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By using a specific way of choosing the indexes, we introduce an up-to-date iterative algorithm for approximating common
fixed points of a countable family of generalized quasi-𝜙-asymptotically nonexpansive mappings and obtain a strong convergence
theoremunder some suitable conditions. As application, an iterative solution to a systemof generalizedmixed equilibriumproblems
is studied. The results extend those of other authors, in which the involved mappings consist of just finite families.

1. Introduction

Throughout this paper, we assume that 𝐸 is a real Banach
space with its dual 𝐸∗, 𝐶 is a nonempty closed convex subset
of 𝐸, and 𝐽 : 𝐸 → 2𝐸

∗

is the normalized duality mapping
defined by

𝐽𝑥 = {𝑓 ∈ 𝐸
∗

: ⟨𝑥, 𝑓⟩ = ‖𝑥‖
2

=
𝑓


2

} , ∀𝑥 ∈ 𝐸. (1)

In the sequel, we use 𝐹(𝑇) to denote the set of fixed points of
a mapping 𝑇.

Definition 1. (1) [1] A mapping 𝑇 : 𝐶 → 𝐶 is said to be
generalized quasi-𝜙-asymptotically nonexpansive in the light
of [1], if 𝐹(𝑇) ̸= 0, and there exist nonnegative real sequences
{𝜈
𝑛
} and {𝜇

𝑛
} with 𝜈

𝑛
, 𝜇
𝑛

→ 0 (as 𝑛 → ∞) such that

𝜙 (𝑝, 𝑇
𝑛

𝑥)≤(1+𝜈
𝑛
) 𝜙 (𝑝, 𝑥)+𝜇

𝑛
, ∀𝑛≥1, 𝑥∈𝐶, 𝑝∈𝐹 (𝑇) ,

(2)

where 𝜙 : 𝐸 × 𝐸 → R denotes the Lyapunov functional
defined by

𝜙 (𝑥, 𝑦) = ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽𝑦⟩ +
𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐸. (3)

It is obvious from the definition of 𝜙 that

(‖𝑥‖ −
𝑦

)
2

≤ 𝜙 (𝑥, 𝑦) ≤ (‖𝑥‖ +
𝑦

)
2

. (4)

(2) A mapping 𝑇 : 𝐶 → 𝐶 is said to be uniformly L-
Lipschitz continuous, if there exists a constant 𝐿 > 0 such that

𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦
 ≤ 𝐿

𝑥 − 𝑦
 , ∀𝑛 ≥ 1, 𝑥, 𝑦 ∈ 𝐶. (5)

Example 2. Let 𝐶 be a unit ball in a real Hilbert space 𝑙2, and
let 𝑇 : 𝐶 → 𝐶 be a mapping defined by

𝑇 (𝑥
1
, 𝑥
2
, . . .) = (0, 𝑥

2

1
, 𝑎
2
𝑥
2
, 𝑎
3
𝑥
3
, . . .) , (6)

where {𝑎
𝑖
} is a sequence in (0, 1) satisfying ∏

∞

𝑖=2
𝑎
𝑖

= 1/2. It
is shown by Goebel and Kirk [2] that

𝜙 (𝑝, 𝑇
𝑛

𝑦)≤(1+𝜈
𝑛
) 𝜙 (𝑝, 𝑦)+𝜇

𝑛
, ∀𝑛≥1, 𝑦∈𝐶, 𝑝∈𝐹 (𝑇) ,

(7)

where 𝜙(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2, 𝜈
𝑛

= (2∏
𝑛

𝑖=2
𝑎
𝑖
)2 − 1, for all 𝑛 ≥

1, and {𝜇
𝑛
} is a nonnegative real sequence with 𝜇

𝑛
→ 0 as

𝑛 → ∞. This shows that the mapping 𝑇 defined earlier is a
generalized quasi-𝜙-asymptotically nonexpansive mapping.
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Let 𝜃 : 𝐶 × 𝐶 → R be a bifunction, 𝜓 : 𝐶 → R a real
valued function, and 𝐵 : 𝐶 → 𝐸∗ a nonlinear mapping. The
so-called generalized mixed equilibrium problem (GMEP) is
to find a 𝑢 ∈ 𝐶 such that

𝜃 (𝑢, 𝑦) + ⟨𝑦 − 𝑢, 𝐵𝑢⟩ + 𝜓 (𝑦) − 𝜓 (𝑢) ≥ 0, ∀𝑦 ∈ 𝐶,
(8)

whose set of solutions is denoted by Ω(𝜃, 𝐵, 𝜓).

The equilibrium problem is a unifying model for several
problems arising in physics, engineering, science optimiza-
tion, economics, transportation, network and structural anal-
ysis, Nash equilibrium problems in noncooperative games,
and others. It has been shown that variational inequalities
and mathematical programming problems can be viewed as
a special realization of the abstract equilibrium problems.
Many authors have proposed some useful methods to solve
the (equilibrium problem) EP, (generalized equilibrium prob-
lem) GEP, (mixed equilibrium problem) MEP, and GMEP.
Concerning the weak and strong convergence of iterative
sequences to approximate a common element of the set of
solutions for the GMEP, the set of solutions to variational
inequality problems and the set of common fixed points
for relatively nonexpansive mappings, quasi-𝜙-nonexpansive
mappings, and quasi-𝜙-asymptotically nonexpansive map-
pings have been studied by many authors in the setting of
Hilbert or Banach spaces (e.g., see [3–16] and the references
therein).

Inspired and motivated by the study mentioned earlier,
in this paper, by using a specific way of choosing the indexes,
we propose an up-to-date iteration scheme for approximating
common fixed points of a countable family of generalized
quasi-𝜙-asymptotically nonexpansive mappings and obtain a
strong convergence theorem for solving a system of general-
izedmixed equilibrium problems.The results extend those of
the authors, in which the involved mappings consist of just
finite families.

2. Preliminaries

ABanach space𝐸 is strictly convex if the following implication
holds for 𝑥, 𝑦 ∈ 𝐸:

‖𝑥‖ =
𝑦

 = 1, 𝑥 ̸= 𝑦 ⇒


𝑥 + 𝑦

2


< 1. (9)

It is also said to be uniformly convex if for any 𝜖 > 0, there
exists a 𝛿 > 0 such that

‖𝑥‖ =
𝑦

 = 1,
𝑥 − 𝑦

 ≥ 𝜖 ⇒


𝑥 + 𝑦

2


≤ 1 − 𝛿.

(10)

It is known that if 𝐸 is uniformly convex Banach space, then
𝐸 is reflexive and strictly convex. A Banach space 𝐸 is said to
be smooth if

lim
𝑡→0

𝑥 + 𝑡𝑦
 − ‖𝑥‖

𝑡
(11)

exists for each 𝑥, 𝑦 ∈ 𝑆(𝐸) := {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1}. In this case,
the norm of 𝐸 is said to be Gâteaux differentiable. The space

𝐸 is said to have uniformly Gâteaux differentiable norm if for
each𝑦 ∈ 𝑆(𝐸), the limit (11) is attained uniformly for𝑥 ∈ 𝑆(𝐸).
The norm of 𝐸 is said to be Fréchet differentiable if for each
𝑥 ∈ 𝑆(𝐸), the limit (11) is attained uniformly for 𝑦 ∈ 𝑆(𝐸).The
norm of 𝐸 is said to be uniformly Fréchet differentiable (and
𝐸 is said to be uniformly smooth) if the limit (11) is attained
uniformly for 𝑥, 𝑦 ∈ 𝑆(𝐸). Note that𝐸 (𝐸∗, resp.) is uniformly
convex ⇔ 𝐸∗ (𝐸, resp.) is uniformly smooth.

FollowingAlber [17], the generalized projectionΠ
𝐶

: 𝐸 →
𝐶 is defined by

Π
𝐶

(𝑥) = arg inf
𝑦∈𝐶

𝜙 (𝑦, 𝑥) , ∀𝑥 ∈ 𝐸. (12)

Lemma 3 (see [17]). Let E be a smooth, strictly convex, and
reflexive Banach space, and let C be a nonempty closed convex
subset of E. Then, the following conclusions hold:

(1) 𝜙(𝑥, Π
𝐶
𝑦) + 𝜙(Π

𝐶
𝑦, 𝑦) ≤ 𝜙(𝑥, 𝑦) for all 𝑥 ∈ 𝐶 and

𝑦 ∈ 𝐸;
(2) if 𝑥 ∈ 𝐸 and 𝑧 ∈ 𝐶, then 𝑧 = Π

𝐶
𝑥 ⇔ ⟨𝑧−𝑦, 𝐽𝑥−𝐽𝑧⟩ ≥

0, for all 𝑦 ∈ 𝐶;
(3) for 𝑥, 𝑦 ∈ 𝐸, 𝜙(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦.

Remark 4. The following basic properties for a Banach space
𝐸 can be found in Cioranescu [18].

(i) If 𝐸 is uniformly smooth, then 𝐽 is uniformly contin-
uous on each bounded subset of 𝐸.

(ii) If 𝐸 is reflexive and strictly convex, then 𝐽−1 is norm-
weak continuous.

(iii) If 𝐸 is a smooth, strictly convex, and reflexive Banach
space, then the normalized duality mapping 𝐽 : 𝐸 →

2𝐸
∗

is single valued, one-to-one, and onto.
(iv) A Banach space 𝐸 is uniformly smooth if and only if

𝐸∗ is uniformly convex.
(v) Eachuniformly convexBanach space𝐸has theKadec-

Klee property; that is, for any sequence {𝑥
𝑛
} ⊂ 𝐸, if

𝑥
𝑛

⇀ 𝑥 ∈ 𝐸 and ‖𝑥
𝑛
‖ → ‖𝑥‖, then 𝑥

𝑛
→ 𝑥, where

𝑥
𝑛

⇀ 𝑥 denotes that {𝑥
𝑛
} converges weakly to 𝑥.

Lemma 5 (see [19]). Let E be a real uniformly smooth and
strictly convex Banach space with Kadec-Klee property, and let
C be a nonempty closed convex subset of E. Let {𝑥

𝑛
} and {𝑦

𝑛
}

be two sequences in C such that 𝑥
𝑛

→ 𝑝 and 𝜙(𝑥
𝑛
, 𝑦
𝑛
) → 0,

where 𝜙 is the function defined by (3); then, 𝑦
𝑛

→ 𝑝.

Lemma 6 (see [1]). Let E and C be the same as those in
Lemma 5. Let 𝑇 : 𝐶 → 𝐶 be a closed and generalized quasi-
𝜙-asymptotically nonexpansive mapping with nonnegative real
sequences {𝜈

𝑛
} and {𝜇

𝑛
}; then, the fixed point set F(T) of T is a

closed and convex subset of C.

Lemma 7 (see [20]). Let 𝐸 be a real uniformly convex Banach
space, and let 𝐵

𝑟
(0) be the closed ball of 𝐸 with center at the

origin and radius 𝑟 > 0. Then, there exists a continuous strictly
increasing convex function 𝑔 : [0, ∞) → [0, ∞) with 𝑔(0) =
0 such that

𝛼𝑥 + 𝛽𝑦

2

≤ 𝛼‖𝑥‖
2

+ 𝛽
𝑦


2

− 𝛼𝛽𝑔 (
𝑥 − 𝑦

) (13)

for all 𝑥, 𝑦, ∈ 𝐵
𝑟
(0), and 𝛼, 𝛽 ∈ [0, 1] with 𝛼 + 𝛽 = 1.
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3. Main Results

Theorem 8. Let E be a real uniformly smooth and strictly
convex Banach space with Kadec-Klee property, C a nonempty
closed convex subset of E, and 𝑇

𝑖
: 𝐶 → 𝐶, 𝑖 = 1, 2,

. . . a countable family of closed and generalized quasi-𝜙-
asymptotically nonexpansive mappings with nonnegative real
sequences {𝜈(𝑖)

𝑛
} and {𝜇(𝑖)

𝑛
} satisfying 𝜈(𝑖)

𝑛
→ 0 and 𝜇(𝑖)

𝑛
→ 0

(as 𝑛 → ∞ and for each 𝑖 ≥ 1), and each 𝑇
𝑖
is uniformly

𝐿
𝑖
-Lipschitz continuous. Let {𝛼

𝑛
} be a sequence in [0, 𝜖] for

some 𝜖 ∈ (0, 1), and let {𝛽
𝑛
} be a sequence in [0, 1] satisfying

0 < lim inf
𝑛→∞

𝛽
𝑛
(1 − 𝛽

𝑛
). Let {𝑥

𝑛
} be the sequence generated

by

𝑥
1

∈ 𝐶; 𝐶
1

= 𝐶,

𝑦
𝑛

= 𝐽
−1

[𝛼
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛼
𝑛
) 𝐽𝑧
𝑛
] ,

𝑧
𝑛

= 𝐽
−1

[𝛽
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛽
𝑛
) 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛
] ,

𝐶
𝑛+1

= {𝑣 ∈ 𝐶
𝑛

: 𝜙 (𝑣, 𝑦
𝑛
) ≤ 𝜙 (𝑣, 𝑥

𝑛
) + 𝜉
𝑛
} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
1
, ∀𝑛 ≥ 1,

(14)

where 𝜉
𝑛

:= 𝜈(𝑖𝑛)
𝑚
𝑛

sup
𝑝∈𝐹

𝜙(𝑝, 𝑥
𝑛
) + 𝜇(𝑖𝑛)
𝑚
𝑛

, Π
𝐶
𝑛+1

is the generalized
projection of 𝐸 onto 𝐶

𝑛+1
, and 𝑖

𝑛
and 𝑚

𝑛
satisfy the positive

integer equation: 𝑛 = 𝑖 + (𝑚 − 1)𝑚/2, 𝑚 ≥ 𝑖 (𝑚 ≥ 𝑖, 𝑛 =
1, 2, . . .); that is, for each 𝑛 ≥ 1, there exist unique 𝑖

𝑛
and 𝑚

𝑛

such that

𝑖
1

= 1, 𝑖
2

= 1, 𝑖
3

= 2, 𝑖
4

= 1, 𝑖
5

= 2,

𝑖
6

= 3, 𝑖
7

= 1, 𝑖
8

= 2, . . . ;

𝑚
1

= 1, 𝑚
2

= 2, 𝑚
3

= 2, 𝑚
4

= 3, 𝑚
5

= 3,

𝑚
6

= 3, 𝑚
7

= 4, 𝑚
8

= 4, . . . .

(15)

If 𝐹 := ⋂
∞

𝑖=1
𝐹(𝑇
𝑖
) is nonempty and bounded, then {𝑥

𝑛
} con-

verges strongly to Π
𝐹
𝑥
1
.

Proof. We divide the proof into several steps.

(I) 𝐹 and 𝐶
𝑛
(for all 𝑛 ≥ 1) both are closed and convex

subsets in 𝐶.

In fact, it follows fromLemma 6 that each𝐹(𝑇
𝑖
) is a closed

and convex subset of 𝐶, so is 𝐹. In addition, with 𝐶
1
(=𝐶)

being closed and convex, we may assume that 𝐶
𝑛
is closed

and convex for some 𝑛 ≥ 2. In view of the definition of 𝜙, we
have that

𝐶
𝑛+1

= {𝑣 ∈ 𝐶 : 𝜑 (𝑣) ≤ 𝑎} ∩ 𝐶
𝑛
, (16)

where 𝜑(𝑣) = 2⟨𝑣, 𝐽𝑥
𝑛

− 𝐽𝑦
𝑛
⟩, and 𝑎 = ‖𝑥

𝑛
‖2 − ‖𝑦

𝑛
‖2 + 𝜉
𝑛
. This

shows that 𝐶
𝑛+1

is closed and convex.

(II) 𝐹 is a subset of ⋂
∞

𝑛=1
𝐶
𝑛
.

It is obvious that 𝐹 ⊂ 𝐶
1
. Suppose that 𝐹 ⊂ 𝐶

𝑛
for some

𝑛 ≥ 2. Since 𝐸 is uniformly smooth, 𝐸∗ is uniformly convex.
Then, for any 𝑝 ∈ 𝐹 ⊂ 𝐶

𝑛
, we have that

𝜙 (𝑝, 𝑦
𝑛
) = 𝜙 (𝑝, 𝐽

−1

[𝛼
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛼
𝑛
) 𝐽𝑥
𝑛
])

=
𝑝


2

− 2 ⟨𝑝, 𝛼
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛼
𝑛
) 𝐽𝑧
𝑛
⟩

+
𝛼
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛼
𝑛
) 𝐽𝑧
𝑛


2

≤
𝑝


2

− 2𝛼
𝑛

⟨𝑝, 𝐽𝑥
𝑛
⟩ − 2 (1 − 𝛼

𝑛
) ⟨𝑝, 𝐽𝑧

𝑛
⟩

+ 𝛼
𝑛

𝑥
𝑛


2

+ (1 − 𝛼
𝑛
)

𝑧
𝑛


2

= 𝛼
𝑛
𝜙 (𝑝, 𝑥

𝑛
) + (1 − 𝛼

𝑛
) 𝜙 (𝑝, 𝑧

𝑛
) .

(17)

Furthermore, it follows from Lemma 7 that for any 𝑝 ∈ 𝐹, we
have that

𝜙 (𝑝, 𝑧
𝑛
) = 𝜙 (𝑝, 𝐽

−1

[𝛽
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛽
𝑛
) 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛
])

=
𝑝


2

− 2 ⟨𝑝, 𝛽
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛽
𝑛
) 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛
⟩

+
𝛽
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛽
𝑛
) 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛


2

≤
𝑝


2

− 2𝛽
𝑛

⟨𝑝, 𝐽𝑥
𝑛
⟩ − 2 (1 − 𝛽

𝑛
)

× ⟨𝑝, 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛
⟩ + 𝛽
𝑛

𝑥
𝑛


2

+ (1 − 𝛽
𝑛
)

𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛


2

− 𝛽
𝑛

(1 − 𝛽
𝑛
) 𝑔 (

𝐽𝑥
𝑛

− 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛

)

= 𝛽
𝑛
𝜙 (𝑝, 𝑥

𝑛
) + (1 − 𝛽

𝑛
) 𝜙 (𝑝, 𝑇

𝑚
𝑛

𝑖
𝑛

𝑥
𝑛
)

− 𝛽
𝑛

(1 − 𝛽
𝑛
) 𝑔 (

𝐽𝑥
𝑛

− 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛

)

≤ 𝛽
𝑛
𝜙 (𝑝, 𝑥

𝑛
) + (1 − 𝛽

𝑛
)

× [𝜙 (𝑝, 𝑥
𝑛
)+𝜈
(𝑖
𝑛
)

𝑚
𝑛

sup
𝑝∈𝐹

𝜙 (𝑝, 𝑥
𝑛
) + 𝜇
(𝑖
𝑛
)

𝑚
𝑛

]

− 𝛽
𝑛

(1 − 𝛽
𝑛
) 𝑔 (

𝐽𝑥
𝑛

− 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛

)

≤ 𝜙 (𝑝, 𝑥
𝑛
) + 𝜈
(𝑖
𝑛
)

𝑚
𝑛

sup
𝑝∈𝐹

𝜙 (𝑝, 𝑥
𝑛
) + 𝜇
(𝑖
𝑛
)

𝑚
𝑛

− 𝛽
𝑛

(1 − 𝛽
𝑛
) 𝑔 (

𝐽𝑥
𝑛

− 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛

)

= 𝜙 (𝑝, 𝑥
𝑛
) + 𝜉
𝑛

− 𝛽
𝑛

(1 − 𝛽
𝑛
) 𝑔 (

𝐽𝑥
𝑛

− 𝐽𝑇
𝑚
𝑛

𝑖
𝑛

𝑥
𝑛

) .

(18)

Substituting (18) into (17) and simplifying it, we have that

𝜙 (𝑝, 𝑦
𝑛
) ≤ 𝜙 (𝑝, 𝑥

𝑛
) + (1 − 𝛼

𝑛
) 𝜉
𝑛

≤ 𝜙 (𝑝, 𝑥
𝑛
) + 𝜉
𝑛
. (19)

This implies that 𝑝 ∈ 𝐶
𝑛+1

, and so 𝐹 ⊂ 𝐶
𝑛+1

.

(III) 𝑥
𝑛

→ 𝑥∗ ∈ 𝐶 as 𝑛 → ∞.

In fact, since 𝑥
𝑛

= Π
𝐶
𝑛

𝑥
1
, from Lemma 3 (2), we have

that ⟨𝑥
𝑛

− 𝑦, 𝐽𝑥
1

− 𝐽𝑥
𝑛
⟩ ≥ 0, for all 𝑦 ∈ 𝐶

𝑛
. Again, since
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𝐹 ⊂ ⋂
∞

𝑛=1
𝐶
𝑛
, we have that ⟨𝑥

𝑛
− 𝑝, 𝐽𝑥

1
− 𝐽𝑥
𝑛
⟩ ≥ 0, for all

𝑝 ∈ 𝐹. It follows from Lemma 3 (1) that for each 𝑝 ∈ 𝐹 and
for each 𝑛 ≥ 1,

𝜙 (𝑥
𝑛
, 𝑥
1
)=𝜙 (Π

𝐶
𝑛

𝑥
1
, 𝑥
1
)≤𝜙 (𝑝, 𝑥

1
)−𝜙 (𝑝, 𝑥

𝑛
)≤𝜙 (𝑝, 𝑥

1
) ,

(20)

which implies that {𝜙(𝑥
𝑛
, 𝑥
1
)} is bounded, so is {𝑥

𝑛
}. Since for

all 𝑛 ≥ 1, 𝑥
𝑛

= Π
𝐶
𝑛

𝑥
1
and 𝑥

𝑛+1
= Π
𝐶
𝑛+1

𝑥
1

∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
, we

have 𝜙(𝑥
𝑛
, 𝑥
1
) ≤ 𝜙(𝑥

𝑛+1
, 𝑥
1
). This implies that {𝜙(𝑥

𝑛
, 𝑥
1
)} is

nondecreasing; hence, the limit

lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑥
1
) exists. (21)

Since 𝐸 is reflexive, there exists a subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
}

such that 𝑥
𝑛
𝑖

⇀ 𝑥∗ ∈ 𝐶 as 𝑖 → ∞. Since 𝐶
𝑛
is closed and

convex and 𝐶
𝑛+1

⊂ 𝐶
𝑛
, this implies that 𝐶

𝑛
is weakly, closed

and 𝑥∗ ∈ 𝐶
𝑛
for each 𝑛 ≥ 1. In view of 𝑥

𝑛
𝑖

= Π
𝐶
𝑛
𝑖

𝑥
1
, we have

that

𝜙 (𝑥
𝑛
𝑖

, 𝑥
1
) ≤ 𝜙 (𝑥

∗

, 𝑥
1
) , ∀𝑖 ≥ 1. (22)

Since the norm ‖ ⋅ ‖ is weakly lower semicontinuous, we have
that

lim inf
𝑖→∞

𝜙 (𝑥
𝑛
𝑖

, 𝑥
1
) = lim inf
𝑖→∞

(
𝑥
𝑛
𝑖


2

− 2 ⟨𝑥
𝑛
𝑖

, 𝐽𝑥
1
⟩ +

𝑥
1


2

)

≥
𝑥
∗
2

− 2 ⟨𝑥
∗

, 𝐽𝑥
1
⟩ +

𝑥
1


2

= 𝜙 (𝑥
∗

, 𝑥
1
) ,

(23)

and so

𝜙 (𝑥
∗

, 𝑥
1
)≤ lim inf
𝑖→∞

𝜙 (𝑥
𝑛
𝑖

, 𝑥
1
)≤ lim sup
𝑖→∞

𝜙 (𝑥
𝑛
𝑖

, 𝑥
1
)≤𝜙 (𝑥

∗

, 𝑥
1
) .

(24)

This implies that lim
𝑖→∞

𝜙(𝑥
𝑛
𝑖

, 𝑥
1
) = 𝜙(𝑥∗, 𝑥

1
), and so

‖𝑥
𝑛
𝑖

‖ → ‖𝑥∗‖ as 𝑖 → ∞. Since 𝑥
𝑛
𝑖

⇀ 𝑥∗, by virtue ofKadec-
Klee property of 𝐸, we obtain that

lim
𝑖→∞

𝑥
𝑛
𝑖

= 𝑥
∗

. (25)

Since {𝜙(𝑥
𝑛
, 𝑥
1
)} is convergent, this, together with

lim
𝑖→∞

𝜙(𝑥
𝑛
𝑖

, 𝑥
1
) = 𝜙(𝑥∗, 𝑥

1
), shows that lim

𝑛→∞
𝜙(𝑥
𝑛
,

𝑥
1
) = 𝜙(𝑥∗, 𝑥

1
). If there exists some subsequence {𝑥

𝑛
𝑗

} of
{𝑥
𝑛
} such that 𝑥

𝑛
𝑗

→ 𝑦 as 𝑗 → ∞, then, from Lemma 3 (1),
we have that

𝜙 (𝑥
∗

, 𝑦) = lim
𝑖,𝑗→∞

𝜙 (𝑥
𝑛
𝑖

, 𝑥
𝑛
𝑗

) = lim
𝑖,𝑗→∞

𝜙 (𝑥
𝑛
𝑖

, Π
𝐶
𝑛
𝑗

𝑥
1
)

≤ lim
𝑖,𝑗→∞

(𝜙 (𝑥
𝑛
𝑖

, 𝑥
1
) − 𝜙 (Π

𝐶
𝑛
𝑗

𝑥
1
, 𝑥
1
))

= lim
𝑖,𝑗→∞

(𝜙 (𝑥
𝑛
𝑖

, 𝑥
1
) − 𝜙 (𝑥

𝑛
𝑗

, 𝑥
1
))

= 𝜙 (𝑥
∗

, 𝑥
1
) − 𝜙 (𝑥

∗

, 𝑥
1
) = 0;

(26)

that is, 𝑥∗ = 𝑦, and so
lim
𝑛→∞

𝑥
𝑛

= 𝑥
∗

. (27)

(IV) 𝑥∗ is some member of 𝐹.

Set K
𝑖

= {𝑘 ≥ 1 : 𝑘 = 𝑖 + (𝑚 − 1)𝑚/2, 𝑚 ≥ 𝑖, 𝑚 ∈ N}

for each 𝑖 ≥ 1. Note that 𝜈(𝑖𝑘)
𝑚
𝑛

= 𝜈(𝑖)
𝑚
𝑘

and 𝜇(𝑖𝑘)
𝑚
𝑛

= 𝜇(𝑖)
𝑚
𝑘

whenever
𝑘 ∈ K

𝑖
for each 𝑖 ≥ 1. For example, by the definition ofK

1
,

we have that K
1

= {1, 2, 4, 7, 11, 16, . . .}, and 𝑖
1

= 𝑖
2

= 𝑖
4

=
𝑖
7

= 𝑖
11

= 𝑖
16

= ⋅ ⋅ ⋅ = 1. Then, we have that
𝜉
𝑘

= 𝜈
(𝑖)

𝑚
𝑘

sup
𝑝∈𝐹

𝜙 (𝑝, 𝑥
𝑘
) + 𝜇
(𝑖)

𝑚
𝑘

, ∀𝑘 ∈ K
𝑖
. (28)

Note that {𝑚
𝑘
}
𝑘∈K
𝑖

= {𝑖, 𝑖 + 1, 𝑖 + 2, . . .}; that is, 𝑚
𝑘

↑ ∞ as
K
𝑖
∋ 𝑘 → ∞. It follows from (27) and (28) that

lim
K
𝑖
∋𝑘→∞

𝜉
𝑘

= 0. (29)

Since 𝑥
𝑛+1

∈ 𝐶
𝑛+1

, it follows from (14), (27), and (29) that

𝜙 (𝑥
𝑘+1

, 𝑦
𝑘
) ≤ 𝜙 (𝑥

𝑘+1
, 𝑥
𝑘
) + 𝜉
𝑘

→ 0 (30)

asK
𝑖
∋ 𝑘 → ∞. Since 𝑥

𝑘
→ 𝑥∗ asK

𝑖
∋ 𝑘 → ∞, it follows

from (30) and Lemma 5 that

lim
K
𝑖
∋𝑘→∞

𝑦
𝑘

= 𝑥
∗

. (31)

Note that 𝑇
𝑚
𝑘

𝑖
𝑘

= 𝑇
𝑚
𝑘

𝑖
whenever 𝑘 ∈ K

𝑖
for each 𝑖 ≥ 1. From

(17) and (18), for any 𝑝 ∈ 𝐹, we have that

𝜙 (𝑝, 𝑦
𝑘
) ≤ 𝜙 (𝑝, 𝑥

𝑘
) + 𝜉
𝑘

− (1 − 𝛼
𝑘
) 𝛽
𝑘

(1 − 𝛽
𝑘
) 𝑔

× (
𝐽𝑥
𝑘

− 𝐽𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

) ;
(32)

that is,

(1 − 𝛼
𝑘
) 𝛽
𝑘

(1 − 𝛽
𝑘
) 𝑔 (

𝐽𝑥
𝑘

− 𝐽𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

)

≤ 𝜙 (𝑝, 𝑥
𝑘
) + 𝜉
𝑘

− 𝜙 (𝑝, 𝑦
𝑘
) → 0 (K

𝑖
∋ 𝑘 → ∞) .

(33)

This, together with assumption conditions imposed on the
sequences {𝛼

𝑛
} and {𝛽

𝑛
}, shows that limK

𝑖
∋𝑘→∞

𝑔(‖𝐽𝑥
𝑘

−

𝐽𝑇
𝑚
𝑘

𝑖
𝑥
𝑘
‖) = 0. In view of property of 𝑔, we have that

lim
K
𝑖
∋𝑘→∞

𝐽𝑥
𝑘

− 𝐽𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

 = 0. (34)

In addition, 𝐽𝑥
𝑘

→ 𝐽𝑥∗ implies that limK
𝑖
∋𝑘→∞

𝐽𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

=

𝐽𝑥∗. From Remark 4 (ii), it yields that, asK
𝑖
∋ 𝑘 → ∞,

𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

⇀ 𝑥
∗

, ∀𝑖 ≥ 1. (35)

Again, since for each 𝑖 ≥ 1, asK
𝑖
∋ 𝑘 → ∞,


𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

−
𝑥
∗

=

𝐽𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

−
𝐽𝑥
∗

≤
𝐽𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

− 𝐽𝑥
∗→0.

(36)

This, together with (35) and the Kadec-Klee property of 𝐸,
shows that

lim
K
𝑖
∋𝑘→∞

𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

= 𝑥
∗

, ∀𝑖 ≥ 1. (37)
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On the other hand, by the assumptions that for each 𝑖 ≥ 1, 𝑇
𝑖

is uniformly 𝐿
𝑖
-Lipschitz continuous, and noting again that

{𝑚
𝑘
}
𝑘∈K
𝑖

= {𝑖, 𝑖 + 1, 𝑖 + 2, . . .}, that is, 𝑚
𝑘+1

− 1 = 𝑚
𝑘
for all

𝑘 ∈ K
𝑖
, we then have

𝑇
𝑚
𝑘+1

𝑖
𝑥
𝑘

− 𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

 ≤
𝑇
𝑚
𝑘+1

𝑖
𝑥
𝑘

− 𝑇
𝑚
𝑘+1

𝑖
𝑥
𝑘+1



+
𝑇
𝑚
𝑘+1

𝑖
𝑥
𝑘+1

− 𝑥
𝑘+1



+
𝑥
𝑘+1

− 𝑥
𝑘

 +
𝑥
𝑘

− 𝑇
𝑚
𝑘

𝑖
𝑥
𝑘



≤ (𝐿
𝑖
+1)

𝑥
𝑘+1

−𝑥
𝑘

+
𝑇
𝑚
𝑘+1

𝑖
𝑥
𝑘+1

−𝑥
𝑘+1



+
𝑥
𝑘

− 𝑇
𝑚
𝑘

𝑖
𝑥
𝑘

 .

(38)

From (37) and 𝑥
𝑘

→ 𝑥∗, we have that limK
𝑖
∋𝑘→∞

‖𝑇
𝑚
𝑘+1

𝑖
𝑥
𝑘
−

𝑇
𝑚
𝑘

𝑖
𝑥
𝑘
‖ = 0, and limK

𝑖
∋𝑘→∞

𝑇
𝑚
𝑘+1

𝑖
𝑥
𝑘

= 𝑥∗; that is,
limK

𝑖
∋𝑘→∞

𝑇
𝑖
(𝑇
𝑚
𝑘+1
−1

𝑖
𝑥
𝑘
) = 𝑥∗. It then follows that, for each

𝑖 ≥ 1,

lim
K
𝑖
∋𝑘→∞

𝑇
𝑖
(𝑇
𝑚
𝑘

𝑖
𝑥
𝑘
) = 𝑥
∗

. (39)

In view of the closeness of 𝑇
𝑖
, it follows from (37) that 𝑇

𝑖
𝑥∗ =

𝑥∗, namely, for each 𝑖 ≥ 1, 𝑥∗ ∈ 𝐹(𝑇
𝑖
), and, hence, 𝑥∗ ∈ 𝐹.

(V) 𝑥∗ = Π
𝐹
𝑥
1
, and so 𝑥

𝑛
→ Π
𝐹
𝑥
1
as 𝑛 → ∞.

Put 𝑢 = Π
𝐹
𝑥
1
. Since 𝑢 ∈ 𝐹 ⊂ 𝐶

𝑛
and 𝑥
𝑛

= Π
𝐶
𝑛

𝑥
1
, we have

that 𝜙(𝑥
𝑛
, 𝑥
1
) ≤ 𝜙(𝑢, 𝑥

1
), for all 𝑛 ≥ 1. Then,

𝜙 (𝑥
∗

, 𝑥
1
) = lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑥
1
) ≤ 𝜙 (𝑢, 𝑥

1
) , (40)

which implies that 𝑥∗ = 𝑢 since 𝑢 = Π
𝐹
𝑥
1
, and, hence, 𝑥

𝑛
→

𝑥∗ = Π
𝐹
𝑥
1
.

This completes the proof.

4. Applications

Let 𝐸 be a smooth, strictly convex, and reflexive Banach
space, and let 𝐶 be a nonempty closed convex subset of 𝐸.
Let {𝐵

𝑖
}∞
𝑖=1

: 𝐶 → 𝐸∗ be a sequence of 𝛽
𝑖
-inverse strongly

monotone mappings, {𝜓}∞
𝑖=1

: 𝐶 → R a sequence of lower
semicontinuous and convex functions, and {𝜃

𝑖
}∞
𝑖=1

: 𝐶 ×
𝐶 → R a sequence of bifunctions satisfying the following
conditions:

(A
1
) 𝜃(𝑥, 𝑥) = 0;

(A
2
) 𝜃 is monotone; that is, 𝜃(𝑥, 𝑦) + 𝜃(𝑦, 𝑥) ≤ 0;

(A
3
) lim sup

𝑡↓0
𝜃(𝑥 + 𝑡(𝑧 − 𝑥), 𝑦) ≤ 𝜃(𝑥, 𝑦);

(A
4
) the mapping 𝑦 → 𝜃(𝑥, 𝑦) is convex and lower semi-
continuous.

A system of generalized mixed equilibrium problems
(GMEPs), for {𝜃

𝑖
}∞
𝑖=1

, {𝐵
𝑖
}∞
𝑖=1

, and {𝜓
𝑖
}∞
𝑖=1

is to find an 𝑥∗ ∈ 𝐶
such that

𝜃
𝑖
(𝑥
∗

, 𝑦) + ⟨𝑦 − 𝑥
∗

, 𝐵
𝑖
𝑥
∗

⟩ + 𝜓
𝑖
(𝑦) − 𝜓

𝑖
(𝑥
∗

) ≥ 0,

∀𝑦 ∈ 𝐶, 𝑖 ≥ 1,
(41)

whose set of common solutions is denoted by Ω := ∩∞
𝑖=1

Ω
𝑖
,

where Ω
𝑖
denotes the set of solutions to generalized mixed

equilibrium problem for 𝜃
𝑖
, 𝐵
𝑖
, and 𝜓

𝑖
.

Define a countable family of mappings {𝑇
𝑟,𝑖

}∞
𝑖=1

: 𝐸 → 𝐶
with 𝑟 > 0 as follows:

𝑇
𝑟,𝑖

(𝑥)={𝑧 ∈ 𝐶 : 𝜏
𝑖
(𝑧, 𝑦)+

1

𝑟
⟨𝑦−𝑧, 𝐽𝑧−𝐽𝑥⟩ ≥ 0, ∀𝑦∈𝐶} ,

∀𝑖 ≥ 1,

(42)

where 𝜏
𝑖
(𝑥, 𝑦) = 𝜃

𝑖
(𝑥, 𝑦) + ⟨𝑦 − 𝑥, 𝐵

𝑖
𝑥⟩ + 𝜓

𝑖
(𝑦) − 𝜓

𝑖
(𝑥), for all

𝑥, 𝑦 ∈ 𝐶, 𝑖 ≥ 1. It has been shown by Zhang [15] that

(1) {𝑇
𝑟,𝑖

}∞
𝑖=1

is a sequence of single-valued mappings;
(2) {𝑇

𝑟,𝑖
}∞
𝑖=1

is a sequence of closed quasi-𝜙-nonexpansive
mappings;

(3) ⋂
∞

𝑖=1
𝐹(𝑇
𝑟,𝑖

) = Ω.

Now, we have the following result.

Theorem 9. Let 𝐸 be the same as that in Theorem 8, and let
C be a nonempty closed convex subset of E. Let {𝑇

𝑟,𝑖
}∞
𝑖=1

:
𝐶 → 𝐶 be a sequence of mappings defined by (42) with
𝐹 := ⋂

∞

𝑖=1
𝐹(𝑇
𝑟,𝑖

) ̸= 0. Let {𝛼
𝑛
} be a sequence in [0, 𝜖] for some

𝜖 ∈ (0, 1), and let {𝛽
𝑛
} be a sequence in [0, 1] satisfying 0 <

lim inf
𝑛→∞

𝛽
𝑛
(1 − 𝛽

𝑛
). Let {𝑥

𝑛
} be the sequence generated by

𝑥
1

∈ 𝐶; 𝐶
1

= 𝐶,

𝑦
𝑛

= 𝐽
−1

[𝛼
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛼
𝑛
) 𝐽𝑧
𝑛
] ,

𝑧
𝑛

= 𝐽
−1

[𝛽
𝑛
𝐽𝑥
𝑛

+ (1 − 𝛽
𝑛
) 𝐽𝑇
𝑟,𝑖
𝑛

𝑥
𝑛
] ,

𝐶
𝑛+1

= {𝑣 ∈ 𝐶
𝑛

: 𝜙 (𝑣, 𝑦
𝑛
) ≤ 𝜙 (𝑣, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
1
, ∀𝑛 ≥ 1,

(43)

where 𝑖
𝑛
satisfies the positive integer equation: 𝑛 = 𝑖 + (𝑚 −

1)𝑚/2, and 𝑚 ≥ 𝑖 (𝑚 ≥ 𝑖, 𝑛 = 1, 2, . . .). Then, {𝑥
𝑛
}

converges strongly toΠ
𝐹
𝑥
1
which is some solution to the system

of generalized mixed equilibrium problems for {𝑇
𝑟,𝑖

}∞
𝑖=1

.

Proof. Note that {𝑇
𝑟,𝑖

}∞
𝑖=1

are quasi-𝜙-nonexpansive map-
pings; so, they are obviously generalized quasi-𝜙-asymp-
totically nonexpansive. Therefore, this conclusion can be
obtained immediately fromTheorem 8.
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