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A new three-dimensional chaotic system is introduced. Basic properties of this system show that its corresponding attractor is topo-
logically different from some well-known systems. Next, detailed information on dynamic of this system is obtained numerically
by means of Lyapunov exponents spectrum, bifurcation diagrams, and 0-1 chaos indicator test. We finally prove existence of this
chaotic attractor theoretically using Shil’nikov theorem and undetermined coefficient method.

1. Introduction

The current surge towards the study on dynamical systems
and 3D chaotic attractors started by the remarkable discovery
of Lorenz in 1963 [1].While hewas studying atmospheric con-
vections using Saltzman equations, he finally came up with
a new system of differential equations (1), which is known
after his name. His further investigations on this new system
showed that for specific values of parameters it has a new type
of attractor, namely, chaotic attractor as follows:

�̇� = 𝑎 (𝑦 − 𝑥) ,

̇𝑦 = 𝑐𝑥 − 𝑦 − 𝑥𝑧,

�̇� = 𝑥𝑦 − 𝑏𝑧.

(1)

During the past decades, enormous amount of researches
have been done on this system which have revealed charac-
teristics and features of it [2].

Besides the researches on Lorenz, many other system of
equations have been introduced and analysed since then, like
Chen, Rössler, Chua, Lü, Qi, andmany others. For instance, a
new chaotic system was reported with no equilibria which is
based on Sprott D system [3]. In another research, a chaotic
system with only one stable equilibrium was introduced
which typically is not anticipated to show such a behaviour
[4]. And recently a technique to construct a chaotic system

with an arbitrary number of equilibria has been also intro-
duced [5]. Since the idea of the proposed system has come
from Chen and Qi systems, we describe these two systems
briefly.

The Chen system (2) is constructed using a state feedback
in the second equation of Lorenz, and he showed that this
system is chaotic at 𝑎 = 35, 𝑏 = 3, and 𝑐 = 28 as follows:

�̇� = 𝑎 (𝑦 − 𝑥) ,

̇𝑦 = (𝑐 − 𝑎) 𝑥 + 𝑐𝑦 − 𝑥𝑧,

�̇� = 𝑥𝑦 − 𝑏𝑧.

(2)

Later on, by eliminating the first term in the second
equation, Chen and Lü proposed the Lü system, which is
infact the transition between Lü and Chen [6].

In 2005, Qi and his colleagues added a cross-product
nonlinear term to the first equation of Lorenz and introduced
a new system (3) that was topologically different fromLorenz,
Chen, Rössler, and even Lorenz system family [7] as follows:

�̇� = 𝑎 (𝑦 − 𝑥) + 𝑦𝑧,

̇𝑦 = 𝑐𝑥 − 𝑦 − 𝑥𝑧,

�̇� = 𝑥𝑦 − 𝑏𝑧.

(3)
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Comparing (2) and (3) with Lorenz shows that how small
modifications on Lorenz could lead to a system with new
characteristic features and in some cases even topologically
different attractor. The system we are going to introduce and
study here is

�̇� = 𝑎 (𝑦 − 𝑥) + 𝑦𝑧,

̇𝑦 = (𝑐 − 𝑎) 𝑥 + 𝑐𝑦 − 𝑥𝑧,

�̇� = 𝑥𝑦 − 𝑏𝑧.

(4)

It has a chaotic attractor at 𝑎 = 15, 𝑏 = 8/3, and 𝑐 = 10

which is topologically different from Lorenz, Chen, and even
Rössler to be shown shortly.

This paper is divided into five parts. Section 2 deals
with studying the basic properties of system (4). After that
in Section 3, more detailed investigation will be done on
dynamic of this system using Lyapunov exponents spec-
trum, bifurcation diagrams, and 0-1 test which reveals the
behaviour of this system for various sets of parameters,
and how it evolves from one state to the other. Then in
Section 4 we will theo-retically prove the existence of chaos
in this system using Shil’nikov theorem and undetermined
coefficient method [8]. We conclude this paper in Section 5.

2. Basic Properties

In this section, we start with equilibrium points of the system
and check their stability at initial values of parameters 𝑎, 𝑏,
and 𝑐. Putting equations of the system equal to zero gives the
equilibrium points

V
1
= (0, 0, 0) ,

V
2,3

= (±

𝑎
√
2

√

𝑐𝑑𝑏𝑎

2𝑐 (𝑎 − (𝑑𝑎/2𝑐))

, ±

√
2

√

𝑐𝑑𝑏𝑎

2𝑐

,

𝑎

2
𝑑

2𝑐 (𝑎 − (𝑑𝑎/2𝑐))

) ,

V
4,5

= (±

𝑎

√

−2𝑐𝑒𝑏𝑎

2𝑐 (𝑎 + (𝑒𝑎/2𝑐))

, ±

√

−2𝑐𝑒𝑏𝑎

2𝑐

, −

𝑎

2
𝑒

2𝑐 (𝑎 + (𝑒𝑎/2𝑐))

) ,

(5)

where

𝑑 = 3𝑐 +

√

𝑐

2
+ 4𝑐𝑎,

𝑒 = −3𝑐 +

√

𝑐

2
+ 4𝑐𝑎.

(6)

Therefore, at the initial values of parameters 𝑎, 𝑏, and 𝑐, this
system has five equilibrium points in contrast to Lorenz,
Chen, and Rössler which have three, three, and two equilibri-
ums, respectively. It implies topological distinction between
system (4) and these systems.

In order to check their stability we derive Jacobian matrix
of the system

𝐷𝑓(𝑥, 𝑦, 𝑧) = (

−𝑎 𝑎 + 𝑧 𝑦

𝑐 − 𝑎 − 𝑧 𝑐 −𝑥

𝑦 𝑥 −𝑏

) . (7)

Substituting the origin in this matrix we get the characteristic
equation

(𝜆

2
+ (−𝑐 + 𝑎) 𝜆 + 𝑎 (−2𝑐 + 𝑎)) (𝜆 + 𝑏) = 0 (8)

which has three eigenvalues 𝜆
1
= 6.5139, 𝜆

2
= −2.6667, and

𝜆

3
= −11.5139. Since all the eigenvalues are real, Hartman-

Grobman theorem implies that origin is a saddle point which
is not Lyapunov stable according to the Lyapunov theorem of
stability.

The eigenvalues of the Jacobian at V
2
and V

3
are 𝜆

1
=

−19.5735 and 𝜆

2,3
= 5.9534 ± 11.4898𝑖; notice that these two

points are symmetrically located around 𝑧 axis. None of these
numbers have real part zero, and because 𝜆

2,3
are complex,

V
2
is an unstable saddle-focus point. Exactly the same results

holds for V
3
.

At V
4
and V
5
the eigenvalues are 𝜆

1
= −10.3231 and 𝜆

2,3
=

1.3282 ± 6.5092𝑖. Similar to V
2,3
, it shows that this system has

a saddle focus at V
4
and V
5
that is not Lyapunov stable.

A large class of chaotic systems are dissipative dynamical
systems which satisfy the condition

∇ ⋅ 𝑉 =

𝜕�̇�

𝜕𝑥

+

𝜕 ̇𝑦

𝜕𝑦

+

𝜕�̇�

𝜕𝑧

< 0. (9)

In the case of system (4) we have ∇ ⋅ 𝑉 = 𝑐 − (𝑎 + 𝑏) = 10 −

(15 + 8/3) < 0; therefore dissipativity condition holds on this
system. Moreover

𝑑𝑉

𝑑𝑡

= 𝑒

𝑐−(𝑎+𝑏)
= 0.0004682.

(10)

It implies that the volume of the attractor decreases by a factor
of 0.0004682 and at each particular time 𝑡 the volume is

𝑉 (𝑡) = 𝑉

0
𝑒

(𝑐−(𝑎+𝑏))𝑡
.

(11)

The key characteristic of a chaotic system is its sensitive
dependency on initial conditions; which is associated with
having positive Lyapunov exponents. Using the MATLAB
program at [9], which is based on the algorithm introduced in
[10], the Lyapunov exponents of the system are 0.766 ± 0.005,
0 ± 0.0004, and −8.435 ± 0.005. In addition, exponentiating
these numbers indicates that nearby trajectories diverge from
each other by a factor of 2.151.

Having the Lyapunov exponents, Kaplan-Yorke (Lya-
punov) dimension [11] of the attractor is 2.0908. On the other
hand, using correlation and box-counting methods, fractal
dimensions of the attractor are 1.9763 and 0.9405, respec-
tively, which indicate its fractal structure. Figure 1 shows the
attractor and its projections on different planes.

3. Computational Analysis

In this section, we employ extensive computations to have
a broader picture of the dynamic of this system in diffe-
rent regions of parameters’ values. Our focus is on the para-
meter 𝑎, but we do show the results regarding 𝑏 and 𝑐 in the
figures.
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Figure 1: 3D view of the attractor and its various projections.
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Figure 2: Lyapunov exponents spectrum of the system with respect
to 𝑎.

At different set of parameters’ values, behaviour of a sys-
tem could be either chaotic, periodic, or convergence to one
of the equilibria. So to have a good understanding of its
dynamics, we need to identify the regions whereby the system
is in either of these states. Here we use Lyapunov exponents
spectrum, bifurcation diagrams, and 0-1 chaos indicator test
[12] to obtain this information.

Figure 2 shows the Lyapunov exponents spectrum with
respect to parameter 𝑎 ∈ [11.5, 25]. As we see, at the begin-
ning the system is in periodic state, and trajectories converge
to a limit cycle in the state space. At 𝑎 = 13.94, chaotic
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Figure 3: Bifurcation diagram of the system with respect to 𝑎.

state emerges, whichmeans that the systembecomes sensitive
to its initial condition. It continues up to 17.68 where the
maximum exponent becomes negative and trajectories fall to
convergence to the equilibria.

This result can be justified using bifurcation diagram
and 0-1 test. Figure 3 shows that following the periodic
state, the system experiences a period doubling cascade lead-
ing to chaos right in the interval 𝑎 ∈ [13.94, 17.68]. The
window in this region corresponds to the small region in
the Lyapunov spectrum whereby the maximum exponents
become zero temporarily. Figure 4 shows the result of 0-1 test
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Figure 4: Implication of 0-1 test on the system with respect to 𝑎.
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Figure 5: Lyapunov exponents spectrum of the system with respect
to 𝑏.

which is clearly in accordance with Figures 2 and 3. Results
regarding parameters 𝑏 and 𝑐 are displayed in Figures 5, 6, 7,
and 8.

4. Theoretical Proof of Chaos

4.1. Finding the Heteroclinic Orbit. Numerical simulations do
not give us the rigorous proof of the existence of chaos in a
system. Therefore, we have to work theoretically to find the
final answer to this question.Themethod we go through here
is Shil’nikov theorem for the existence of chaos. Having the
conditions of this theorem satisfied, it says that the system
has Smale horseshoes and horseshoe type of chaos.

Consider the three-dimensional autonomous system

�̇� = 𝑓 (𝑥) , (12)

where vector field 𝑓 : R3 → R3 belongs to class C𝑟 (𝑟 ≥ 1).
Shil’nikov theorem is [13].
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Figure 6: Bifurcation diagram of the system with respect to 𝑏.
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Figure 7: Lyapunov exponents spectrum of the system with respect
to 𝑐.
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Figure 8: Bifurcation diagram of the system with respect to 𝑐.

Theorem 1 (Heteroclinic Shil’nikov theorem). Suppose that
two distinct equilibrium points, denoted by 𝑃

1
and 𝑃

2
, respec-

tively, of system �̇� = 𝑓(𝑥), are saddle foci whose characteristic
values 𝛾

𝑘
, 𝜌
𝑘
+ 𝑖𝜔

𝑘
, (𝑘 = 1, 2) satisfy the Shil’nikov inequalities
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𝜌

1
𝜌

2
> 0 or 𝛾

1
𝛾

2
> 0. Suppose also that there exists a

heteroclinic orbit jointing 𝑃
1
and 𝑃

2
. Then the system �̇� = 𝑓(𝑥)

has both Smale horseshoes and the horseshoe type of chaos.

Since the origin is not a saddle focus, Shil’nikov theorem
cannot be applied on it. However, V

2,3
and V

4,5
satisfy the

theorem’s condition. Here we put V
4,5

in our consideration
and show the presence of a heteroclinic orbit between them
which proves the existence of chaos.

The method we employ to find the heteroclinic orbit is
undetermined coefficients method [8] with a new approach
[14]. Without loss of generality, assume the direction from
V
4
to V
5
corresponding to 𝑡 → ∞ and from V

5
to V
4

corresponding to 𝑡 → −∞.
In the case of 𝑡 > 0 and according to the undetermined

coefficients method, assume that

𝑥 (𝑡) = 𝑥

5
+

∞

∑

𝑘=1

𝑎

𝑘
𝑒

𝑘𝛼𝑡
,

𝑦 (𝑡) = 𝑦

5
+

∞

∑

𝑘=1

𝑏

𝑘
𝑒

𝑘𝛼𝑡
,

𝑧 (𝑡) = 𝑧

5
+

∞

∑

𝑘=1

𝑐

𝑘
𝑒

𝑘𝛼𝑡
,

𝑡 > 0.

(13)

Substituting these equations into the system (4) we have
∞

∑

𝑘=1

𝑎

𝑘
𝑘𝛼𝑒

𝑘𝛼𝑡

= 𝑎(𝑦

5
+

∞

∑

𝑘=1

𝑏

𝑘
𝑒

𝑘𝛼𝑡
− 𝑥

5
−

∞

∑

𝑘=1

𝑎

𝑘
𝑒

𝑘𝛼𝑡
) + 𝑦

5
𝑧

5

+ 𝑦

5

∞

∑

𝑘=1

𝑐

𝑘
𝑒

𝑘𝛼𝑡
+ 𝑧

5

∞

∑

𝑘=1

𝑏

𝑘
𝑒

𝑘𝛼𝑡
+

∞

∑

𝑖+𝑗=𝑘≥2

𝑏

𝑖
𝑐

𝑗
𝑒

𝑘𝛼𝑡
,

∞

∑

𝑘=1

𝑏

𝑘
𝑘𝛼𝑒

𝑘𝛼𝑡

= (𝑐 − 𝑎) 𝑥

5
+ (𝑐 − 𝑎)

∞

∑

𝑘=1

𝑎

𝑘
𝑒

𝑘𝛼𝑡
+ 𝑐𝑦

5

+ 𝑐

∞

∑

𝑘=1

𝑏

𝑘
𝑒

𝑘𝛼𝑡
− 𝑥

5
𝑧

5
− 𝑥

5

∞

∑

𝑘=1

𝑐

𝑘
𝑒

𝑘𝛼𝑡

− 𝑧

5

∞

∑

𝑘=1

𝑎

𝑘
𝑒

𝑘𝛼𝑡
−

∞

∑

𝑖+𝑗=𝑘≥2

𝑎

𝑖
𝑐

𝑗
𝑒

𝑘𝛼𝑡
,

∞

∑

𝑘=1

𝑐

𝑘
𝑘𝛼𝑒

𝑘𝛼𝑡

= 𝑥

5
𝑦

5
+ 𝑥

5

∞

∑

𝑘=1

𝑏

𝑘
𝑒

𝑘𝛼𝑡
+ 𝑦

5

∞

∑

𝑘=1

𝑎

𝑘
𝑒

𝑘𝛼𝑡

+

∞

∑

𝑖+𝑗=𝑘≥2

𝑎

𝑖
𝑏

𝑗
𝑒

𝑘𝛼𝑡
− 𝑏𝑧

5
− 𝑏

∞

∑

𝑘=1

𝑐

𝑘
𝑒

𝑘𝛼𝑡
.

(14)

Comparing the coefficients of 𝑒𝑘𝛼𝑡 of the same power we
have

(𝛼𝐼 − 𝐷𝑓(V
5
)) ⋅ (

𝑎

1

𝑏

1

𝑐

1

) = 0, for 𝑘 = 1, (15)

(𝑘𝛼𝐼 − 𝐷𝑓(V
5
)) ⋅ (

𝑎

𝑘

𝑏

𝑘

𝑐

𝑘

) =

(

(

(

∑

𝑖+𝑗=𝑘

𝑏

𝑖
𝑐

𝑗

− ∑

𝑖+𝑗=𝑘

𝑎

𝑖
𝑐

𝑗

∑

𝑖+𝑗=𝑘

𝑎

𝑖
𝑏

𝑗

)

)

)

(16)

which holds for 𝑘 ≥ 2. In (15), (𝑎
1
, 𝑏

1
, 𝑐

1
) ̸= 0 because other-

wise, by induction we get

(𝑎

𝑘
, 𝑏

𝑘
, 𝑐

𝑘
) = 0 (17)

for all 𝑘 ≥ 2. In addition, since jacobian at V
5
has a negative

eigenvalue, there is a unique 𝛼 such that

det (𝛼𝐼 − 𝐷𝑓(V
5
)) = 0. (18)

Thus, we can easily determine 𝑎
1
, 𝑏
1
, and 𝑐

1
using a free vari-

able 𝜃. Also note that in (16)

det (𝑘𝛼𝐼 − 𝐷𝑓(V
5
)) ̸= 0. (19)

Now we consider 𝑡 < 0, corresponding to moving from
V
5
to V
4
. Using the variable transformation 𝜏 = −𝑡 with 𝑡 > 0,

system (4) transforms to

𝑑𝑥

𝑑𝜏

= 𝑎 (𝑥 − 𝑦) − 𝑦𝑧,

𝑑𝑦

𝑑𝜏

= (𝑎 − 𝑐) 𝑥 − 𝑐𝑦 + 𝑥𝑧,

𝑑𝑧

𝑑𝜏

= −𝑥𝑦 + 𝑏𝑧.

(20)

Similarly assume that

𝑥 (𝑡) = 𝑥

4
+

∞

∑

𝑘=1

𝑎

𝑘
𝑒

−𝑘𝛽𝜏
,

𝑦 (𝑡) = 𝑦

4
+

∞

∑

𝑘=1

̂

𝑏

𝑘
𝑒

−𝑘𝛽𝜏
,

𝑧 (𝑡) = 𝑧

4
+

∞

∑

𝑘=1

𝑐

𝑘
𝑒

−𝑘𝛽𝜏
,

𝜏 < 0.

(21)



6 Abstract and Applied Analysis

Substituting these equations into the system (20) we obtain
∞

∑

𝑘=1

− 𝑎

𝑘
𝑘𝛽𝑒

−𝑘𝛽𝜏

= 𝑎𝑥

4
+ 𝑎∑𝑎

𝑘
𝑒

−𝑘𝛽𝜏
− 𝑎𝑦

4
− 𝑎

∞

∑

𝑘=1

̂

𝑏

𝑘
𝑒

−𝑘𝛽𝜏

− 𝑦

4
𝑧

4
− 𝑦

4

∞

∑

𝑘=1

𝑐

𝑘
𝑒

−𝑘𝛽𝜏
− 𝑧

4

∞

∑

𝑘=1

̂

𝑏

𝑘
𝑒

−𝑘𝛽𝜏

−

∞

∑

𝑖+𝑗=𝑘≥2

𝑐

𝑖
̂

𝑏

𝑗
𝑒

−𝑘𝛽𝜏
,

∞

∑

𝑘=1

−

̂

𝑏

𝑘
𝑘𝛽𝑒

−𝑘𝛽𝜏

= (𝑎 − 𝑐)(𝑥

4
+

∞

∑

𝑘=1

𝑎

𝑘
𝑒

−𝑘𝛽𝜏
)

− 𝑐(𝑦

4
−

∞

∑

𝑘=1

̂

𝑏

𝑘
𝑒

−𝑘𝛽𝜏
)

+ 𝑥

4
(𝑧

4
+

∞

∑

𝑘=1

𝑐

𝑘
𝑒

−𝑘𝛽𝜏
) + 𝑧

4

∞

∑

𝑘=1

𝑎

𝑘
𝑒

−𝑘𝛽𝜏

+

∞

∑

𝑖+𝑗=𝑘≥2

𝑒

−𝑘𝛽𝜏
,

∞

∑

𝑘=1

− 𝑐

𝑘
𝑘𝛽𝑒

−𝑘𝛽𝜏

= −𝑥

4
𝑦

4
− 𝑥

4

∞

∑

𝑘=1

̂

𝑏

𝑘
𝑒

−𝑘𝛽𝜏
− 𝑦

4

∞

∑

𝑘=1

𝑎

𝑘
𝑒

−𝑘𝛽𝜏

−

∞

∑

𝑖+𝑗=𝑘≥2

𝑎

𝑖
̂

𝑏

𝑗
𝑒

−𝑘𝛽𝜏
+ 𝑏𝑧

4
+ 𝑏

∞

∑

𝑘=1

𝑐

𝑘
𝑒

−𝑘𝛽𝜏
.

(22)

Now we equate the coefficients of 𝑒−𝑘𝛽𝜏 which have same
power terms. It gives us the following:

(𝛽𝐼 − 𝐷𝑓(V
4
)) ⋅ (

𝑎

1

̂

𝑏

1

𝑐

1

) = 0, for 𝑘 = 1,

(𝑘𝛽𝐼 − 𝐷𝑓(V
4
)) ⋅ (

𝑎

𝑘

̂

𝑏

𝑘

𝑐

𝑘

) =

(

(

(

− ∑

𝑖+𝑗=𝑘

̂

𝑏

𝑖
𝑐

𝑗

∑

𝑖+𝑗=𝑘

𝑎

𝑖
𝑐

𝑗

− ∑

𝑖+𝑗=𝑘

𝑎

𝑖
̂

𝑏

𝑗

)

)

)

, for 𝑘 ≥ 2.

(23)

Similar to the previous case, 𝑎
1
, ̂𝑏
1
, and 𝑐

1
can be determined

by a free variable and det(𝑘𝛽𝐼 − 𝐷𝑓(V
4
)) ̸= 0.

So the final expression of the heteroclinic orbit connect-
ing V
4
and V
5
is

𝑥 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

𝑥

5
+

∞

∑

𝑘=1

𝑎

𝑘
(𝑎, 𝑏, 𝑐, 𝛼) 𝑒

𝑘𝛼𝑡
, 𝑡 > 0,

𝑥

4
+

∞

∑

𝑘=1

𝑎

𝑘
(𝑎, 𝑏, 𝑐, 𝛽) 𝑒

−𝑘𝛽𝑡
, 𝑡 < 0,

𝑦 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

𝑦

5
+

∞

∑

𝑘=1

𝑏

𝑘
(𝑎, 𝑏, 𝑐, 𝛼) 𝑒

𝑘𝛼𝑡
, 𝑡 > 0,

𝑦

4
+

∞

∑

𝑘=1

̂

𝑏

𝑘
(𝑎, 𝑏, 𝑐, 𝛽) 𝑒

−𝑘𝛽𝑡
, 𝑡 < 0,

𝑧 (𝑡) =

{

{

{

{

{

{

{

{

{

{

{

𝑧

5
+

∞

∑

𝑘=1

𝑐

𝑘
(𝑎, 𝑏, 𝑐, 𝛼) 𝑒

𝑘𝛼𝑡
, 𝑡 > 0,

𝑧

4
+

∞

∑

𝑘=1

𝑐

𝑘
(𝑎, 𝑏, 𝑐, 𝛽) 𝑒

−𝑘𝛽𝑡
, 𝑡 < 0.

(24)

4.2. Convergence of the Series Solution. Since the solution is
in series form, we have to prove that it is convergence before
making any conclusion. Having (15) and (16) and the fact that
(𝑘𝛼𝐼 − 𝐷𝑓(V

5
)) is nonsingular, for any 𝑘 ≥ 1 we have

(

𝑎

𝑘

𝑏

𝑘

𝑐

𝑘

) = (

𝑚

𝑎
𝜃

𝑘

𝑚

𝑏
𝜃

𝑘

𝑚

𝑐
𝜃

𝑘

), (25)

where𝑚
𝑎
,𝑚
𝑏
, and𝑚

𝑐
are constants and 𝜃 is the free variable

we use to determine 𝑎

1
, 𝑏
1
, and 𝑐

1
. In addition, after doing

some algebra on (16) using the default values of 𝑎, 𝑏, and 𝑐we
have

𝑎

𝑘
<

𝑀𝜃

𝑘

𝑘

, 𝑘 ≥ 2.

(26)

As we mentioned before, 𝜃 is a free variable, so we can
assume it to be 0 < 𝜃 < 1. Thus

𝑥 (𝑡) = 𝑥

5
+

∞

∑

𝑘=1

𝑎

𝑘
𝑒

𝑘𝛼𝑡

< 𝑥

5
+ 𝑎

1
𝑒

𝛼𝑡
+

∞

∑

𝑘=2

𝑀𝜃

𝑘

𝑘

𝑒

𝑘𝛼𝑡

< 𝑥

5
+ 𝑎

1
𝑒

𝛼𝑡
+ 𝑀𝜃

∞

∑

𝑘=2

𝑒

𝑘𝛼𝑡

𝑘

= 𝑥

5
+ 𝑎

1
𝑒

𝛼𝑡

+ 𝑀𝜃 (− ln (1 − 𝑒

𝛼𝑡
− 𝑒

𝛼𝑡
)) < 𝑥

5
+ 𝑎

1
+ 𝑀𝜃.

(27)

Exactly the same result holds for the second part of 𝑥(𝑡)

corresponding to 𝑡 < 0. Therefore the convergence of the
series solution of 𝑥(𝑡) is proved. Similar procedure can be
done to prove the convergence of 𝑦(𝑡) and 𝑧(𝑡).
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One remark is necessary to give here. If we consider V
2

and V
3
, we see that they satisfy in Shil’nikov theorem con-

dition and we can follow just the same algebraic procedure
to find the heteroclinic orbit between them. However, the
location of these two equilibrium points are very far from
the chaotic attractor observed. Therefore more investigation
is required to find out the role of this heteroclinic orbit on the
dynamic of the chaotic system (4).

5. Conclusion

In this paper, a new 3D quadratic chaotic attractor was
introduced and analysed. We studied basic properties of this
system by means of Jacobian matrices, Lyapunov exponents,
and various definitions of fractal dimension which showed
topological distinction between this attractor and some other
well-known systems. In addition, more detailed information
on its dynamic was obtained using Lyapunov exponents spec-
trum, bifurcation diagrams, and 0-1 chaos indicator test that
disclosed just a portion of the underlying dynamic of this
system. And finally, we proved the existence of chaos by
showing that this systemhas Smale horseshoes and horseshoe
type of chaos.
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