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The synchronization problem of chaotic fuzzy cellular neural networks with mixed delays is investigated. By an impulsive
integrodifferential inequality and the Itô’s formula, some sufficient criteria to synchronize the networks under both impulsive and
stochastic perturbations are obtained. The example and simulations are given to demonstrate the efficiency and advantages of the
proposed results.

1. Introduction

Fuzzy cellular neural network (FCNN), which integrated
fuzzy logic into the structure of a traditional cellular neural
networks (CNNs) and maintained local connectivity among
cells, was first introduced by T. Yang and L. Yang [1] to deal
with some complexity, uncertainty, or vagueness in CNNs.
Lots of studies have illustrated that FCNNs are a useful
paradigm for image processing and pattern recognition [2].
So far, many important results on stability analysis and state
estimation of FCNNs have been reported (see [3–12] and the
references therein).

Recently, it has been revealed that if the network’s
parameters and time delays are appropriately chosen, then
neural networks can exhibit some complicated dynamics
and even chaotic behaviors [13, 14]. The chaotic system
exhibits unpredictable and irregular dynamics, and it has
been found in many fields. Since the drive-response con-
cept was proposed by Pecora and Carroll [15] in 1990 for
constructing the synchronization of coupled chaotic systems,
the control and synchronization problems of chaotic systems
have been extensively investigated. In recent years, various
synchronization schemes for chaotic neural networks have
derived and demonstrated potential applications in many
areas such as secure communication, image processing and
harmonic oscillation generation; see [16–32].

Although there have been many results which can be
applied to synchronization problems of a broad class of
FCNNs [25–32], there are some disadvantages that need
attention.

(1) Synchronization procedures and schemes are rather
sensitive to the unavoidable channel disturbances which are
usually presented in two forms: impulse and random noise.
However, in [25–27], authors provided some new schemes
to synchronize the chaotic systems without considering both
impulse and randomnoise. In [28, 29], under the condition of
no channel disturbance, Yu et al. and Xing and Peng studied
the lag synchronization problems of FCNNs, respectively. In
[30, 31], authors studied the synchronization of impulsive
fuzzy cellular neural networks (IFCNNs) with delays. In
[32], authors derived some synchronization schemes for
FCNNs with random noise. In fact, in real system, it is more
reasonable that the two perturbations coexist simultaneously.

(2) The criteria proposed in [25–32] are valid only for
FCNNs with discrete delays. For example, in [25, 28, 30, 31],
the involved delays are constants. In [26, 27, 32], the involved
delays are time-varying delays which are continuously differ-
entiable, and the corresponding derivatives are required to be
finite or not greater than 1. In [29], Xing and Peng provided
some new criteria on lag synchronization problem of FCNNs
but they only considered the case for bounded time-varying
delays. In fact, time delays may occur in an irregular fashion,
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and sometimes they may be not continuously differentiable.
Besides this, distribution delays may also exist when neural
networks have a spatial extent due to the presence of a
multitude of parallel pathwayswith a variety of axon sizes and
lengths.

(3) Some conditions imposed on the impulsive perturba-
tions are too strong. For instance, Feng et al. [31] required the
magnitude of jumps not to be smaller than 0 and not greater
than 2.However, the disturbance in the real environmentmay
be very intense.

Therefore, it is of great theoretical and practical signif-
icance to investigate synchronization problems of IFCNNs
with mixed delays and random noise. However, up to now,
to the best of our knowledge, no result for synchronization
of IFNNs with mixed delays and random noise has been
reported.

Inspired by the above discussion, this paper addresses
the exponential synchronization problem of IFCNNs with
mixed delays and random noise. Based on the properties
of nonsingular M-matrix and the It𝑜’s formula, we design
some synchronization schemes with a state feedback con-
troller to ensure the exponential synchronization control.
Our method does not resort to complicated Lyapunov-
Krasovskii functional which is widely used. The proposed
synchronization schemes are novel and improve some of the
previous literature.

This paper is organized as follows. In Section 2, we
introduce the drive-responsemodels and some preliminaries.
In Section 3, some synchronization criteria for FCNNs with
mixed delays are derived. In Section 4, an example and its
simulations are given to illustrate the effectiveness of theo-
retical results. Finally, conclusions are drawn in Section 5.

2. Model Description and Preliminaries

Let R𝑛 be the space of 𝑛-dimensional real column vectors,
and let R𝑚×𝑛 represent the class of 𝑚 × 𝑛 matrices with real
components. | ⋅ | denotes the Euclidean norm in R𝑛. The
inequality “≤” (“>”) between matrices or vectors such as 𝐴 ≤

𝐵 (𝐴 > 𝐵) means that each pair of corresponding elements
of 𝐴 and 𝐵 satisfies the inequality “≤” (“>”). 𝐴 ∈ R𝑚×𝑛 is
called a nonnegative matrix if 𝐴 ≥ 0, and 𝑥 ∈ R𝑛 is called
a positive vector if 𝑥 > 0. The transpose of 𝐴 ∈ R𝑚×𝑛

or 𝑥 ∈ R𝑛 is denoted by 𝐴𝑇 or 𝑥𝑇. Let 𝐸 denote the unit
matrix with appropriate dimensions. N := {1, 2, . . . , 𝑛}, and
N := {1, 2, . . .}, R

+
:= [0, +∞).

PC[𝐽,R𝑛] = {𝜓 : 𝐽 → R𝑛|𝜓(𝑠) is continuous and
bounded for all but atmost countable points 𝑠 ∈ 𝐽 and at these
points,𝜓(𝑠

+) and𝜓(𝑠−) exist,𝜓(𝑠) = 𝜓(𝑠+)}. Here, 𝐽 ⊂ R is an
interval;𝜓(𝑠+) and𝜓(𝑠−) denote the right-hand and left-hand
limits of the function 𝜓(𝑠), respectively. Especially PC :=

PC[(−∞, 0],R𝑛

] with the norm ‖𝜓‖ = sup
−∞<𝑠≤0

|𝜓(𝑠)| for
𝜓 ∈ PC.

L𝑒 = {𝜓 : R
+

→ R|𝜓(𝑠) is piecewise continuous and
satisfies ∫

+∞

0

|𝜓(𝑠)|𝑒𝜎0𝑠𝑑𝑠 < +∞ for some constant 𝜎
0
> 0}.

For 𝐴, 𝐵 ∈ R𝑛×𝑛 and 𝜙 : R → R𝑛, we denote that

[𝐴]
+

= (

𝑎
𝑖𝑗


)
𝑛×𝑛

,

𝐴 ∘ 𝐵 = (𝑎
𝑖𝑗
𝑏
𝑖𝑗
)
𝑛×𝑛

,

[𝜙]
+

= (
𝜙1

 , . . . ,
𝜙𝑛

)
𝑇

,

[𝜙 (𝑡)]
𝜏
= ([𝜙

1
(𝑡)]

𝜏
, . . . , [𝜙

𝑛
(𝑡)]

𝜏
)
𝑇

,

where [𝜙
𝑖
(𝑡)]

𝜏
= sup
−𝜏≤𝑠≤0

𝜙
𝑖
(𝑡 + 𝑠) , 𝑖 ∈ N,

(1)

and𝐷
+𝜙(𝑡) denotes the upper-right derivative of 𝜙(𝑡) at time

𝑡.
Consider IFCNNs with mixed delays as follows:

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡
= −𝑐

𝑖
𝑥
𝑖
+

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
) +

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝜈
𝑗
+ 𝐽

𝑖

+

𝑛

⋀
𝑗=1

𝑇
𝑖𝑗
𝜇
𝑗
+

𝑛

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+

𝑛

⋀
𝑗=1

𝛾
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

+

𝑛

⋁
𝑗=1

𝑆
𝑖𝑗
𝜇
𝑗
+

𝑛

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+

𝑛

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝑠)) 𝑑𝑠,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥

𝑖
(𝑡
+

𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
)

= 𝐼
𝑖𝑘

(𝑥
𝑖
(𝑡
−

𝑘
)) , 𝑘 ∈ N,

𝑥
𝑖
(𝑡
0
+ 𝑠) = 𝜙

𝑖
(𝑠) , −∞ < 𝑠 ≤ 0,

(2)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑛 denotes the number of units in
the neural network. 𝑥(𝑡) = (𝑥

1
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 represents
the state variable. 𝑓

𝑗
(⋅) is the activation function of the 𝑗th

neuron. 𝑐
𝑖
represents the passive decay rate to the state of

𝑖th neuron at time 𝑡. 𝛼
𝑖𝑗
and 𝛾

𝑖𝑗
are elements of the fuzzy

feedback MIN template. 𝛽
𝑖𝑗
and 𝜃

𝑖𝑗
are elements of the fuzzy

feedback MAX template. 𝑇
𝑖𝑗
and 𝑆

𝑖𝑗
are elements of fuzzy

feed-forward MIN template and fuzzy feed-forward MAX
template, respectively. 𝑎

𝑖𝑗
and 𝑏

𝑖𝑗
are elements of feedback

and feed-forward template, respectively. ⋀ and ⋁ denote
the fuzzy AND and fuzzy OR operations, respectively. 𝜈

𝑖

and 𝐽
𝑖
denote input and bias of the 𝑖th neuron, respectively.

For any 𝑖, 𝑗 ∈ N, 𝜏
𝑖𝑗
(𝑡) corresponding to the transmission

delay satisfies 0 ≤ 𝜏
𝑖𝑗
(𝑡) ≤ 𝜏, and 𝑘

𝑖𝑗
∈ L𝑒 is the feed-

back kernel. For any 𝑘 ∈ N, 𝐼
𝑘
(⋅) represents the impulsive

perturbation, and 𝑡
𝑘
denotes impulsive moment satisfying

𝑡
𝑘
< 𝑡

𝑘+1
, lim

𝑘→+∞
𝑡
𝑘
= +∞.

We make the following assumptions throughout this
paper.
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(𝐴
1
) 𝑓

𝑖
is globally Lipschitz continuous, that is, for any 𝑖 ∈

N, there exists nonnegative constant 𝐿
𝑖
such that

𝑓𝑖 (𝑢) − 𝑓
𝑖
(𝑣)

 ≤ 𝐿
𝑖
|𝑢 − 𝑣| for 𝑢, 𝑣 ∈ R. (3)

(𝐴
2
) For any 𝑘 ∈ N, there is a nonnegative constant 𝜂

𝑘
such

that

𝑢 + 𝐼
𝑖𝑘

(𝑢) − 𝑣 − 𝐼
𝑖𝑘

(𝑣)
 ≤ 𝜂

𝑘
|𝑢 − 𝑣| for 𝑢, 𝑣 ∈ R, 𝑖 ∈ N.

(4)

Let (2) be the drive system, and let the response system
with random noise be described by

𝑑𝑦
𝑖
(𝑡) = [

[

−𝑐
𝑖
𝑦
𝑖
+

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
) +

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝜈
𝑗

+ 𝐽
𝑖
+

𝑛

⋀
𝑗=1

𝑇
𝑖𝑗
𝜇
𝑗
+

𝑛

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+

𝑛

⋀
𝑗=1

𝛾
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

+

𝑛

⋁
𝑗=1

𝑆
𝑖𝑗
𝜇
𝑗
+

𝑛

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+

𝑛

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡−𝑠)) 𝑑𝑠+𝑈

𝑖
(𝑡)]

]

𝑑𝑡

+

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑡, 𝑥

𝑗
(𝑡) − 𝑦

𝑗
(𝑡) , 𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))

−𝑦
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) 𝑑𝑤

𝑗
(𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑦
𝑖
(𝑡
𝑘
) = 𝑦

𝑖
(𝑡
+

𝑘
) − 𝑦

𝑖
(𝑡
−

𝑘
) = 𝐼

𝑖𝑘
(𝑦
𝑖
(𝑡
−

𝑘
)) , 𝑘 ∈ N,

𝑦
𝑖
(𝑡
0
+ 𝑠) = 𝜓

𝑖
(𝑠) , −∞ < 𝑠 ≤ 0,

(5)

where 𝑤(𝑡) = (𝑤
1
(𝑡), . . . , 𝑤

𝑛
(𝑡))

𝑇 is an 𝑛-dimensional stand-
ard Brownian motion defined on a complete probability
space (Ω,F,P) with a natural filtration {F

𝑡
}
𝑡≥0

generated
by {𝑤(𝑠) : 0 ≤ 𝑠 ≤ 𝑡} and satisfying the usual
conditions (i.e., it is right continuous, and F

0
contains all

P-null sets). The initial value 𝜓 = (𝜓
1
(𝑠), . . . , 𝜓

𝑛
(𝑠))

𝑇

∈

PC𝑏F0[(−∞, 0],R𝑛] which denotes the family of all bounded
F
0
-measurable and PC-valued random variables 𝜓 with the

norm ‖𝜓‖
𝑝

F
= sup

−∞<𝑠≤0
E|𝜓(𝑠)|𝑝, where E denotes the

expectation of stochastic process. 𝑈(𝑡) = (𝑈
1
(𝑡), . . . , 𝑈

𝑛
(𝑡))

𝑇

is the state feedback controller designed by

𝑈
𝑖
(𝑡) =

𝑛

∑
𝑗=1

𝑀
𝑖𝑗
(𝑦

𝑗
(𝑡) − 𝑥

𝑗
(𝑡))

+

𝑛

∑
𝑗=1

𝑁
𝑖𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) − 𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) ,

(6)

where 𝑀 = (𝑀
𝑖𝑗
)
𝑛×𝑛

, 𝑁 = (𝑁
𝑖𝑗
)
𝑛×𝑛

are the controller gain
matrices to be scheduled.The diffusion coefficient matrix (or
noise intensity matrix) 𝜎 : R × R𝑛 × R𝑛 → R𝑛×𝑛 satisfies
the local Lipschitz condition and the linear growth condition
(see [33]). In addition,

(𝐴
3
) for 𝑖 ∈ N, there exist nonnegative constants 𝑐

𝑖𝑗
, 𝑑

𝑖𝑗

such that

𝜎
𝑖
𝜎
𝑇

𝑖
≤

𝑛

∑
𝑗=1

𝑐
𝑖𝑗


𝑥
𝑗
− 𝑦

𝑗



2

+

𝑛

∑
𝑗=1

𝑑
𝑖𝑗


𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) − 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))



2

,

(7)

where 𝜎
𝑖
= (𝜎

𝑖1
, . . . , 𝜎

𝑖𝑛
).

Let 𝑒(𝑡) = (𝑒
1
(𝑡), . . . , 𝑒

𝑛
(𝑡))

𝑇, where 𝑒
𝑖
(𝑡) = 𝑦

𝑖
(𝑡)−𝑥

𝑖
(𝑡), be

the synchronization error. Then, the error dynamical system
between (2) and (5) is given by

𝑑𝑒
𝑖
(𝑡) = [

[

−𝑐
𝑖
𝑒
𝑖
+

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
(𝑓
𝑗
(𝑦

𝑗
) − 𝑓

𝑗
(𝑥

𝑗
))

+

𝑛

∑
𝑗=1

𝑀
𝑖𝑗
𝑒
𝑗
(𝑡) +

𝑛

∑
𝑗=1

𝑁
𝑖𝑗
𝑒
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))

+

𝑛

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

−

𝑛

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+

𝑛

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

−

𝑛

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+

𝑛

⋀
𝑗=1

𝛾
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

−

𝑛

⋀
𝑗=1

𝛾
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝑠)) 𝑑𝑠
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+

𝑛

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

−

𝑛

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝑠)) 𝑑𝑠]

]

𝑑𝑡

+

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑡, 𝑒

𝑗
(𝑡) , 𝑒

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) 𝑑𝑤

𝑗
(𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑒
𝑖
(𝑡
𝑘
) = 𝑒

𝑖
(𝑡
+

𝑘
) − 𝑒

𝑖
(𝑡
−

𝑘
)

= 𝐼
𝑖𝑘

(𝑦
𝑖
(𝑡
−

𝑘
)) − 𝐼

𝑖𝑘
(𝑥
𝑖
(𝑡
−

𝑘
)) , 𝑘 ∈ N,

𝑒
𝑖
(𝑡
0
+ 𝑠) = 𝜓

𝑖
(𝑠) − 𝜙

𝑖
(𝑠) , −∞ < 𝑠 ≤ 0.

(8)

For convenience, we use the following notations: 𝐷
1

=

diag{−𝑐
1
, . . . , −𝑐

𝑛
}, 𝐿 = diag{𝐿

1
, . . . , 𝐿

𝑛
}, 𝐾(𝑠) = (𝑘

𝑖𝑗
(𝑠))

𝑛×𝑛
,

𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝑀 = (𝑀
𝑖𝑗
)
𝑛×𝑛

with 𝑀
𝑖𝑖

= 𝑀
𝑖𝑖
, 𝑀

𝑖𝑗
= |𝑀

𝑖𝑗
| for

𝑖 ̸= 𝑗, 𝛼 = (𝛼
𝑖𝑗
)
𝑛×𝑛

, 𝛽 = (𝛽
𝑖𝑗
)
𝑛×𝑛

, Γ = (𝛾
𝑖𝑗
)
𝑛×𝑛

, Θ = (𝜃
𝑖𝑗
)
𝑛×𝑛

,
𝐶 = (𝑐

𝑖𝑗
)
𝑛×𝑛

, and 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

.
The following definition and lemmas will be employed.

Definition 1. The systems (2) and (5) are called to be globally
exponentially synchronized in 𝑝-moment, if there exist posi-
tive constants 𝜆, 𝐾 such that

E|𝑒 (𝑡)|
𝑝

≤ 𝐾
𝜓 − 𝜙


𝑝

F
𝑒
−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
. (9)

It is said especially to be globally exponentially synchronized
in mean square when 𝑝 = 2.

For any nonsingular M-matrix 𝐴 (see [34]), we define
that

M
𝐴

= {𝑧 ∈ R
𝑛

| 𝐴𝑧 > 0, 𝑧 > 0} . (10)

Lemma 2 (see [35]). For a nonsingularM-matrix𝐴,M
𝐴
is a

nonempty cone without conical surface.

Lemma 3 (see [36]). For 𝑥
𝑖
≥ 0, 𝛼

𝑖
> 0, and ∑

𝑛

𝑖=1
𝛼
𝑖
= 1,

𝑛

∏
𝑖=1

𝑥
𝛼𝑖

𝑖
≤

𝑛

∑
𝑖=1

𝛼
𝑖
𝑥
𝑖
. (11)

The sign of equality holds if and only if 𝑥
𝑖
= 𝑥

𝑗
for all 𝑖, 𝑗 ∈ N.

Lemma 4 (see [1]). Let 𝛼
𝑖𝑗
, 𝛽

𝑖𝑗
∈ R and 𝑥, 𝑦 ∈ R𝑛 be the two

states of the system (2). Then, one has



𝑛

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
) −

𝑛

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
)



≤

𝑛

∑
𝑗=1


𝛼
𝑖𝑗




𝑓
𝑗
(𝑥

𝑗
) − 𝑓

𝑗
(𝑦

𝑗
)

,



𝑛

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
) −

𝑛

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
)



≤

𝑛

∑
𝑗=1


𝛽
𝑖𝑗




𝑓
𝑗
(𝑥

𝑗
) − 𝑓

𝑗
(𝑦

𝑗
)

.

(12)

Lemma 5 (see [36]). For the integer 𝑝 ≥ 2 and 𝑥 =

(𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛, there exists a positive constant 𝑒
𝑝
(𝑛) such

that

𝑒
𝑝
(𝑛)(

𝑛

∑
𝑖=1

𝑥
2

𝑖
)

𝑝/2

≤

𝑛

∑
𝑖=1

𝑥𝑖

𝑝

. (13)

Lemma 6. For 𝑘 ∈ N, assume that 𝑣 = (𝑣
1
(𝑡), . . . , 𝑣

𝑛
(𝑡))

𝑇

∈

PC[(−∞, +∞),R𝑛] satisfies

𝐷
+

𝑣 (𝑡) ≤ 𝐴
0
𝑣 (𝑡) + 𝑃𝑣 (𝑡) + 𝑄 [𝑣 (𝑡)]

𝜏

+ ∫
+∞

0

Υ (𝑠) 𝑣 (𝑡 − 𝑠) 𝑑𝑠, 𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝑣 (𝑡
+

𝑘
) ≤ 𝜌

𝑘
𝑣 (𝑡

−

𝑘
) , 𝜌

𝑘
≥ 0,

𝑣
𝑡0

∈ PC, where 𝑣
𝑡0

= 𝑣 (𝑡
0
+ 𝑠) , 𝑠 ∈ (−∞, 0] ,

(14)

in which

(𝐶
1
) 𝐴

0
= diag{𝑎

1
, . . . , 𝑎

𝑛
}, 𝑃 = (𝑝

𝑖𝑗
)
𝑛×𝑛

with 𝑝
𝑖𝑗

≥ 0 for
𝑖 ̸= 𝑗, 𝑄 = (𝑞

𝑖𝑗
)
𝑛×𝑛

≥ 0, Υ(𝑠) = (𝜐
𝑖𝑗
(𝑠))

𝑛×𝑛
≥ 0, and

𝜐
𝑖𝑗

∈ L𝑒, 𝑖, 𝑗 ∈ N.

(𝐶
2
) Π = −(𝐴

0
+ 𝑃 + 𝑄 + ∫

+∞

0

Υ(𝑠)𝑑𝑠) is a nonsingular
M-matrix.

Then, there must exist 𝑧 = (𝑧
1
, . . . , 𝑧

𝑛
)
𝑇

∈ M
Π
and 𝜆 ∈ (0, 𝜎

0
]

such that

𝑣 (𝑡) ≤ (

𝑘−1

∏
𝑗=0


𝑗
)𝑧𝑒

−𝜆(𝑡−𝑡0), 𝑡
𝑘−1

≤ 𝑡 < 𝑡
𝑘
, 𝑘 ∈ N, (15)

provided that the initial value 𝑣
𝑡0
satisfies

𝑣 (𝑡) ≤ 𝑧𝑒
−𝜆(𝑡−𝑡0), −∞ < 𝑡 ≤ 𝑡

0
, (16)

where 
0
= 1, 

𝑘
= max{1, 𝜌

𝑘
}, and 𝑧, 𝜆 can be determined by

(𝜆𝐸 + 𝐴
0
+ 𝑃 + 𝑄𝑒

𝜆𝜏

+ ∫
+∞

0

Υ (𝑠) 𝑒
𝜆𝑠

𝑑𝑠) 𝑧 < 0. (17)
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Proof. By condition (𝐶
2
) and Lemma 2, we can find �̃� =

(�̃�
1
, . . . , �̃�

𝑛
)
𝑇

∈ M
Π
such that Π�̃� > 0, namely, (𝐴

0
+ 𝑃 +

𝑄+∫
+∞

0

Υ(𝑠)𝑑𝑠) �̃� < 0. By the continuity, there must be some
positive constant 𝜆 ∈ (0, 𝜎

0
] satisfying

(𝜆𝐸 + 𝐴
0
+ 𝑃 + 𝑄𝑒

𝜆𝜏

+ ∫
+∞

0

Υ (𝑠) 𝑒
𝜆𝑠

𝑑𝑠) �̃� < 0. (18)

Noting that 𝑣
𝑡0

∈ PC, we can find a constant 𝐵 > 0 such that
‖𝑣
𝑡0
‖ ≤ 𝐵. Denote that 𝑧 := (𝐵/min

𝑖∈N�̃�
𝑖
)�̃� = (𝑧

1
, . . . , 𝑧

𝑛
)
𝑇.

Obviously, 𝑧 and 𝜆 satisfy (16) and (17).
Let 𝑤

𝑖
(𝑡) := 𝑧

𝑖
𝑒−𝜆(𝑡−𝑡0) for 𝑡 ∈ R, 𝑖 ∈ N. For any small

enough 𝜖 > 0, (16) implies that 𝑣
𝑖
(𝑡) ≤ 𝑤

𝑖
(𝑡) < (1+𝜖)𝑤

𝑖
(𝑡), 𝑡 ∈

(−∞, 𝑡
0
]. Next, we claim that for any 𝑡 ∈ [𝑡

0
, 𝑡
1
),

𝑣
𝑖
(𝑡) < (1 + 𝜖)𝑤

𝑖
(𝑡) , 𝑖 ∈ N. (19)

If inequality (19) is not true, then there must exist some 𝑚 ∈

N and 𝑡
∗

∈ (𝑡
0
, 𝑡
1
) such that

𝑣
𝑚

(𝑡
∗

) = (1 + 𝜖)𝑤
𝑚

(𝑡
∗

) , 𝑣
𝑖
(𝑡) < (1 + 𝜖)𝑤

𝑖
(𝑡) ,

𝑡 ∈ (−∞, 𝑡
∗

) , 𝑖 ∈ N,
(20)

𝐷
+

𝑣
𝑚

(𝑡
∗

) ≥ (1 + 𝜖)𝑤


𝑚
(𝑡
∗

) . (21)

On the other hand, (14) together with (17) and (20) leads to

𝐷
+

𝑣
𝑚

(𝑡
∗

) ≤ 𝑎
𝑚
𝑣
𝑚

(𝑡
∗

) +

𝑛

∑
𝑗=1

𝑝
𝑚𝑗

𝑣
𝑗
(𝑡
∗

)

+

𝑛

∑
𝑗=1

𝑞
𝑚𝑗

[𝑣
𝑗
(𝑡
∗

)]
𝜏

+

𝑛

∑
𝑗=1

∫
+∞

0

𝜐
𝑚𝑗

(𝑠) 𝑣
𝑗
(𝑡
∗

− 𝑠) 𝑑𝑠

≤ (1 + 𝜖) 𝑒
−𝜆(𝑡
∗
−𝑡0)𝑎

𝑚
𝑧
𝑚

+ (1 + 𝜖) 𝑒
−𝜆(𝑡
∗
−𝑡0)

𝑛

∑
𝑗=1

𝑝
𝑚𝑗

𝑧
𝑗

+ (1 + 𝜖) 𝑒
−𝜆(𝑡
∗
−𝑡0)

𝑛

∑
𝑗=1

𝑞
𝑚𝑗

𝑧
𝑗
𝑒
𝜆𝜏

+ (1 + 𝜖) 𝑒
−𝜆(𝑡
∗
−𝑡0)

×

𝑛

∑
𝑗=1

∫
+∞

0

𝜐
𝑚𝑗

(𝑠) 𝑒
𝜆𝑠

𝑑𝑠𝑧
𝑗

< (1 + 𝜖) 𝑒
−𝜆(𝑡
∗
−𝑡0) (−𝜆𝑧

𝑚
)

= (1 + 𝜖)𝑤


𝑚
(𝑡
∗

) ,

(22)

which contradicts (21).Therefore, (19) holds. Letting 𝜖 → 0+

in (19), we get

𝑣
𝑖
(𝑡) ≤ 𝑤

𝑖
(𝑡) = 

0
𝑤
𝑖
(𝑡) , 𝑡 ∈ [𝑡

0
, 𝑡
1
) , 𝑖 ∈ N. (23)

Suppose that for 𝜈 = 1, 2, . . . , 𝑘, the following inequalities
hold

𝑣
𝑖
(𝑡) ≤ (

𝜈−1

∏
𝑚=0


𝑚
)𝑤

𝑖
(𝑡) , 𝑡 ∈ [𝑡

𝜈−1
, 𝑡
𝜈
) , 𝑖 ∈ N. (24)

For 𝑡 = 𝑡
𝑘
, from (14) and (24), we have

𝑣
𝑖
(𝑡
𝑘
) ≤ 𝜌

𝑘
𝑣
𝑖
(𝑡
−

𝑘
) ≤ 

𝑘
(

𝑘−1

∏
𝑚=0


𝑚
)𝑤

𝑖
(𝑡
𝑘
)

≤ (

𝑘

∏
𝑚=0


𝑚
)𝑤

𝑖
(𝑡
𝑘
) , 𝑖 ∈ N.

(25)

Recalling 𝜌
𝑘
≥ 1, it follows from (24) and (25) that

𝑣
𝑖
(𝑡) ≤ (

𝑘

∏
𝑚=0


𝑚
)𝑤

𝑖
(𝑡) , 𝑡 ∈ (−∞, 𝑡

𝑘
] , 𝑖 ∈ N. (26)

Repeating the proof similar to (19) can yield

𝑣
𝑖
(𝑡) ≤ (

𝑘

∏
𝑚=0


𝑚
)𝑤

𝑖
(𝑡) , 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

) , 𝑖 ∈ N. (27)

By the mathematical induction, we derive that for any 𝑘 ∈ N,

𝑣
𝑖
(𝑡) ≤ (

𝑘−1

∏
𝑗=0


𝑗
)𝑤

𝑖
(𝑡)

≤ (

𝑘−1

∏
𝑗=0


𝑗
)𝑧

𝑖
𝑒
−𝜆(𝑡−𝑡0), 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) , 𝑖 ∈ N.

(28)

The proof is completed.

3. Exponential Synchronization

In this section, by using Lemma 6, we will obtain some
sufficient criteria to synchronize the drive-response systems
(2) and (5).

Theorem 7. Assume that (𝐴
1
)–(𝐴

3
) hold and

(𝐴
4
) for 𝑝 ≥ 2, 𝐷 = −(𝐷

0
+ 𝑃 + 𝑄 + ∫

+∞

0

Υ(𝑠)𝑑𝑠) is a
nonsingularM-matrix, where 𝑃 = [𝐴]

+

𝐿 + 𝑀 + (𝑝 −

1)𝐶 := (𝑝
𝑖𝑗
)
𝑛×𝑛

,𝑄 = ([𝛼]
+

+[𝛽]
+

)𝐿+[𝑁]
+

+(𝑝−1)𝐷 :=

(𝑞
𝑖𝑗
)
𝑛×𝑛

,Υ(𝑠) = ([Γ]
+

𝐿+[Θ]
+

𝐿)∘[𝐾(𝑠)]
+

:= (𝜐
𝑖𝑗
(𝑠))

𝑛×𝑛
,

𝐷
0
= diag{𝑑

1
, . . . , 𝑑

𝑛
} with

𝑑
𝑖
= − 𝑝𝑐

𝑖
+ (𝑝 − 1)

𝑛

∑
𝑗=1

[(

𝑎
𝑖𝑗


+


𝛼
𝑖𝑗


+


𝛽
𝑖𝑗



+∫
+∞

0

(

𝛾
𝑖𝑗


+

𝜃
𝑖𝑗


)

𝑘
𝑖𝑗
(𝑠)


𝑑𝑠)𝐿

𝑗

+
𝑝 − 2

2
(𝑐
𝑖𝑗
+ 𝑑

𝑖𝑗
)+𝑀

𝑖𝑗
+

𝑁
𝑖𝑗


] ,

𝑖 ∈ N,

(29)
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(𝐴
5
) the impulsive perturbations satisfy

sup
𝑘∈N

ln 𝜁
𝑘

𝑡
𝑘
− 𝑡

𝑘−1

< 𝜆, (30)

where 𝜁
𝑘
= max{1, 𝜂𝑝

𝑘
}, and 𝜆 ∈ (0, 𝜎

0
] is determined by

(𝜆𝐸 + 𝐷
0
+ 𝑃 + 𝑄𝑒

𝜆𝜏

+ ∫
+∞

0

Υ (𝑠) 𝑒
𝜆𝑠

𝑑𝑠) 𝑧 < 0,

for a given 𝑧 ∈ M
�̃�
.

(31)

Then, drive-response systems (2) and (5) are globally exponen-
tial synchronization in 𝑝-moment.

Proof. Since𝐷 = −(𝐷
0
+𝑃+𝑄+∫

+∞

0

Υ(𝑠)𝑑𝑠) is a nonsingular
M-matrix, by Lemma 2 and the continuity, there must be a
constant vector 𝑧 = (𝑧

1
, . . . , 𝑧

𝑛
)
𝑇

∈ M
�̃�
and a constant 𝜆 ∈

(0, 𝜎
0
] such that (31) holds.

We denote by 𝑒 = (𝑒
1
, . . . , 𝑒

𝑛
)
𝑇 the solution of error

dynamical system (8) with the initial value 𝜓 − 𝜙 ∈

PC𝑏F0[(−∞, 0],R𝑛] and let

𝑉 (𝑒) = (𝑉
1
(𝑒) , . . . , 𝑉

𝑛
(𝑒))

𝑇

,

𝑉
𝑖
(𝑒) =

𝑒𝑖

𝑝

, 𝑖 ∈ N.

(32)

Calculating the time derivative of𝑉
𝑖
(𝑒(𝑡)) along the trajectory

of error system (8) and by the Itô’s formula [33], we get for any
𝑘 ∈ N,

𝑑𝑉
𝑖
(𝑒 (𝑡)) = L𝑉

𝑖
(𝑒 (𝑡)) 𝑑𝑡 +

𝜕𝑉
𝑖
(𝑒)

𝜕𝑒
𝜎𝑑𝑤 (𝑡) , 𝑡 ≥ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

(33)

whereL𝑉
𝑖
(𝑒(𝑡)) is given by

L𝑉
𝑖
(𝑒 (𝑡)) = 𝑝

𝑒𝑖 (𝑡)

𝑝−2

𝑒
𝑖
(𝑡)

× [

[

−𝑐
𝑖
𝑒
𝑖
+

𝑛

∑
𝑗=1

𝑎
𝑖𝑗

× (𝑓
𝑗
(𝑦

𝑗
) − 𝑓

𝑗
(𝑥

𝑗
)) +

𝑛

∑
𝑗=1

𝑀
𝑖𝑗
𝑒
𝑗
(𝑡)

+

𝑛

∑
𝑗=1

𝑁
𝑖𝑗
𝑒
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))

+

𝑛

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

−

𝑛

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+

𝑛

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

−

𝑛

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) +

𝑛

⋀
𝑗=1

𝛾
𝑖𝑗

× ∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠 −

𝑛

⋀
𝑗=1

𝛾
𝑖𝑗

× ∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

+

𝑛

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

−

𝑛

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝑠)) 𝑑𝑠]

]

+
1

2
𝑝 (𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝−2

𝜎
𝑖
𝜎
𝑇

𝑖
.

(34)

By (𝐴
1
) and Lemma 4, we have

L𝑉
𝑖
(𝑒 (𝑡)) ≤ − 𝑝𝑐

𝑖

𝑒𝑖 (𝑡)

𝑝

+ 𝑝
𝑒𝑖 (𝑡)


𝑝−1

×

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝐿
𝑗


𝑒
𝑗
(𝑡)


+ 𝑝

𝑒𝑖 (𝑡)

𝑝−1

×

𝑛

∑
𝑗=1

𝑀
𝑖𝑗


𝑒
𝑗
(𝑡)


+𝑝

𝑒𝑖 (𝑡)

𝑝−1

×

𝑛

∑
𝑗=1


𝑁
𝑖𝑗




𝑒
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))



+ 𝑝
𝑒𝑖 (𝑡)


𝑝−1

𝑛

∑
𝑗=1


𝛼
𝑖𝑗



× 𝐿
𝑗


𝑒
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))


+ 𝑝

𝑒𝑖 (𝑡)

𝑝−1

×

𝑛

∑
𝑗=1


𝛽
𝑖𝑗


𝐿
𝑗


𝑒
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))


+ 𝑝

𝑒𝑖 (𝑡)

𝑝−1

×

𝑛

∑
𝑗=1


𝛾
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)

 |
(𝑡 − 𝑠)| 𝑑𝑠

+ 𝑝
𝑒𝑖 (𝑡)


𝑝−1

𝑛

∑
𝑗=1


𝜃
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)



×

𝑒
𝑗
(𝑡 − 𝑠)


𝑑𝑠 +

1

2
𝑝 (𝑝 − 1)


𝑒
𝑗
(𝑡)



𝑝−2

𝜎
𝑖
𝜎
𝑇

𝑖

:= −𝑝𝑐
𝑖

𝑒𝑖 (𝑡)

𝑝

+ 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
+ 𝐼

5
+ 𝐼

6
+ 𝐼

7
+ 𝐼

8
.

(35)
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Using Lemma 3 and (𝐴
3
), it is easy to get

𝐼
1
≤ (

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝐿
𝑗
)(𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝐿
𝑗


𝑒
𝑗
(𝑡)



𝑝

,

𝐼
2
≤ (

𝑛

∑
𝑗=1

𝑀
𝑖𝑗
)(𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1

𝑀
𝑖𝑗


𝑒
𝑗
(𝑡)



𝑝

,

𝐼
3
≤ (

𝑛

∑
𝑗=1


𝑁
𝑖𝑗


) (𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝑁
𝑖𝑗


[

𝑒
𝑗
(𝑡)



𝑝

]
𝜏

,

𝐼
4
≤ (

𝑛

∑
𝑗=1


𝛼
𝑖𝑗


𝐿
𝑗
)(𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝛼
𝑖𝑗


𝐿
𝑗
[

𝑒
𝑗
(𝑡)



𝑝

]
𝜏

,

𝐼
5
≤ (

𝑛

∑
𝑗=1


𝛽
𝑖𝑗


𝐿
𝑗
)(𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝛽
𝑖𝑗


𝐿
𝑗
[

𝑒
𝑗
(𝑡)



𝑝

]
𝜏

,

𝐼
6
≤ (

𝑛

∑
𝑗=1


𝛾
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)


𝑑𝑠) (𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝛾
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)




𝑒
𝑗
(𝑡 − 𝑠)



𝑝

𝑑𝑠,

𝐼
7
≤ (

𝑛

∑
𝑗=1


𝜃
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)


𝑑𝑠) (𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝜃
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)




𝑒
𝑗
(𝑡 − 𝑠)



𝑝

𝑑𝑠,

𝐼
8
≤

1

2
𝑝 (𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝−2

𝑛

∑
𝑗=1

𝑐
𝑖𝑗


𝑒
𝑗
(𝑡)



2

+
1

2
𝑝 (𝑝 − 1)

𝑒𝑖(𝑡)

𝑝−2

𝑛

∑
𝑗=1

𝑑
𝑖𝑗


𝑒
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))



2

≤
(𝑝 − 1) (𝑝 − 2)

2
(

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
)

𝑒𝑖 (𝑡)

𝑝

+ (𝑝 − 1)

𝑛

∑
𝑗=1

𝑐
𝑖𝑗


𝑒
𝑗
(𝑡)



𝑝

+
(𝑝 − 1) (𝑝 − 2)

2
(

𝑛

∑
𝑗=1

𝑑
𝑖𝑗
)

𝑒𝑖 (𝑡)

𝑝

+ (𝑝 − 1)

𝑛

∑
𝑗=1

𝑑
𝑖𝑗
[

𝑒
𝑗
(𝑡)



𝑝

]
𝜏

.

(36)

Thus, we have

L𝑉
𝑖
(𝑒 (𝑡)) ≤ − 𝑝𝑐

𝑖

𝑒𝑖 (𝑡)

𝑝

+ (

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝐿
𝑗
)(𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝐿
𝑗


𝑒
𝑗
(𝑡)



𝑝

+ (

𝑛

∑
𝑗=1

𝑀
𝑖𝑗
)(𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1

𝑀
𝑖𝑗


𝑒
𝑗
(𝑡)



𝑝

+ (

𝑛

∑
𝑗=1


𝑁
𝑖𝑗


) (𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝑁
𝑖𝑗


[

𝑒
𝑗
(𝑡)



𝑝

]
𝜏

+ (

𝑛

∑
𝑗=1


𝛼
𝑖𝑗


𝐿
𝑗
)(𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝛼
𝑖𝑗


𝐿
𝑗
[

𝑒
𝑗
(𝑡)



𝑝

]
𝜏

+ (

𝑛

∑
𝑗=1


𝛽
𝑖𝑗


𝐿
𝑗
)(𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝛽
𝑖𝑗


𝐿
𝑗
[

𝑒
𝑗
(𝑡)



𝑝

]
𝜏

+ (

𝑛

∑
𝑗=1


𝛾
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)


𝑑𝑠) (𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝛾
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)




𝑒
𝑗
(𝑡 − 𝑠)



𝑝

𝑑𝑠

+ (

𝑛

∑
𝑗=1


𝜃
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)


𝑑𝑠) (𝑝 − 1)

𝑒𝑖 (𝑡)

𝑝

+

𝑛

∑
𝑗=1


𝜃
𝑖𝑗


𝐿
𝑗
∫
+∞

0


𝑘
𝑖𝑗
(𝑠)




𝑒
𝑗
(𝑡 − 𝑠)



𝑝

𝑑𝑠
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+
(𝑝 − 1) (𝑝 − 2)

2
(

𝑛

∑
𝑗=1

𝑐
𝑖𝑗
)

𝑒𝑖 (𝑡)

𝑝

+ (𝑝 − 1)

×

𝑛

∑
𝑗=1

𝑐
𝑖𝑗


𝑒
𝑗
(𝑡)



𝑝

+
(𝑝 − 1) (𝑝 − 2)

2

× (

𝑛

∑
𝑗=1

𝑑
𝑖𝑗
)

𝑒𝑖 (𝑡)

𝑝

+ (𝑝 − 1)

𝑛

∑
𝑗=1

𝑑
𝑖𝑗
[

𝑒
𝑗
(𝑡)



𝑝

]
𝜏

.

(37)

It follows from (𝐴
4
) and (32) that

L𝑉
𝑖
(𝑒 (𝑡)) ≤ 𝑑

𝑖
𝑉
𝑖
(𝑒 (𝑡))

+

𝑛

∑
𝑗=1

(𝑝
𝑖𝑗
𝑉
𝑗
(𝑒 (𝑡)) + 𝑞

𝑖𝑗
[𝑉

𝑗
(𝑒 (𝑡))]

𝜏

+∫
+∞

0

𝜐
𝑖𝑗
(𝑠) 𝑉

𝑗
(𝑒 (𝑡 − 𝑠)) 𝑑𝑠) .

(38)

Substituting (38) into (33) gives

𝑑𝑉
𝑖
(𝑒 (𝑡)) ≤ [𝑑

𝑖
𝑉
𝑖
(𝑒 (𝑡))

+

𝑛

∑
𝑗=1

(𝑝
𝑖𝑗
𝑉
𝑗
(𝑒 (𝑡)) + 𝑞

𝑖𝑗
[𝑉

𝑗
(𝑒 (𝑡))]

𝜏

+∫
+∞

0

𝜐
𝑖𝑗
(𝑠) 𝑉

𝑗
(𝑒 (𝑡 − 𝑠)) 𝑑𝑠)] 𝑑𝑡

+
𝜕𝑉

𝑖
(𝑒)

𝜕𝑒
𝜎𝑑𝑤 (𝑡) , 𝑡 ≥ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ N.

(39)

Integrating and taking the expectations on both sides of (39)
lead to

E𝑉
𝑖
(𝑒 (𝑡 + 𝛿)) − E𝑉

𝑖
(𝑒 (𝑡))

≤ ∫
𝑡+𝛿

𝑡

[

[

𝑑
𝑖
E𝑉

𝑖
(𝑒 (𝑢))

+

𝑛

∑
𝑗=1

(𝑝
𝑖𝑗
E𝑉

𝑗
(𝑒 (𝑢))

+ 𝑞
𝑖𝑗
E[𝑉

𝑗
(𝑒 (𝑢))]

𝜏

+ ∫
+∞

0

𝜐
𝑖𝑗
(𝑠)

×E𝑉
𝑗
(𝑒 (𝑢 − 𝑠)) 𝑑𝑠)]

]

𝑑𝑢,

(40)

where 𝛿 > 0 is small enough such that 𝑡, 𝑡 + 𝛿 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) for

𝑘 ∈ N.

0 1 2 3 4

0

2

4

6

8

10
Phase plot of drive system
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Figure 1: Chaos behavior of drive system.

By the continuity of E𝑉
𝑖
(𝑒(𝑡)), we conclude that

𝐷
+E𝑉

𝑖
(𝑒 (𝑡)) ≤ 𝑑

𝑖
E𝑉

𝑖
(𝑒 (𝑡))

+

𝑛

∑
𝑗=1

(𝑝
𝑖𝑗
E𝑉

𝑗
(𝑒 (𝑡)) + 𝑞

𝑖𝑗
E[𝑉

𝑗
(𝑒 (𝑡))]

𝜏

+∫
+∞

0

𝜐
𝑖𝑗
(𝑠)E𝑉

𝑗
(𝑒 (𝑡 − 𝑠)) 𝑑𝑠) ,

(41)

which implies that for 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ N,

𝐷
+E𝑉 (𝑒 (𝑡)) ≤ 𝐷

0
E𝑉 (𝑒 (𝑡))

+ 𝑃E𝑉 (𝑒 (𝑡)) + 𝑄E[𝑉 (𝑒 (𝑡))]
𝜏

+ ∫
+∞

0

Υ (𝑠)E𝑉 (𝑒 (𝑡 − 𝑠)) 𝑑𝑠.

(42)

Meanwhile, it follows from (𝐴
2
) and (32) that

E𝑉
𝑖
(𝑒 (𝑡

𝑘
))

= E𝐼𝑖𝑘 (𝑦𝑖 (𝑡
−

𝑘
)) − 𝐼

𝑖𝑘
(𝑥
𝑖
(𝑡
−

𝑘
)) + 𝑒

𝑖
(𝑡
−

𝑘
)

𝑝

≤ 𝜂
𝑝

𝑘
E𝑉

𝑖
(𝑒 (𝑡

−

𝑘
))

(43)

for 𝑖 ∈ N and 𝑘 ∈ N, which means that

E𝑉 (𝑒 (𝑡
𝑘
)) ≤ 𝜂

𝑝

𝑘
E𝑉 (𝑒 (𝑡

−

𝑘
)) . (44)

Obviously, (42) and (44) indicate that E𝑉(𝑒(𝑡)) satisfies
inequality (14) in Lemma 6.

On the other hand, noting that 𝑒(𝑡
0
+ 𝑠) = 𝜓(𝑠) − 𝜙(𝑠) in

(8) and by a simple calculation, we get

E𝑒𝑖 (𝑡0 + 𝑠)

𝑝

= E𝜓𝑖 (𝑠) − 𝜙
𝑖
(𝑠)


𝑝

≤
𝜓 − 𝜙


𝑝

F
(45)
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for any 𝑠 ∈ (−∞, 0], which means E|𝑒
𝑖
(𝑡)|𝑝 ≤ ‖𝜓 − 𝜙‖

𝑝

F
for

𝑡 ∈ (−∞, 𝑡
0
] and 𝑖 ∈ N. Recalling the definition of 𝑉(𝑒(𝑡)) in

(32) and 𝑧 > 0, we conclude that for 𝑡 ∈ (−∞, 𝑡
0
]

E𝑉 (𝑒 (𝑡)) ≤
𝜓 − 𝜙


𝑝

F
(1, . . . , 1)

𝑇

≤
𝜓 − 𝜙


𝑝

F
(

𝑧
1

min
𝑖∈N {𝑧

𝑖
}
, . . . ,

𝑧
𝑛

min
𝑖∈N{𝑧

𝑖
}
)

𝑇

≤

𝜓 − 𝜙

𝑝

F

min
𝑖∈N {𝑧

𝑖
}
𝑧,

(46)

which further indicates that

E𝑉 (𝑒 (𝑡)) ≤ 𝑧𝑒
−𝜆(𝑡−𝑡0), 𝑡 ∈ (−∞, 𝑡

0
] , (47)

where 𝑧 = (‖𝜓 − 𝜙‖
𝑝

F
/min

𝑖∈N{𝑧
𝑖
})𝑧. This implies that

condition (16) in Lemma 6 holds.
Therefore, by Lemma 6, we derive that

E𝑉 (𝑒 (𝑡)) ≤ (

𝑘−1

∏
𝑗=0

𝜁
𝑗
)𝑧𝑒

−𝜆(𝑡−𝑡0), 𝑡
𝑘−1

≤ 𝑡 < 𝑡
𝑘
, 𝑘 ∈ N,

(48)

with 𝜁
0

= 1. Meanwhile, (30) implies that there is a small
enough constant 𝜖 (0 < 𝜖 < 𝜆) such that

𝜁
𝑘
≤ 𝑒

(𝜆−𝜖)(𝑡𝑘−𝑡𝑘−1), 𝑘 ∈ N. (49)

Thus, inequality (48) together with (49) shows that for 𝑘 = 1

E𝑉 (𝑒 (𝑡)) ≤ 𝜁
0
𝑧𝑒
−𝜆(𝑡−𝑡0) ≤ 𝑧𝑒

−𝜖(𝑡−𝑡0), 𝑡
0
≤ 𝑡 < 𝑡

1
, (50)

and for any 𝑘 ≥ 2,

E𝑉 (𝑒 (𝑡)) ≤ 𝑧𝜁
0
𝜁
1
⋅ ⋅ ⋅ 𝜁

𝑘−1
𝑒
−𝜆(𝑡−𝑡0)

≤ 𝑧𝑒
(𝜆−𝜖)(𝑡1−𝑡0) ⋅ ⋅ ⋅ 𝑒

(𝜆−𝜖)(𝑡𝑘−1−𝑡𝑘−2)𝑒
−𝜆(𝑡−𝑡0)

= 𝑧𝑒
(𝜆−𝜖)(𝑡𝑘−1−𝑡0)𝑒

−𝜆(𝑡−𝑡0)

≤ 𝑧𝑒
(𝜆−𝜖)(𝑡−𝑡0)𝑒

−𝜆(𝑡−𝑡0)

≤ 𝑧𝑒
−𝜖(𝑡−𝑡0), 𝑡

𝑘−1
≤ 𝑡 < 𝑡

𝑘
.

(51)

By Lemma 5, we get

E|𝑒 (𝑡)|
𝑝

≤ 𝐾
𝜓 − 𝜙


𝑝

F
𝑒
−𝜖(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, (52)

where 𝐾 = (∑
𝑛

𝑖=1
𝑧
𝑖
)/(𝑒

𝑝
(𝑛)min

𝑖∈N
{𝑧
𝑖
}). The proof is com-

plete.

Remark 8. In [25–32], the authors established some use-
ful criteria for ensuring synchronization of FCNNs with
delays, respectively. However, once the unbounded dis-
tributed delays are involved, all results in [25–32] will be
invalid. Hence, in this sense, the proposed Theorem 7 has a
wider range of applications than those in previous papers.

Remark 9. In synchronization scheme, we take both impul-
sive perturbations and random noise into account. Compar-
ing with the results in [25–32], Theorem 7 can reflect a more
realistic dynamical behavior and synchronization procedure.

If the random noise has not been considered, which
means 𝜎 ≡ 0 in (5), then the response system reduces to

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡
= −𝑐

𝑖
𝑦
𝑖
+

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
)

+

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝜈
𝑗
+ 𝐽

𝑖
+

𝑛

⋀
𝑗=1

𝑇
𝑖𝑗
𝜇
𝑗

+

𝑛

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+

𝑛

⋀
𝑗=1

𝛾
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

+

𝑛

⋁
𝑗=1

𝑆
𝑖𝑗
𝜇
𝑗
+

𝑛

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)))

+

𝑛

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

+ 𝑈
𝑖
(𝑡) , 𝑡 ≥ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑦
𝑖
(𝑡
𝑘
) = 𝑦

𝑖
(𝑡
+

𝑘
) − 𝑦

𝑖
(𝑡
−

𝑘
) = 𝐼

𝑖𝑘
(𝑦
𝑖
(𝑡
−

𝑘
)) , 𝑘 ∈ N,

𝑦
𝑖
(𝑡
0
+ 𝑠) = 𝜓

𝑖
(𝑠) , −∞ < 𝑠 ≤ 0.

(53)

In this case, the following globally exponential synchroniza-
tion scheme for drive-response IFCNNs (2) and (53) can be
derived.

Theorem 10. Assume that (𝐴
1
) and (𝐴

2
) hold and

(𝐴
6
) 𝐷 = −(𝐷

1
+𝑃

1
+𝑄

1
+∫

+∞

0

Υ(𝑠)𝑑𝑠) is a nonsingularM-
matrix, where 𝑃

1
= [𝐴]

+

𝐿+𝑀,𝑄
1
= ([𝛼]

+

+ [𝛽]
+

)𝐿+

[𝑁]
+,

(𝐴
7
) the impulsive perturbations satisfy

sup
𝑘∈𝑁

ln 𝜉
𝑘

𝑡
𝑘
− 𝑡

𝑘−1

< 𝜆, (54)

where 𝜉
𝑘
= max{1, 𝜂

𝑘
}, and 𝜆 ∈ (0, 𝜎

0
] is determined by

(𝜆𝐸 + 𝐷
1
+ 𝑃

1
+ 𝑄

1
𝑒
𝜆𝜏

+ ∫
+∞

0

Υ (𝑠) 𝑒
𝜆𝑠

𝑑𝑠) 𝑧 < 0,

for a given 𝑧 ∈ M
�̂�
.

(55)

Then, the drive-response systems (2) and (53) are globally
exponential synchronization.
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Figure 2: Synchronization of (57) and (59).

Proof. Let 𝑉(𝑒(𝑡)) = [𝑒(𝑡)]
+

= (|𝑒
1
(𝑡)|, . . . , |𝑒

𝑛
(𝑡)|)

𝑇. Calculat-
ing the time derivative of 𝑉(𝑒(𝑡)) along with the trajectory of
error system can give

𝐷
+

𝑉 (𝑒 (𝑡)) ≤ 𝐷
1
𝑉 (𝑒 (𝑡))

+ 𝑃
1
𝑉 (𝑒 (𝑡)) + 𝑄

1
[𝑉 (𝑒 (𝑡))]

𝜏

+ ∫
+∞

0

Υ (𝑠) 𝑉 (𝑒 (𝑡 − 𝑠)) 𝑑𝑠.

(56)

The rest proof is similar to Theorem 7 and omitted here. We
complete the proof.

Remark 11. In [31], Feng et al. derived some criteria on
the globally exponential synchronization for a special case
of (2) and (53) with 𝛾

𝑖𝑗
= 𝜃

𝑖𝑗
= 0, 𝜏

𝑖𝑗
(𝑡) = 𝜏

𝑖𝑗
and

𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡−
𝑘
)) = −𝜂

𝑖𝑘
𝑥
𝑖
(𝑡−
𝑘
) for 𝑖, 𝑗 ∈ N, 𝑘 ∈ N. In order to

achieve synchronous control, the conditions as 0 ≤ 𝜂
𝑖𝑘

≤ 2

for 𝑖 ∈ N, 𝑘 ∈ N have been imposed on the impulsive
perturbations. However,Theorem 10 drops these restrictions.

4. Illustrative Example

In this section, a numerical example and its simulations are
given to illustrate the effectiveness of our results.

Example 1. Consider the following 2-dimensional IFCNNs
with mixed delays as the drive system

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡
= −𝑐

𝑖
𝑥
𝑖
+

2

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
)

+

2

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − 1))
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+

2

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − 1))

+

2

⋀
𝑗=1

𝛾
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

+

2

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑥

𝑗
(𝑡 − 𝑠)) 𝑑𝑠,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥

𝑖
(𝑡
+

𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
) = −𝐽

𝑘
𝑥
𝑖
(𝑡
−

𝑘
) ,

(57)

where 𝑖, 𝑗 = 1, 2, 𝑓
𝑗
(𝑢) = tanh(𝑢). 𝐽

𝑘
= 𝑒0.15 + 1, 𝑡

𝑘
= 𝑡

𝑘−1
+ 4

for 𝑘 ∈ N. For the simplicity of computer simulations, we
choose 𝑘

𝑖𝑗
(𝑠) = 𝑒−𝑠 for 𝑠 ∈ [0, 20], 𝑘

𝑖𝑗
(𝑠) = 0 for 𝑠 ∈ [20, +∞).

The system parameters are as follows:

𝐷
1
= (

−1 0

0 −1
) , 𝐴 = (

2 −0.1

−4 3.2
) ,

𝛼 = 𝛽 = (
−1.3 −0.2

−0.2 −4.2
) , Γ = Θ = (

−0.5 −0.5

5 −2.5
) .

(58)

We can choose 𝜎
0
= 0.8 and 𝐿

1
= 𝐿

2
= 1 such that 𝑘

𝑖𝑗
∈ L𝑒

and (𝐴
1
) holds, respectively. Obviously, (𝐴

2
) holds with 𝜂

𝑘
=

𝑒0.15, 𝑘 ∈ N.
Choosing the initial value 𝜙(𝑠) = (3, −6)

𝑇 for 𝑠 ∈ (−∞, 0],
the drive system (57) possesses a chaotic behavior as shown
in Figure 1.

Case 1. The response system without random noise is given
by

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡
= −𝑐

𝑖
𝑦
𝑖
+

2

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
)

+

2

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 1))

+

2

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 1))

+

2

⋀
𝑗=1

𝛾
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

+

2

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗

× (𝑦
𝑗
(𝑡 − 𝑠)) 𝑑𝑠 + 𝑈

𝑖
(𝑡) , 𝑡 ̸= 𝑡

𝑘
,

Δ𝑦
𝑖
(𝑡
𝑘
) = 𝑦

𝑖
(𝑡
+

𝑘
) − 𝑦

𝑖
(𝑡
−

𝑘
) = −𝐽

𝑘
𝑦
𝑖
(𝑡
−

𝑘
) .

(59)

The control gain matrices 𝑀 and 𝑁 can be chosen as

𝑀 = (
−10.6 0

0 −20.6
) ,

𝑁 = (
𝑒
−20 𝑒−20

10𝑒−20 5𝑒−20
) .

(60)

By simple calculation, we get that

𝐷 = (
−6 1.5

14.4 −5
) (61)

is a nonsingular M-matrix, which implies that (𝐴
6
) holds.

Moreover, we can choose 𝜆 = 0.2 and 𝑧 = (1, 3.5)
𝑇

∈ M
�̂�

such that (𝐴
7
) holds. Therefore, by Theorem 10, the drive-

response systems (57) and (59) are globally exponentially
synchronized. The simulation result with 𝜓(𝑠) = (1.3, 1.8)

𝑇

is shown in Figure 2.

Remark 12. It is worth noting that the impulsive perturba-
tions 𝐽

𝑘
> 2, which are not a satisfied condition (𝐻2) in

[31]. That is to say, even in the absence of the unbounded
distributed delays, the results in [31] still cannot be applied
to the synchronization problem of (57) and (59).

Case 2. Consider the response system with random noise as
follows:

𝑑𝑦
𝑖
(𝑡) = [

[

−𝑐
𝑖
𝑦
𝑖
+

2

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
)

+

2

⋀
𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 1))

+

2

⋁
𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑦

𝑗
(𝑡 − 1))

+

2

⋀
𝑗=1

𝛾
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠) 𝑓

𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠

+

2

⋁
𝑗=1

𝜃
𝑖𝑗
∫
+∞

0

𝑘
𝑖𝑗
(𝑠)

×𝑓
𝑗
(𝑦

𝑗
(𝑡 − 𝑠)) 𝑑𝑠 + 𝑈

𝑖
(𝑡) ]

]

𝑑𝑡

+

2

∑
𝑗=1

𝜎
𝑖𝑗
(𝑡, 𝑥

𝑗
(𝑡) − 𝑦

𝑗
(𝑡) ,

𝑥
𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡)) − 𝑦

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) 𝑑𝑤

𝑗
(𝑡) ,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑦
𝑖
(𝑡
𝑘
) = 𝑦

𝑖
(𝑡
+

𝑘
) − 𝑦

𝑖
(𝑡
−

𝑘
) = −𝐽

𝑘
𝑦
𝑖
(𝑡
−

𝑘
) ,

(62)
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Figure 3: Synchronization of (57) and (62).

and the noise intensity matrix is

𝜎 = (
−𝑥

1
(𝑡) 0.5𝑥

1
(𝑡 − 1)

𝑥
2
(𝑡) −0.5𝑥

2
(𝑡 − 1)

) . (63)

Clearly, we can choose

𝐶 = (
1 0

0 1
) , 𝐷 = (

0.25 0

0 0.25
) (64)

such that (𝐴
3
) holds.

For 𝑝 = 2, let control gain matrices be

𝑀 = (
−8.475 0

0 −25.925
) ,

𝑁 = (
𝑒
−20 𝑒−20

10𝑒−20 5𝑒−20
) .

(65)

It is easy to deduce that

𝐷 = (
−5 1.5

14.4 −5
) (66)

is a nonsingular M-matrix, which implies that (𝐴
4
) holds.

Meanwhile, we can choose 𝜆 = 0.1 and 𝑧 = (1, 3)
𝑇

∈

M
�̃�
such that (𝐴

5
) holds. Hence, by Theorem 7, the drive-

response systems (57) and (62) are globally exponentially
synchronized inmean square.The simulation result based on
Euler-Maruyama method is illustrated in Figure 3.

Remark 13. The schemes proposed in [25–29] cannot solve
the synchronization problem of (57) and (62) due to the
impulsive perturbations and random noise. Besides this, the
distributed delays make those methods in [30–32] cannot be
applied to synchronization problem of (57) and (62).
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5. Conclusion

In this paper, we investigate the synchronization prob-
lem of IFCNNs with mixed delays. Based on the proper-
ties of nonsingularM-matrix and some stochastic analysis
approaches, some useful synchronization criteria under both
impulse and random noise are obtained. The methods used
in this paper are novel and can be extended to many other
types of neural networks. These problems will be considered
in near future.
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