise to similar dynamical behavior. In this paper, we focus on the search
of regions in the parameter space that gives rise to the appearance of attractive orbits of period two.

1. Introduction

The application of iterative methods for solving nonlinear
equations 𝑓(𝑧) = 0, 𝑓 : C → C gives rise to ratio-
nal functions whose dynamical behavior provides us with
important information about the stability and reliability of
the corresponding iterative scheme.The best known iterative
method, under the dynamical point of view, is Newton’s
scheme (see, e.g., [1]).

This study has been extended by different authors to other
point-to-point iterative methods for solving nonlinear equa-
tions (see, e.g., [2, 3] and more recently, [4–8]). In particular,
the authors study the parametric family of Chebyshev-Halley,
whose dynamical analysis has been started in [9].

The fixed point operator corresponding to the family of
Chebyshev-Halley type methods is

𝐺 (𝑧, 𝛼) = 𝑧 − (1 +
1

2

𝐿𝑓 (𝑧)

1 − 𝛼𝐿𝑓 (𝑧)
)

𝑓 (𝑧)

𝑓 (𝑧)
, (1)

where

𝐿𝑓 (𝑧) =
𝑓 (𝑧) 𝑓 (𝑧)

(𝑓 (𝑧))
2 (2)

and 𝛼 is a complex parameter. In [9], the authors have begun
the study of the dynamics of this operator when it is applied

on quadratic polynomial 𝑝(𝑧) = 𝑧2 + 𝑐. For this polynomial,
the operator (1) is the rational function:

𝐺𝑝 (𝑧, 𝛼) =
𝑧4 (−3 + 2𝛼) + 6𝑐𝑧2 + 𝑐2 (1 − 2𝛼)

4𝑧 (𝑧2 (−2 + 𝛼) + 𝛼𝑐)
, (3)

depending on parameters 𝛼 and 𝑐.
The parameter 𝑐 can be removed by applying the conju-

gacy map

ℎ (𝑧) =
𝑧 − 𝑖√𝑐

𝑧 + 𝑖√𝑐
, (4)

with the properties ℎ(∞) = 1, ℎ(𝑖√𝑐) = 0, and ℎ(−𝑖√𝑐) = ∞.
Then, the operator (3) becomes a one-parametric rational

function:

𝑂𝑝 (𝑧, 𝛼) = 𝑧3
𝑧 − 2 (𝛼 − 1)

1 − 2 (𝛼 − 1) 𝑧
. (5)

As it is known (see [10]), for a rational function
𝑅 : Ĉ → Ĉ, on the Riemann sphere Ĉ, the orbit of a point
𝑧0 ∈ Ĉ is defined as

{𝑧0, 𝑅 (𝑧0) , 𝑅
2 (𝑧0) , . . . , 𝑅

𝑛 (z0) , . . .} . (6)
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Depending on the asymptotic behavior of their orbits, a
point 𝑧0 ∈ Ĉ is called a fixed point if it satisfies 𝑅(𝑧0) = 𝑧0. A
periodic point 𝑧0 of period 𝑝 > 1 is a point such that 𝑅𝑝(𝑧0) =
𝑧0 and 𝑅𝑘(𝑧0) ̸= 𝑧0, 𝑘 < 𝑝. A preperiodic point is a point 𝑧0
that is not periodic, but there exists a 𝑘 > 0 such that 𝑅𝑘(𝑧0)
is periodic. A critical point 𝑧0 is a point where the derivative
of rational function vanishes, 𝑅(𝑧0) = 0.

On the other hand, a fixed point 𝑧0 is called attractor
if |𝑅(𝑧0)| < 1, superattractor if |𝑅(𝑧0)| = 0, repulsor if
|𝑅(𝑧0)| > 1, and parabolic if |𝑅(𝑧0)| = 1. The stability of a
periodic orbit is defined by the magnitude (lower than 1 or
not) of |𝑅(𝑧1) ⋅ ⋅ ⋅ 𝑅

(𝑧𝑝)|, where {𝑧1, . . . , 𝑧𝑝} are the points of
the orbit of period 𝑝.

The basin of attraction of an attractor 𝑧 is defined as the
set of pre images of any order:

A (𝑧) = {𝑧0 ∈ Ĉ : 𝑅𝑛 (𝑧0) → 𝑧, 𝑛 → ∞} . (7)

The set of points 𝑧 ∈ Ĉ such that their families {𝑅𝑛(𝑧)}𝑛∈𝑁
are normal in some neighborhood 𝑈(𝑧) is the Fatou set,
F(𝑅), that is, the Fatou set is composed by the set of points
whose orbits tend to an attractor (fixed point, periodic orbit,
or infinity). Its complement in Ĉ is the Julia set, J(𝑅);
therefore, the Julia set includes all repelling fixed points,
periodic orbits, and their pre images. That means that the
basin of attraction of any fixed point belongs to the Fatou set.
On the contrary, the boundaries of the basins of attraction
belong to the Julia set.

The invariant Julia set for Newton’s method on quadratic
polynomials is the unit circle 𝑆1, and the Fatou set is
defined by the two basins of attraction of the superattractor
fixed points: 0 and ∞. However, as it can be seen in [11],
the Julia set for Chebyshev’s method applied to quadratic
polynomials is more complicated than for Newton’s method.
These methods are two elements of the Chebyshev-Halley
family. The dynamical study of operator of the Chebyshev-
Halley family on quadratic polynomials (3) has been started
for the authors in [9, 12].

The rest of the paper is organized as follows. in Section 2,
we recall some results about the stability of the strange fixed
points of operator 𝑂𝑝(𝑧, 𝛼). In Sections 3, 4, and 5, we
analyze the black regions of the parameter space involving
attractive cycles of period two. We finish the work with some
conclusions.

2. Previous Results on
Chebyshev-Halley Family

Fixed points of the operator𝑂𝑝(𝑧, 𝛼) are 𝑧 = 0, 𝑧 = ∞, which
correspond to the roots of the polynomial and the strange
fixed points 𝑧 = 1 and 𝑧 = (−3 + 2𝛼 ± √5 − 12𝛼 + 4𝛼2)/2,
denoted by 𝑠1(𝛼) and 𝑠2(𝛼), respectively.

Moreover, 𝑧 = 0 and 𝑧 = ∞ are superattractors, and
the stability of the other fixed points is established in the
following results.

Proposition 1 (see [9, Proposition 1]). The fixed point 𝑧 = 1
satisfies the following statements.

(1) If |𝛼 − (13/6)| < 1/3, then 𝑧 = 1 is an attractor, and, in
particular, it is a superattractor for 𝛼 = 2.

(2) If |𝛼 − (13/6)| = 1/3, then 𝑧 = 1 is a parabolic point.
(3) If |𝛼 − (13/6)| > 1/3, then 𝑧 = 1 is a repulsive fixed

point.

Proposition 2 (see [9, Proposition 2]). The fixed points 𝑧 =
𝑠𝑖(𝛼), 𝑖 = 1, 2, satisfy the following statements.

(i) If |𝛼 − 3| < 1/2, then 𝑠1(𝛼) and 𝑠2(𝛼) are two different
attractive fixed points. In particular, 𝑠1(3) and 𝑠2(3) are
superattractors.

(ii) If |𝛼 − 3| = 1/2, then 𝑠1(𝛼) and 𝑠2(𝛼) are parabolic
points. In particular, 𝑠1(5/2) = 𝑠2(5/2) = 1.

(iii) If |𝛼 − 3| > 1/2, then 𝑠1(5/2) and 𝑠2(5/2) are repulsive
fixed points.

On the other hand, the critical points of 𝑂𝑝(𝑧, 𝛼) are 𝑧 =
0, 𝑧 = ∞ and

𝑧 =
3 − 4𝛼 + 2𝛼2 ± √−6𝛼 + 19𝛼2 − 16𝛼3 + 4𝛼4

3 (𝛼 − 1)
, (8)

which are denoted by 𝑐1(𝛼) and 𝑐2(𝛼), respectively.
It is known that there is at least one critical point

associated with each invariant Fatou component (see [13]). It
is also shown in [9] that the critical points 𝑐𝑖, 𝑖 = 1, 2, are
inside the basin of attraction of 𝑧 = 1 when it is attractive
(11/6 < 𝛼 < 5/2) and coincide with 𝑧 = 1 for 𝛼 = 2.
Then, they move to the basins of attraction of 𝑠1(𝛼) and 𝑠2(𝛼)
when these fixed points become attractive (5/2 < 𝛼 < 7/2).
Critical and fixed points coincide for 𝛼 = 3, and 𝑠1(3) and
𝑠2(3) become superattractors.

The study of the parameter space enables us to analyze the
dynamics of the rational function associated to an iterative
method: each point of the parameter plane is associated to
a complex value of 𝛼, that is, to an element of the family.
Moreover, every value of 𝛼 belonging to the same connected
component of the parameter space gives rise to subsets of
schemes of family with similar dynamical behavior. The
parameter space of (3) is shown in Figure 1.

Briefly summarizing the results of [9], we observe a black
figure (the cat set) with two big disks corresponding to the 𝛼
values for those fixed points 𝑧 = 1 (the head, |𝛼 − (13/6)| <
1/3), and 𝑠1(𝛼) and 𝑠2(𝛼) (the body, |𝛼 − 3| < 1/2) become
attractive and have their own basin of attraction, and one
critical point is in each basin. The intersection point of the
head and the body of the cat is in their common boundary
and corresponds to 𝛼 = 5/2. The parameter space inside the
necklace (the curve similar to a circle that passes through the
cat’s neck) is topologically equivalent to a disk.The boundary
of the cat set is exactly the set of parameters for which the
dynamics changes abruptly under small changes of 𝛼, that is,
the bifurcation loci of the family of Chebyshev-Halley acting
on quadratic polynomial.
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Figure 1: Parameter plane.

Let us stress that the head and the body are surrounded
by bulbs, of different sizes, that yield to the appearance of
attractive cycles of different periods. In this paper, we focus on
the study of all bulbs involving attractive cycles of period 2. As
we see in the following sections, these attractive 2-cycles also
appear in the small black figures passing through the necklace
(little cats).

3. Bulbs Involving Attractive
Cycles of Period 2

The 2-bulbs consist of values of the parameter which have
been associated with an attracting periodic cycle of period
two in their respective dynamical planes. Cycles of period 2
satisfy the equation:

𝑂2𝑝 (𝑧, 𝛼) = 𝑧. (9)

The relation 𝑂2𝑝(𝑧, 𝛼) − 𝑧 = 0 can be factorized as

𝑧 (−1 + 𝑧) (1 + 3𝑧 − 2𝛼𝑧 + 𝑧2) 𝑓 (𝑧, 𝛼) 𝑔 (𝑧, 𝛼) = 0, (10)

where

𝑓 (𝑧, 𝛼) = 1 + (3 − 2𝛼) 𝑧 + (3 − 2𝛼) 𝑧
2

+ (3 − 2𝛼) 𝑧
3 + 𝑧4,

(11)

𝑔 (𝑧, 𝛼) = 1 + (3 − 4𝛼) 𝑧 + (2 − 6𝛼 + 4𝛼2) 𝑧2

+ (3 − 6𝛼 + 4𝛼2) 𝑧3

+ (9 − 22𝛼 + 20𝛼2 − 8𝛼3) 𝑧4

+ (3 − 6𝛼 + 4𝛼2) 𝑧5 + (2 − 6𝛼 + 4𝛼2) 𝑧6

+ (3 − 4𝛼) 𝑧
7 + 𝑧8.

(12)

As we have seen in [9], the product 𝑧(−1 + 𝑧)(1 + 3𝑧 −
2𝛼𝑧+𝑧2) yields to the fixed points. So, 2 periodic points come

from the roots of 𝑓(𝑧, 𝛼) = 0 or 𝑔(𝑧, 𝛼) = 0. In the following,
we study the bulbs where 2-cycles become attractive, and, by
imitating the notation of theMandelbrot set (see [14]), we call
them 2-bulbs.

In addition, the authors showed in [12] that the strange
fixed points 𝑧 = 1 and 𝑠1(𝛼), 𝑠2(𝛼) move from attractors
to repulsor in some bifurcation points, and one attractive 2-
cycle appears. If we study the dynamical plane for a value of 𝛼
inside these 2-bulbs, we observe that the Fatou set has a peri-
odic component with two connected components containing
the attracting 2-cycle. The two connected components touch
at a common point that it is the fixed point from which the
attractive cycle comes. Examples of these dynamical planes
can be seen in Figures 2, 3, 4, and 5, where the fixed points
are identified with little white stars. In these figures we also
observe three different Fatou components: the orange one is
the attraction basin of 𝑧 = 0, the blue one is the attraction
basin of 𝑧 = ∞, and the black one corresponds to the
attractive 2-cycle. Let us notice that the strange fixed points
are repulsive and they are located on the Julia set.

Let us observe in Figure 4 that the two components,
where the 2-cycle is included, touch each other in the strange
fixed point 𝑧 = 1.

For 𝛼 = 3.55 (Figure 5), two attractive 2-cycles appear,
one comes from the strange fixed point 𝑠1(3.55), and the other
comes from 𝑠2(3.55).

For 𝛼 = 1.687616 (Figure 3), two attractive 2-cycles
appear from the bifurcation of the 2-cycle coming from the
fixed point 𝑧 = 1. So, this fixed point is in the boundary
of its basin of attraction but not in the boundary of the two
immediate basins.

4. Bulbs Coming from 𝑓(𝑧,𝛼)

The roots of 𝑓(𝑧, 𝛼) = 0 are

𝑧1 (𝛼) = −
3

4
+

𝛼

2
+

1

4
√5 − 4𝛼 + 4𝛼2

−
1

4
√−2−16𝛼 +8𝛼2+(−6 +4𝛼)√5−4𝛼+4𝛼2,

𝑧2 (𝛼) = −
3

4
+

𝛼

2
+

1

4
√5 − 4𝛼 + 4𝛼2

+
1

4
√−2 − 16𝛼+8𝛼2+(−6+4𝛼)√5−4𝛼+4𝛼2,

𝑧3 (𝛼) = −
3

4
+

𝛼

2
−

1

4
√5 − 4𝛼 + 4𝛼2

−
1

4
√−2−16𝛼+8𝛼2−(−6+4𝛼)√5−4𝛼+4𝛼2,

𝑧4 (𝛼) = −
3

4
+

𝛼

2
−

1

4
√5 − 4𝛼 + 4𝛼2

+
1

4
√−2 − 16𝛼 + 8𝛼2 − (−6 + 4𝛼)√5 − 4𝛼 + 4𝛼2,

(13)
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Figure 2: Two 2-cycles in the dynamical plane for 𝛼 = 0.376.
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Figure 3: Two 2-cycles in the dynamical plane for 𝛼 = 1.687616.

where {𝑧1(𝛼), 𝑧2(𝛼)} and {𝑧3(𝛼), 𝑧4(𝛼)} form two cycles of
period two:

𝑂𝑝 (𝑧1 (𝛼) , 𝛼) = 𝑧2 (𝛼) ,

𝑂𝑝 (𝑧3 (𝛼) , 𝛼) = 𝑧4 (𝛼) .
(14)

The stability functions of these 2-cycles depends on 𝛼:

𝑆12 (𝛼) = 𝑂𝑝 (𝑧1 (𝛼) , 𝛼) ⋅ 𝑂

𝑝 (𝑧2 (𝛼) , 𝛼)

= 2 (−1 + 𝛼) (−3 + 2𝛼) (−9 + 13𝛼 − 12𝛼2 + 4𝛼3)

× √5 − 4𝛼 + 4𝛼2 + 2 (63 − 210𝛼 + 363𝛼2

− 376𝛼3 + 248𝛼4

−96𝛼5 + 16𝛼6) ,

𝑆34 (𝛼) = 𝑂𝑝 (𝑧3 (𝛼) , 𝛼) ⋅ 𝑂

𝑝 (𝑧4 (𝛼) , 𝛼)

= − 2 (−1 + 𝛼) (−3 + 2𝛼) (−9 + 13𝛼 − 12𝛼2 + 4𝛼3)

× √5 − 4𝛼 + 4𝛼2 + 2 (63 − 210𝛼 + 363𝛼2

− 376𝛼3 + 248𝛼4

−96𝛼5 + 16𝛼6) .

(15)

We can draw numerically the boundaries where these
2-cycles are parabolic, (see Figure 6). In it, blue points
correspond to |𝑆12(𝛼)| = |𝑂𝑝(𝑧1(𝛼), 𝛼) ⋅ 𝑂𝑝(𝑧2(𝛼), 𝛼)| = 1

and red points represent the stability function |𝑆34(𝛼)| =
|𝑂𝑝(𝑧3(𝛼), 𝛼) ⋅ 𝑂


𝑝(𝑧4(𝛼), 𝛼)| = 1.
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𝑧 = 0.95514 + 𝑖0.29616
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Figure 4: Dynamical plane for 𝛼 = (11/6) − 0.05.

The first two drawings of Figure 6 are part of the bound-
ary of the little cats and correspond to values of the parameter
where the imaginary part is always different from zero. The
third one admits real values of 𝛼. As we see in the following
result, these real values permit to obtain the “radius” and the
center of this bulb (see [12]).

Moreover, we find two disks that embed this bulb.

Proposition 3. Let 𝑆12(𝛼) be the stability function of the 2-
cycle {𝑧1(𝛼), 𝑧2(𝛼)}. Then, |𝑆12(𝛼)| < 1, for 𝛼 ∈ 𝐷1, such that

𝐶2 := {𝛼 : |𝛼 − 𝑚| < 0.064} ⊂ 𝐷1 ⊂ 𝐶1 := {𝛼 : |𝛼 − 𝑚| < 𝑟} ,
(16)

where 𝑚 = (1/2)((11/6) + 𝛼∗), 𝑟 = (1/2)((11/6) −

𝛼∗) ≈ 0.064617, and 𝛼∗ = (1/6)
3√(134 + 18√57) − (4/

(3
3√(134 + 18√57))) + (5/6) ≈ 1.7041.

Proof. Theboundary of the bulb satisfies |𝑆12(𝛼)| = 1, and it is
not a circle, but there exists a corona delimited by two circles
𝐶1 and𝐶2.These circles are centered in themiddle point of𝛼∗
and 11/6, 𝛼∗0 = (1/2)((11/6) + 𝛼∗) ≈ 1.76871, and have radii
𝑟 = (1/2)((11/6) − 𝛼∗) ≈ 0.0646 and 𝑟 = 0.064, respectively,
see Figure 7.

As we see in Figures 7 and 8, the value of the stability
function |𝑆12(𝛼)| in these circles is such that |𝑆12(𝛼)| ≥ 1
if 𝛼 ∈ 𝐶1 and |𝑆12(𝛼)| < 1 if 𝛼 ∈ 𝐶2. In Figure 8 the red
curve corresponds to |𝑆12(𝛼)| when 𝛼 ∈ 𝐶1 and the blue one
corresponds to 𝛼 ∈ 𝐶2. The value |𝑆12(𝛼)| = 1 corresponds to
the real values 𝛼 = 11/6 and 𝛼 = 𝛼∗.

The dynamical planes for values of 𝛼 inside this bulb 𝐷1
are similar to those obtained in Figure 4.

5. Bulbs Coming from 𝑔(𝑧,𝛼)

A similar study can be made on 𝑔(𝑧, 𝛼) in order to obtain the
other bulbs of period 2 belonging to the cat set. To simplify the
study we factorize 𝑔(𝑧, 𝛼) = ℎ1(𝑧, 𝛼)ℎ2(𝑧, 𝛼)ℎ3(𝑧, 𝛼)ℎ4(𝑧, 𝛼),
where ℎ𝑖(𝑧, 𝛼) are polynomials of degree two, ℎ𝑖(𝑧, 𝛼) = 1 +

𝑏𝑖𝑧 + 𝑧2, 𝑖 = 1, 2, 3, 4. The relationships that the coefficients
must satisfy are

𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 = 3 − 4𝛼,

𝑏1𝑏2 + 𝑏1𝑏3 + 𝑏1𝑏4 + 𝑏2𝑏3 + 𝑏2𝑏4 + 𝑏3𝑏4 = 4𝛼2 − 6𝛼 − 2,

𝑏1𝑏2𝑏3 + 𝑏1𝑏2b4 + 𝑏1𝑏3𝑏4 + 𝑏2𝑏3𝑏4 = 4𝛼2 − 6𝛼 − 6,

𝑏1𝑏2𝑏3𝑏4 = −8𝛼3 + 12𝛼2 − 10𝛼 + 7,

(17)

whose solution is

𝑏1 (𝛼) =
1

4
(3 − 4𝛼 − √−3 + 8𝛼

−√2√23 − 16𝛼 + 8𝛼2 +
−3 + 20𝛼 − 32𝛼2

√−3 + 8𝛼
) ,

𝑏2 (𝛼) =
1

4
(3 − 4𝛼 − √−3 + 8𝛼

+√2√23 − 16𝛼 + 8𝛼2 +
−3 + 20𝛼 − 32𝛼2

√−3 + 8𝛼
) ,

𝑏3 (𝛼) =
1

4
(3 − 4𝛼 + √−3 + 8𝛼

−√2√23 − 16𝛼 + 8𝛼2 −
−3 + 20𝛼 − 32𝛼2

√−3 + 8𝛼
) ,

𝑏4 (𝛼) =
1

4
(3 − 4𝛼 + √−3 + 8𝛼

+√2√23 − 16𝛼 + 8𝛼2 −
−3 + 20𝛼 − 32𝛼2

√−3 + 8𝛼
) .

(18)

We define the following functions, in terms of the behav-
ior of the cycles

𝑔1 (𝑧, 𝛼) = ℎ1 (𝑧, 𝛼) ℎ2 (𝑧, 𝛼)

= 1 +
1

2
(3 − 4𝛼 − √−3 + 8𝛼) 𝑧

+
1

2
(−1 + 2𝛼) (1 + √−3 + 8𝛼) 𝑧2

+
1

2
(3 − 4𝛼 − √−3 + 8𝛼) 𝑧3 + 𝑧4,

𝑔2 (𝑧, 𝛼) = ℎ3 (𝑧, 𝛼) ℎ4 (𝑧, 𝛼)

= 1 +
1

2
(3 − 4𝛼 + √−3 + 8𝛼) 𝑧
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𝑧 = 4.0623 + 𝑖 − 4.656𝑒 − 006
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∗

(b)

Figure 5: Two 2-cycles in the dynamical plane for 𝛼 = 3.55.

+
1

2
(−1 + 2𝛼) (1 − √−3 + 8𝛼) 𝑧2

+
1

2
(3 − 4𝛼 + √−3 + 8𝛼) 𝑧3 + 𝑧4.

(19)

We see in the following sections that the roots of these
functions yield to the appearance of attractive 2-cycles.

5.1. Cycles of Period 2 Coming from 𝑔1(𝑧,𝛼). The four solu-
tions of 𝑔1(𝑧, 𝛼) = 0 are

𝑤1 (𝛼) =
1

8
(−3 + 4𝛼 + √−3 + 8𝛼 − √2√23 − 16𝛼 + 8𝛼2 + (1 − 4𝛼)√−3 + 8𝛼)

−
1

4
√−3 − 12𝑎 + 8𝑎2 − √−3 + 8𝛼 +

√2

2
(3 − 4𝛼 − √8𝛼 − 3)√23 − 16𝛼 + 8𝛼2 + (1 − 4𝛼)√−3 + 8𝛼,

𝑤2 (𝛼) =
1

8
(−3 + 4𝛼 + √−3 + 8𝛼 + √2√23 − 16𝛼 + 8𝛼2 + (1 − 4𝛼)√−3 + 8𝛼)

−
1

4
√−3 − 12𝑎 + 8𝑎2 − √−3 + 8𝛼 −

√2

2
(3 − 4𝛼 − √8𝛼 − 3)√23 − 16𝛼 + 8𝛼2 + (1 − 4𝛼)√−3 + 8𝛼,

𝑤3 (𝛼) =
1

8
(−3 + 4𝛼 + √−3 + 8𝛼 − √2√23 − 16𝛼 + 8𝛼2 + (1 − 4𝛼)√−3 + 8𝛼)

+
1

4
√−3 − 12𝑎 + 8𝑎2 − √−3 + 8𝛼 +

√2

2
(3 − 4𝛼 − √8𝛼 − 3)√23 − 16𝛼 + 8𝛼2 + (1 − 4𝛼)√−3 + 8𝛼,

𝑤4 (𝛼) =
1

8
(−3 + 4𝛼 + √−3 + 8𝛼 + √2√23 − 16𝛼 + 8𝛼2 + (1 − 4𝛼)√−3 + 8𝛼)

+
1

4
√−3 − 12𝑎 + 8𝑎2 − √−3 + 8𝛼 −

√2

2
(3 − 4𝛼 − √8𝛼 − 3)√23 − 16𝛼 + 8𝛼2 + (1 − 4𝛼)√−3 + 8𝛼.

(20)

It is easy to see that 𝑤1(7/2) = 𝑤2(7/2) = 𝑠1(7/2) and
𝑤3(7/2) = 𝑤4(7/2) = 𝑠2(7/2), so there are two 2-cycles com-
ing from this function, {𝑤1(𝛼), 𝑤2(𝛼)} and {(𝑤3(𝛼), 𝑤4(𝑎)}.
We know (see [9]) that for 𝛼 = 7/2 the strange fixed points,
𝑠1(7/2) = 2 − √3 and 𝑠2(7/2) = 2 + √3 become parabolic
|𝑂𝑝(𝑠1(7/2), 𝛼)| = |𝑂𝑝(𝑠2(7/2), 𝛼)| = 1, and for 𝛼 > 7/2, these
strange fixed points are repulsive. As we prove in [12] these
two 2-cycles become attractive for real 𝛼 ∈ (7/2, 𝛼∗∗), 𝛼∗∗ ≈
3.738271. In this paper, we are interested in locating the

boundaries of the bulb. In the stability study of the cycles
{𝑤1(𝛼), 𝑤2(𝛼)} and {(𝑤3(𝛼), 𝑤4(𝑎)}, we obtain two 2-bulbs
where these 2-cycles are attractive.

The dynamical planes for values of the parameter 𝛼 inside
these 2-bulbs are similar to those obtained in Figures 3
(region𝐷2) and 5 (region𝐷3).

Proposition 4. Let 𝑆𝑤12(𝛼) and 𝑆𝑤34(𝛼) be the stability
functions of the 2-cycles {𝑤1(𝛼), 𝑤2(𝛼)} and {𝑤3(𝛼), 𝑤4(𝛼)},
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respectively. Then, |𝑆𝑤12(𝛼)| < 1 and |𝑆𝑤34(𝛼)| < 1, for
𝛼 ∈ 𝐷2 ∪ 𝐷3, such that

𝐶2 := {𝛼 : |𝛼 − 1.6876| < 0.015}

⊂ 𝐷2 ⊂ 𝐶1 := {𝛼 : |𝛼 − 1.6876| < 0.017} ,

𝐶4 := {𝛼 : |𝛼 − 3.62| < 0.117}

⊂ 𝐷3 ⊂ 𝐶3 := {𝛼 : |𝛼 − 3.62| < 0.12} .

(21)

Proof. The 2-cycles {𝑤1(𝛼), 𝑤2(𝛼)} and {𝑤3(𝛼), 𝑤4(𝛼)} derive
from the strange points 𝑠1(𝛼) and 𝑠2(𝛼) for 𝛼 = 7/2
and 𝛼 = 𝛼∗, being attractive for the same values of the
parameter.There are two different bulbs where these 2-cycles
are attractive, 𝐷2 and 𝐷3. The boundaries of these bulbs
satisfy |𝑆𝑤12(𝛼)| = |𝑆𝑤34(𝛼)| = 1, and they are not circles.

Nevertheless, there exist two coronas delimited by the circles
(𝐶1, 𝐶2) and (𝐶3, 𝐶4), see Figures 9 and 10, surrounding the
boundaries of these bulbs.

The stability function on these two circles |𝑆𝑤12(𝛼)| =
|𝑆𝑤34(𝛼)| is drawn for all of them: 𝜕𝐶1 : 𝛼 = 1.6876 +

0.017𝑒2𝜋𝑡𝑖 and 𝜕𝐶2 : 𝛼 = 1.6876 + 0.015𝑒2𝜋𝑡𝑖, 𝜕𝐶3 : 𝛼 =

3.62 + 0.12𝑒2𝜋𝑡𝑖 and 𝜕𝐶4 : 𝛼 = 3.62 + 0.117𝑒2𝜋𝑡𝑖, 0 ≤ 𝑡 ≤
1, respectively, and they can be seen in Figures 11 and 12,
where the color of the stability function is the same as the
corresponding circle. Let us notice that the stability function
is equal to 1 for 𝑡 = 𝜋 in the second picture; this point
corresponds to 𝛼 = 7/2 ∈ 𝐶4, and it is precisely the
bifurcation point.

5.2. Cycles of Period 2 Coming from 𝑔2(𝑧,𝛼). The four solu-
tions of 𝑔2(𝑧, 𝛼) = 0 are

𝑡1 (𝛼) =
1

8
(−3 + 4𝛼 − √−3 + 8𝛼 − √2√23 − 16𝛼 + 8𝛼2 − (1 − 4𝛼)√−3 + 8𝛼)

−
1

4
√−3 − 12𝛼 + 8𝛼2 + √−3 + 8𝛼 +

√2

2
(3 − 4𝛼 + √8𝛼 − 3)√23 − 16𝛼 + 8𝛼2 − (1 − 4𝛼)√−3 + 8𝛼,

𝑡2 (𝛼) =
1

8
(−3 + 4𝛼 − √−3 + 8𝛼 − √2√23 − 16𝛼 + 8𝛼2 − (1 − 4𝛼)√−3 + 8𝛼)

+
1

4
√−3 − 12𝛼 + 8𝛼2 + √−3 + 8𝛼 +

√2

2
(3 − 4𝛼 + √8𝛼 − 3)√23 − 16𝛼 + 8𝛼2 − (1 − 4𝛼)√−3 + 8𝛼,

𝑡3 (𝛼) =
1

8
(−3 + 4𝛼 − √−3 + 8𝛼 + √2√23 − 16𝛼 + 8𝛼2 − (1 − 4𝛼)√−3 + 8𝛼)

−
1

4
√−3 − 12𝛼 + 8𝛼2 + √−3 + 8𝛼 −

√2

2
(3 − 4𝛼 + √8𝛼 − 3)√23 − 16𝛼 + 8𝛼2 − (1 − 4𝛼)√−3 + 8𝛼,

𝑡4 (𝛼) =
1

8
(−3 + 4𝛼 − √−3 + 8𝛼 + √2√23 − 16𝛼 + 8𝛼2 − (1 − 4𝛼)√−3 + 8𝛼)

+
1

4
√−3 − 12𝛼 + 8𝛼2 + √−3 + 8𝛼 −

√2

2
(3 − 4𝛼 + √8𝛼 − 3)√23 − 16𝛼 + 8𝛼2 − (1 − 4𝛼)√−3 + 8𝛼.

(22)

The study of the stability functions of these roots

𝑆𝑡14 (𝛼) = 𝑂𝑝 (𝑡1 (𝛼) , 𝛼)𝑂

𝑝 (𝑡4 (𝛼) , 𝛼) ,

𝑆𝑡23 (𝛼) = 𝑂𝑝 (𝑡2 (𝛼) , 𝛼)𝑂

𝑝 (𝑡3 (𝛼) , 𝛼) ,

(23)

and their boundaries |𝑆𝑡14(𝛼)| = |𝑆𝑡23(𝛼)| = 1 gives
three different regions where the 2-cycles {𝑡1(𝛼), 𝑡4(𝛼)} and
{t2(𝛼), 𝑡3(𝛼)} are attractive (see Figure 13).

Proposition 5. Let 𝑆𝑡14(𝛼) be the stability function of the 2-
cycle {𝑡1(𝛼), 𝑡4(𝛼)}. Then, |𝑆𝑡14(𝛼)| < 1, for 𝛼 ∈ 𝐷4, such that

𝐶2 := {𝛼 : |𝛼 − 0.376| < 0.001}

⊂ 𝐷4 ⊂ 𝐶1 := {𝛼 : |𝛼 − 0.376| < 0.002} .
(24)

Proof. The 2-cycle {𝑡1(𝛼), 𝑡4(𝛼)} is attractive in three different
bulbs. One of them cuts the real line, and its boundary
satisfies |𝑆𝑡14(𝛼)| = 1; as in the previous cases, it is not circle
but there exists one corona delimited by the circles (𝐶1, 𝐶2),
(Figure 14).
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Figure 6: |𝑆12(𝛼)| = 1, |𝑆34(𝛼)| = 1.

0.05

0.00

−0.05

1.75 1.80 1.85

Figure 7: Corona delimiting the bulb of period two in the head.

The stability function of these two circles |𝑆𝑡14(𝛼)| is
drawn for 𝜕𝐶1 : 𝛼 = 0.376 + 0.02𝑒2𝜋𝑡𝑖 and 𝜕𝐶2 : 𝛼 = 0.376 +
0.01𝑒2𝜋𝑡𝑖, 0 ≤ 𝑡 ≤ 1, and can be seen in Figure 15 where the
colour of stability function is the same as the corresponding
circle. The dynamical planes for values of 𝛼 inside this bulb
are similar to those obtained in Figure 2.

6. Conclusions

The cat set as a parameter space of the Chebyshev-Halley
family on quadratic polynomials is dynamically very wealthy,
as it happens with Mandelbrot set. The head and the body of
the cat set are surrounded by bulbs of different sizes. In this
paper, we study those which give rise to attractive cycles of
period two. We observe that these attractive 2-cycles exist for
many different parameter values, that is, for many different
members of the family of iterative methods.

1.01

1.00

0.99

0.2 0.4 0.6 0.8 1.0

Figure 8: Stability function of the 2-cycle {𝑧1(𝛼), 𝑧2(𝛼)} on 𝐶1 and
𝐶2.
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0.980

0.985

0.990

0.995

1.000

Figure 9: Corona delimited by the circles (𝐶1, 𝐶2).

We can draw the stability functions of all these 2-cycles.
Mathematica permits us to draw these stability functions
for values between 0 and 1, Figure 16. In it, the big circles
correspond to values of 𝛼 where the fixed points 𝑧 = 1 (left
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Figure 10: Corona delimited by the circles (𝐶3, 𝐶4).
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𝑆
𝑤
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Figure 11: Stability function of the 2-cycle {𝑤1(𝛼), 𝑤2(𝛼)} for𝐶1 and
𝐶2.
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Figure 12: Stability function of the 2-cycle {𝑤3(𝛼), 𝑤4(𝛼)} for𝐶3 and
𝐶4.

one, |𝛼 − (13/6)| < 1/3), and 𝑧 = 𝑠1(𝛼), 𝑠2(𝛼) (right one,
|𝛼 − 3| < 1/2), respectively, are attractive. The other figures
correspond to the different bulbs where the 2-cycles studied
in the previous sections are attractive.

Let us remark that the number of 2-cycles is different
depending on the bulb considered. There is only one attrac-
tive 2-cycle in the region𝐷1, whereas there are two 2-cycles in
the regions 𝐷2 and 𝐷3. This is because the attractive 2-cycle
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Figure 13: |𝑆𝑡12(𝛼)| = 1 and |𝑆𝑡34(𝛼)| = 1.
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Figure 14: |𝑆𝑡14(𝛼)| = 1 and the corona (𝐶1, 𝐶2).
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Figure 15: Stability function of the 2-cycle {𝑡1(𝛼), 𝑡4(𝛼)} for 𝐶1 and
𝐶2.
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Figure 16: Stability functions of cycles of period two.

for 𝛼 ∈ 𝐷1 comes from the bifurcation of the strange fixed
point 𝑧 = 1, and the two attractive 2-cycles for 𝛼 ∈ 𝐷2 ∪ 𝐷3
come from the bifurcation of the strange fixed points 𝑧 =
𝑠1(𝛼), 𝑠2(𝛼), and the two attractive 2-cycles for 𝛼 ∈ 𝐷2 come
from the bifurcation of the 2-cycle {𝑧1(𝛼), 𝑧2(𝛼)}.

Furthermore, by comparing Figures 1 and 16, we can
conclude that the little cats on the necklace also correspond
to values of 𝛼 where some attractive 2-cycles appear in the
Chebyshev-Halley family.
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