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We propose a reproducing kernel method for solving the KdV equation with initial condition based on the reproducing kernel
theory. The exact solution is represented in the form of series in the reproducing kernel Hilbert space. Some numerical examples
have also been studied to demonstrate the accuracy of the present method. Results of numerical examples show that the presented
method is effective.

1. Introduction

In this paper, we consider theKorteweg-deVries (KdV) equa-
tion of the form

𝑢
𝑡
(𝑥, 𝑡) + 𝜀𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡) + 𝑢

𝑥𝑥𝑥
(𝑥, 𝑡) = 0,

− ∞ < 𝑥 < ∞, 𝑡 > 0,

(1)

with initial condition

𝑢 (𝑥, 0) = 𝑓 (𝑥) . (2)

The constant factor 𝜀 is just a scaling factor to make solutions
easier to describe.Most of the authors chose 𝜀 to be one or six.
Some mathematicians and physicians investigated the exact
solution of the KdV equation without having either initial
conditions or boundary conditions [1], while others studied
its numerical solution [2, 3].

The numerical solution of KdV equation is of great
importance because it is used in the study of nonlinear
dispersive waves. This equation is used to describe many
important physical phenomena. Some of these studies are the
shallow water waves and the ion acoustic plasma waves [4].

It represents the long time evolution of wave phenomena, in
which the effect of nonlinear terms 𝑢𝑢

𝑥
is counterbalanced

by the dispersion 𝑢
𝑥𝑥𝑥

. Thus it has been found to model
manywave phenomena such aswaves in enharmonic crystals,
bubble liquid mixtures, ion acoustic wave, and magnetohy-
drodynamic waves in a warm plasma as well as shallow water
waves [5, 6].

The KdV equation exhibits solutions such as solitary
waves, solitons and recurrence [7]. Goda [8] and Vliengen-
thart [9] used the finite difference method to obtain the
numerical solution of KdV equation. Soliman [2] used the
collocation solution with septic splines to obtain the solution
of the KdV equation. Numerical solutions of KdV equation
were obtained by the variational iteration method, finite
difference method [3, 10], and by using the meshless based
on the collocation with radial basis functions [11]. Wazwaz
presented the Adomian decomposition method for KdV
equation with different initial conditions [12]. Syam [13]
worked the ADM for solving the nonlinear KdV equation
with appropriate initial conditions.

In present work, we use the following equation:

V (𝑥, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 0) , (3)
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by transformation for homogeneous initial condition of (1)
and (2), we get the following:

V
𝑡
(𝑥, 𝑡) + 𝐴 (𝑥, 𝑡) V (𝑥, 𝑡) + 𝐵 (𝑥, 𝑡) V

𝑥
(𝑥, 𝑡) + V

𝑥𝑥𝑥
(𝑥, 𝑡)

= 𝑓 (𝑥, 𝑡, V (𝑥, 𝑡) , V
𝑥
(𝑥, 𝑡)) ,

V (𝑥, 0) = 0,

(4)

where

𝐴 (𝑥, 𝑡) = 𝜀𝑓

(𝑥) ,

𝐵 (𝑥, 𝑡) = 𝜀𝑓 (𝑥) ,

𝑓 (𝑥, 𝑡, V (𝑥, 𝑡) , V
𝑥
(𝑥, 𝑡)) = − 𝜀V (𝑥, 𝑡) V

𝑥
(𝑥, 𝑡)

− 𝜀𝑓 (𝑥) 𝑓

(𝑥) − 𝑓


(𝑥) .

(5)

In this paper, we solve (1) and (2) by using reproducing
kernel method. The nonlinear problem is solved easily and
elegantly without linearizing the problem by using RKM.The
technique has many advantages over the classical techniques;
mainly, it avoids linearization to find analytic and approxi-
mate solutions of (1) and (2). It also avoids discretization and
provides an efficient numerical solution with high accuracy,
minimal calculation, and avoidance of physically unrealistic
assumptions. In the next section, we will describe the proce-
dure of this method.

The theory of reproducing kernels was used for the first
time at the beginning of the 20th century by Zaremba in his
work on boundary value problems for harmonic and bihar-
monic functions [14]. Reproducing kernel theory has impor-
tant application in numerical analysis, differential equations,
probability and statistics [14, 15]. Recently, using the RKM,
some authors discussed fractional differential equation, non-
linear oscillator with discontinuity, singular nonlinear two-
point periodic boundary value problems, integral equations,
and nonlinear partial differential equations [14, 15].

The efficiency of themethodwas used bymany authors to
investigate several scientific applications. Geng and Cui [16]
applied the RKHSM to handle the second-order boundary
value problems. Yao and Cui [17] and Wang et al. [18]
investigated a class of singular boundary value problems by
this method and the obtained results were good. Zhou et
al. [19] used the RKHSM effectively to solve second-order
boundary value problems. In [20], the method was used to
solve nonlinear infinite-delay-differential equations. Wang
and Chao [21], Li and Cui [22], and Zhou and Cui [23]
independently employed the RKHSM to variable-coefficient
partial differential equations. Geng and Cui [24] and Du
and Cui [25] investigated to the approximate solution of the
forced Duffing equation with integral boundary conditions
by combining the homotopy perturbation method and the
RKHSM. Lv and Cui [26] presented a new algorithm to
solve linear fifth-order boundary value problems. In [27, 28],
authors developed a new existence proof of solutions for non-
linear boundary value problems. Cui and Du [29] obtained
the representation of the exact solution for the nonlinear
Volterra-Fredholm integral equations by using the reproduc-
ing kernel space.Wu and Li [30] applied iterative reproducing

kernel method to obtain the analytical approximate solution
of a nonlinear oscillator with discontinuities. Inc et al. [15]
used this method for solving Telegraph equation.

The paper is organized as follows. Section 2 introduces
several reproducing kernel spaces and a linear operator. The
representation in 𝑊(Ω) is presented in Section 3. Section 4
provides the main results. The exact and approximate solu-
tions of (1) and (2) and an iterative method are developed
for the kind of problems in the reproducing kernel space.
We have proved that the approximate solution uniformly
converges to the exact solution. Some numerical experiments
are illustrated in Section 5. We give some conclusions in
Section 6.

2. Preliminaries

2.1. Reproducing Kernel Spaces. In this section, we define
some useful reproducing kernel spaces.

Definition 1 (reproducing kernel). Let 𝐸 be a nonempty ab-
stract set. A function𝐾 : 𝐸 × 𝐸 → 𝐶 is a reproducing kernel
of the Hilbert space𝐻 if and only if

(a) for all 𝑡 ∈ 𝐸, 𝐾(⋅, 𝑡) ∈ 𝐻,
(b) for all 𝑡 ∈ 𝐸, 𝜑 ∈ 𝐻, ⟨𝜑(⋅), 𝐾(⋅, 𝑡)⟩ = 𝜑(𝑡). This is also

called “the reproducing property”: the value of the
function 𝜑 at the point 𝑡 is reproduced by the inner
product of 𝜑 with 𝐾(⋅, 𝑡).

Then we need some notation that we use in the development
of the paper. In the next we define several spaces with inner
product over those spaces. Thus the space is defined as

𝑊
4

2
[0, 1] =

{
{
{

{
{
{

{

V (𝑥) | V (𝑥) , V

(𝑥) , V


(𝑥) , V


(𝑥)

are absolutely continuous in [0, 1] ,

V
(4)
(𝑥) ∈ 𝐿

2
[0, 1] , 𝑥 ∈ [0, 1]

}
}
}

}
}
}

}

.

(6)

The inner product and the norm in 𝑊4
2
[0, 1] are defined,

respectively, by

⟨V (𝑥) , 𝑔 (𝑥)⟩
𝑊
4

2

=

3

∑

𝑖=0

V
(𝑖)
(0) 𝑔
(𝑖)
(0)

+ ∫

1

0

V
(4)
(𝑥) 𝑔
(4)
(𝑥) 𝑑𝑥, V (𝑥) , 𝑔 (𝑥) ∈ 𝑊

4

2
[0, 1] ,

‖V‖
𝑊
4

2

= √⟨V, V⟩𝑊4
2

, V ∈ 𝑊
4

2
[0, 1] .

(7)

The space𝑊4
2
[0, 1] is a reproducing kernel space, that is, for

each fixed 𝑦 ∈ [0, 1] and any V(𝑥) ∈ 𝑊4
2
[0, 1], there exists a

function 𝑅
𝑦
(𝑥) such that

V (𝑦) = ⟨V(𝑥), 𝑅
𝑦
(𝑥)⟩
𝑊
4

2

. (8)
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Similarly, we define the space

𝑊
2

2
[0, 𝑇] =

{
{
{

{
{
{

{

V (𝑡) | V (𝑡) , V

(𝑡)

are absolutely continuous in [0, 𝑇] ,

V

(𝑡) ∈ 𝐿

2
[0, 𝑇] , 𝑡 ∈ [0, 𝑇] , V (0) = 0

}
}
}

}
}
}

}

.

(9)

The inner product and the norm in 𝑊2
2
[0, 𝑇] are defined,

respectively, by

⟨V (𝑡) , 𝑔 (𝑡)⟩
𝑊
2

2

=

1

∑

𝑖=0

V
(𝑖)
(0) 𝑔
(𝑖)
(0)

+ ∫

𝑇

0

V

(𝑡) 𝑔

(𝑡) 𝑑𝑡, V (𝑡) , 𝑔 (𝑡) ∈ 𝑊

2

2
[0, 𝑇] ,

‖V‖
𝑊
1

= √⟨V, V⟩𝑊2
2

, V ∈ 𝑊
2

2
[0, 𝑇] .

(10)

Thus the space 𝑊2
2
[0, 𝑇] is also a reproducing kernel space

and its reproducing kernel function 𝑟
𝑠
(𝑡) can be given by

𝑟
𝑠
(𝑡) =

{
{
{

{
{
{

{

𝑠𝑡 +

𝑠

2

𝑡
2
−

1

6

𝑡
3
, 𝑡 ≤ 𝑠,

𝑠𝑡 +

𝑡

2

𝑠
2
−

1

6

𝑠
3
, 𝑡 > 𝑠,

(11)

and the space

𝑊
2

2
[0, 1] =

{
{
{

{
{
{

{

V (𝑥) | V (𝑥) , V

(𝑥)

are absolutely continuous in [0, 1] ,

V

(𝑥) ∈ 𝐿

2
[0, 1] , 𝑥 ∈ [0, 1]

}
}
}

}
}
}

}

, (12)

where the inner product and and the norm in 𝑊2
2
[0, 1] are

defined, respectively, by

⟨V (𝑡) , 𝑔 (𝑡)⟩
𝑊
2

2

=

1

∑

𝑖=0

V
(𝑖)
(0) 𝑔
(𝑖)
(0) + ∫

𝑇

0

V

(𝑡) 𝑔

(𝑡) 𝑑𝑡,

V (𝑡) , 𝑔 (𝑡) ∈ 𝑊
2

2
[0, 1] ,

‖V‖
𝑊
2

= √⟨V, V⟩𝑊2
2

, V ∈ 𝑊
2

2
[0, 1] .

(13)

The space 𝑊2
2
[0, 1] is a reproducing kernel space, and its

reproducing kernel function 𝑄
𝑦
(𝑥) is given by

𝑄
𝑦
(𝑥) =

{
{
{

{
{
{

{

1 + 𝑥𝑦 +

𝑦

2

𝑥
2
−

1

6

𝑥
3
, 𝑥 ≤ 𝑦,

1 + 𝑥𝑦 +

𝑥

2

𝑦
2
−

1

6

𝑦
3
, 𝑥 > 𝑦.

(14)

Similarly, the space𝑊1
2
[0, 𝑇] is defined by

𝑊
1

2
[0, 𝑇]

= {

V (𝑡) | V (𝑡) is absolutely continuous in [0, 𝑇] ,

V (𝑡) ∈ 𝐿
2
[0, 𝑇] , 𝑡 ∈ [0, 𝑇]

} .

(15)

The inner product and the norm in 𝑊1
2
[0, 𝑇] are defined,

respectively, by

⟨V (𝑡) , 𝑔 (𝑡)⟩
𝑊
1

2

= V (0) 𝑔 (0) + ∫

𝑇

0

V

(𝑡) 𝑔

(𝑡) 𝑑𝑡,

V (𝑡) , 𝑔 (𝑡) ∈ 𝑊
1

2
[0, 𝑇] ,

‖V‖
𝑊
1

2

= √⟨V, V⟩𝑊1
2

, V ∈ 𝑊
1

2
[0, 𝑇] .

(16)

The space 𝑊1
2
[0, 𝑇] is a reproducing kernel space and its

reproducing kernel function 𝑞
𝑠
(𝑡) is given by

𝑞
𝑠
(𝑡) =

{

{

{

1 + 𝑡, 𝑡 ≤ 𝑠,

1 + 𝑠, 𝑡 > 𝑠.

(17)

Further we define the space𝑊(Ω) as

𝑊(Ω) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

V (𝑥, 𝑡) |
𝜕
4
V

𝜕𝑥
3
𝜕𝑡

, is completely continuous,

inΩ = [0, 1] × [0, 𝑇] ,

𝜕
6
V

𝜕𝑥
4
𝜕𝑡
2
∈ 𝐿
2
(Ω) , V (𝑥, 0) = 0

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

,

(18)

and the inner product and the norm in 𝑊(Ω) are defined,
respectively, by

⟨V (𝑥, 𝑡) , 𝑔 (𝑥, 𝑡)⟩
𝑊

=

3

∑

𝑖=0

∫

𝑇

0

[

𝜕
2

𝜕𝑡
2

𝜕
𝑖

𝜕𝑥
𝑖
V (0, 𝑡)

𝜕
2

𝜕𝑡
2

𝜕
𝑖

𝜕𝑥
𝑖
𝑔 (0, 𝑡)] 𝑑𝑡

+

1

∑

𝑗=0

⟨

𝜕
𝑗

𝜕𝑡
𝑗
V(𝑥, 0),

𝜕
𝑗

𝜕𝑡
𝑗
𝑔(𝑥, 0)⟩

𝑊
4

2

+ ∫

𝑇

0

∫

1

0

[

𝜕
4

𝜕𝑥
4

𝜕
2

𝜕𝑡
2
V (𝑥, 𝑡)

𝜕
4

𝜕𝑥
4

𝜕
2

𝜕𝑡
2
𝑔 (𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡,

‖V‖
𝑊
= √⟨V, V⟩

𝑊
, V ∈ 𝑊 (Ω) .

(19)

Now we have the following theorem.

Theorem 2. The space 𝑊4
2
[0, 1] is a complete reproducing

kernel space and, its reproducing kernel function 𝑅
𝑦
(𝑥) can be

denoted by

𝑅
𝑦
(𝑥) =

{
{
{
{
{
{

{
{
{
{
{
{

{

8

∑

𝑖=1

𝑐
𝑖
(𝑦) 𝑥
𝑖−1
, 𝑥 ≤ 𝑦,

8

∑

𝑖=1

𝑑
𝑖
(𝑦) 𝑥
𝑖−1
, 𝑥 > 𝑦,

(20)
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where

𝑐
1
(𝑦) = 1, 𝑐

2
(𝑦) = 𝑦, 𝑐

3
(𝑦) =

1

4

𝑦
2
,

𝑐
4
(𝑦) =

1

36

𝑦
3
, 𝑐

5
(𝑦) =

1

144

𝑦
3
, 𝑐

6
(𝑦) = −

1

240

𝑦
2
,

𝑐
7
(𝑦) =

1

720

𝑦, 𝑐
8
(𝑦) = −

1

5040

,

𝑑
1
(𝑦) = 1 −

1

5040

𝑦
7
, 𝑑

2
(𝑦) = 𝑦 +

1

720

𝑦
6
,

𝑑
3
(𝑦) =

1

4

𝑦
2
−

1

240

𝑦
5
, 𝑑

4
(𝑦) =

1

36

𝑦
3
+

1

144

𝑦
4
,

𝑑
5
(𝑦) = 0, 𝑑

6
(𝑦) = 0, 𝑑

7
(𝑦) = 0, 𝑑

8
(𝑦) = 0.

(21)

Proof. Since

⟨V (𝑥) , 𝑅
𝑦
(𝑥)⟩
𝑊
4

2

=

3

∑

𝑖=0

V
(𝑖)
(0) 𝑅
(𝑖)

𝑦
(0) + ∫

1

0

V
(4)
(𝑥) 𝑅
(4)

𝑦
(𝑥) 𝑑𝑥,

(V (𝑥) , 𝑅
𝑦
(𝑥) ∈ 𝑊

4

2
[0, 1])

(22)

through iterative integrations by parts for (22) we have

⟨V (𝑥) , 𝑅
𝑦
(𝑥)⟩
𝑊
4

2

=

3

∑

𝑖=0

V
(𝑖)
(0) [𝑅

(𝑖)

𝑦
(0) − (−1)

(3−𝑖)
𝑅
(7−𝑖)

𝑦
(0)]

+

3

∑

𝑖=0

(−1)
(3−𝑖)

V
(𝑖)
(1) 𝑅
(7−𝑖)

𝑦
(1)

+ ∫

1

0

V (𝑥) 𝑅
(8)

𝑦
(𝑥) 𝑑𝑥.

(23)

Note that property of the reproducing kernel

⟨V(𝑥), 𝑅
𝑦
(𝑥)⟩
𝑊
4

2

= V (𝑦) . (24)

If
𝑅
𝑦
(0) + 𝑅

(7)

𝑦
(0) = 0,

𝑅


𝑦
(0) − 𝑅

(6)

𝑦
(0) = 0,

𝑅


𝑦
(0) + 𝑅

(5)

𝑦
(0) = 0,

𝑅


𝑦
(0) − 𝑅

(4)

𝑦
(0) = 0,

𝑅
(4)

𝑦
(1) = 0,

𝑅
(5)

𝑦
(1) = 0,

𝑅
(6)

𝑦
(1) = 0,

𝑅
(7)

𝑦
(1) = 0,

(25)

then by (23) we obtain the following equation:

𝑅
(8)

𝑦
(𝑥) = 𝛿 (𝑥 − 𝑦) , (26)

when 𝑥 ̸= 𝑦,

𝑅
(8)

𝑦
(𝑥) = 0; (27)

therefore

𝑅
𝑦
(𝑥) =

{
{
{
{
{

{
{
{
{
{

{

8

∑

𝑖=1

𝑐
𝑖
(𝑦) 𝑥
𝑖−1
, 𝑥 ≤ 𝑦,

8

∑

𝑖=1

𝑑
𝑖
(𝑦) 𝑥
𝑖−1
, 𝑥 > 𝑦.

(28)

Since

𝑅
(8)

𝑦
(𝑥) = 𝛿 (𝑥 − 𝑦) , (29)

we have

𝜕
𝑘
𝑅
𝑦
+ (𝑦) = 𝜕

𝑘
𝑅
𝑦
− (𝑦) , 𝑘 = 0, 1, 2, 3, 4, 5, 6, (30)

𝜕
7
𝑅
𝑦
+ (𝑦) − 𝜕

7
𝑅
𝑦
− (𝑦) = 1. (31)

From (25)–(31), the unknown coefficients 𝑐
𝑖
(𝑦) ve 𝑑

𝑖
(𝑦) (𝑖 =

1, 2, . . . , 8) can be obtained. Thus 𝑅
𝑦
(𝑥) is given by

𝑅
𝑦
(𝑥) =

{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{

{

1 + 𝑦𝑥 +

1

4

𝑦
2
𝑥
2
+

1

36

𝑦
3
𝑥
3
+

1

144

𝑦
3
𝑥
4

−

1

240

𝑦
2
𝑥
5
+

1

720

𝑦𝑥
6
−

1

5040

𝑥
7
, 𝑥 ≤ 𝑦,

1 + 𝑥𝑦 +

1

4

𝑥
2
𝑦
2
+

1

36

𝑥
3
𝑦
3
+

1

144

𝑥
3
𝑦
4

−

1

240

𝑥
2
𝑦
5
+

1

720

𝑥𝑦
6
−

1

5040

𝑦
7
, 𝑥 > 𝑦.

(32)

Theorem 3. The𝑊(Ω) is a reproducing kernel space, and its
reproducing kernel function is

𝐾
(𝑦,𝑠)
(𝑥, 𝑡) = 𝑅

𝑦
(𝑥) 𝑟
𝑠
(𝑡) , (33)

such that for any V(𝑥, 𝑡) ∈ 𝑊(Ω),

V (𝑦, 𝑠) = ⟨V(𝑥, 𝑡), 𝐾
(𝑦,𝑠)
(𝑥, 𝑡)⟩

𝑊
,

𝐾
(𝑦,𝑠)
(𝑥, 𝑡) = 𝐾

(𝑥,𝑡)
(𝑦, 𝑠) ,

(34)

where 𝑅
𝑦
(𝑥), 𝑟
𝑠
(𝑡) are the reproducing kernel functions

of 𝑊4
2
[0, 1] and𝑊2

2
[0, 𝑇], respectively.

Similarly, the space �̂�(Ω) is defined as

�̂� (Ω) =

{
{
{
{
{

{
{
{
{
{

{

V (𝑥, 𝑡) |
𝜕V

𝜕𝑥

is completely continuous

in Ω = [0, 1] × [0, 𝑇] ,
𝜕
3
V

𝜕𝑥
2
𝜕𝑡

∈ 𝐿
2
(Ω)

}
}
}
}
}

}
}
}
}
}

}

.

(35)
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The inner product and the norm in �̂�(Ω) are defined, res-
pectively, by

⟨V (𝑥, 𝑡) , 𝑔 (𝑥, 𝑡)⟩
�̂�

=

1

∑

𝑖=0

∫

𝑇

0

[

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥
𝑖
V (0, 𝑡)

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥
𝑖
𝑔 (0, 𝑡)] 𝑑𝑡

+ ⟨V(𝑥, 0), 𝑔 (𝑥, 0)⟩
𝑊
2

2

+ ∫

𝑇

0

∫

1

0

[

𝜕
2

𝜕𝑥
2

𝜕

𝜕𝑡

V (𝑥, 𝑡)
𝜕
2

𝜕𝑥
2

𝜕

𝜕𝑡

𝑔 (𝑥, 𝑡)] 𝑑𝑥 𝑑𝑡,

‖V‖
�̂�
= √⟨V, V⟩

�̂�
, V ∈ �̂� (Ω) .

(36)

Then the space �̂�(Ω) is a reproducing kernel space and its
reproducing kernel function 𝐺

(𝑦,𝑠)
(𝑥, 𝑡) is

𝐺
(𝑦,𝑠)
(𝑥, 𝑡) = 𝑄

𝑦
(𝑥)𝑄
𝑠
(𝑡) . (37)

3. Solution Representation in𝑊(Ω)

On defining the linear operator 𝐿 : 𝑊(Ω) → �̂�(Ω) as

𝐿V = V
𝑡
(𝑥, 𝑡) − 24 (sech3𝑥) (sinh𝑥) V (𝑥, 𝑡)

+ 12 (sech2𝑥) V
𝑥
(𝑥, 𝑡) + V

𝑥𝑥𝑥
(𝑥, 𝑡) ,

(38)

model problem (1) changes to the following problem:

𝐿V (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡, V, V
𝑥
) , (𝑥, 𝑡) ∈ [0, 1] × [0, 𝑇] ⊂ R

2
,

V (𝑥, 0) = 0.

(39)

Lemma 4. The operator 𝐿 is a bounded linear operator.

Proof. We have

‖𝐿V‖
2

�̂�
=

1

∑

𝑖=0

∫

𝑇

0

[

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥
𝑖
𝐿V (0, 𝑡)]

2

𝑑𝑡

+ ⟨𝐿V (𝑥, 0) , 𝐿V (𝑥, 0)⟩
𝑊
2

+ ∫

𝑇

0

∫

1

0

[

𝜕
2

𝜕𝑥
2

𝜕

𝜕𝑡

𝐿V(𝑥, 𝑡)]

2

𝑑𝑥 𝑑𝑡

=

1

∑

𝑖=0

∫

𝑇

0

[

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥
𝑖
𝐿V (0, 𝑡)]

2

𝑑𝑡

+

1

∑

𝑖=0

[

𝜕
𝑖

𝜕𝑥
𝑖
𝐿V(0, 0)]

2

+ ∫

1

0

[

𝜕
2

𝜕𝑥
2
𝐿V (𝑥, 0)]

2

+ ∫

𝑇

0

∫

1

0

[

𝜕
2

𝜕𝑥
2

𝜕

𝜕𝑡

𝐿V(𝑥, 𝑡)]

2

𝑑𝑥 𝑑𝑡,

(40)

since
V (𝑥, 𝑡) = ⟨V(𝜉, 𝜂), 𝐾

(𝑥,𝑡)
(𝜉, 𝜂)⟩

𝑊
,

𝐿V (𝑥, 𝑡) = ⟨V(𝜉, 𝜂), 𝐿𝐾
(𝑥,𝑡)
(𝜉, 𝜂)⟩

𝑊
,

(41)

on using the the continuity of𝐾
(𝑥,𝑡)
(𝜉, 𝜂), we have

|𝐿V (𝑥, 𝑡)| ≤ ‖V‖
𝑊





𝐿𝐾
(𝑥,𝑡)
(𝜉, 𝜂)




𝑊
≤ 𝑎
0
‖V‖
𝑊
. (42)

Similarly for 𝑖 = 0, 1,

𝜕
𝑖

𝜕𝑥
𝑖
𝐿V (𝑥, 𝑡) = ⟨V(𝜉, 𝜂),

𝜕
𝑖

𝜕𝑥
𝑖
𝐿𝐾
(𝑥,𝑡)
(𝜉, 𝜂)⟩

𝑊

,

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥
𝑖
𝐿V (𝑥, 𝑡) = ⟨V(𝜉, 𝜂),

𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥
𝑖
𝐿𝐾
(𝑥,𝑡)
(𝜉, 𝜂)⟩

𝑊

,

(43)

and then










𝜕
𝑖

𝜕𝑥
𝑖
𝐿V (𝑥, 𝑡)











≤ 𝑒
𝑖
‖V‖
𝑊
,











𝜕

𝜕𝑡

𝜕
𝑖

𝜕𝑥
𝑖
𝐿V (𝑥, 𝑡)











≤ 𝑓
𝑖
‖V‖
𝑊
.

(44)

Therefore

‖𝐿V (𝑥, 𝑡)‖
2

�̂�
≤

1

∑

𝑖=0

(𝑒
2

𝑖
+ 𝑓
2

𝑖
) ‖V‖
2

𝑊
≤ 𝑎
2
‖V‖
2

𝑊
. (45)

Now, choose a countable dense subset {(𝑥
1
, 𝑡
1
), (𝑥
2
, 𝑡
2
), . . .} in

Ω = [0, 1] × [0, 𝑇] and define

Φ
𝑖
(𝑥, 𝑡) = 𝐺

(𝑥
𝑖
,𝑡
𝑖
)
(𝑥, 𝑡) , Ψ

𝑖
(𝑥, 𝑡) = 𝐿

∗
Φ
𝑖
(𝑥, 𝑡) , (46)

where𝐿∗ is the adjoint operator of𝐿.Theorthonormal system
{Ψ̂
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
of 𝑊(Ω) can be derived from the process of

Gram-Schmidt orthogonalization of {Ψ
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
as

Ψ̂
𝑖
(𝑥, 𝑡) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
Ψ
𝑘
(𝑥, 𝑡) . (47)

Theorem 5. Suppose that {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω; then

{Ψ
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
is complete system in𝑊(Ω) and

Ψ
𝑖
(𝑥, 𝑡) = 𝐿

(𝑦,𝑠)
𝐾
(𝑦,𝑠)
(𝑥, 𝑡)





(𝑦,𝑠)=(𝑥

𝑖
,𝑡
𝑖
)
. (48)

Proof. We have

Ψ
𝑖
(𝑥, 𝑡) = (𝐿

∗
Φ
𝑖
) (𝑥, 𝑡) = ⟨(𝐿

∗
Φ
𝑖
) (𝑦, 𝑠) , 𝐾

(𝑥,𝑡)
(𝑦, 𝑠)⟩

𝑊

= ⟨Φ
𝑖
(𝑦, 𝑠) , 𝐿

(𝑦,𝑠)
𝐾
(𝑥,𝑡)
(𝑦, 𝑠)⟩

�̂�

= 𝐿
(𝑦,𝑠)
𝐾
(𝑥,𝑡)
(𝑦, 𝑠)





(𝑦,𝑠)=(𝑥

𝑖
,𝑡
𝑖
)

= 𝐿
(𝑦,𝑠)
𝐾
(𝑦,𝑠)
(𝑥, 𝑡)





(𝑦,𝑠)=(𝑥

𝑖
,𝑡
𝑖
)
.

(49)

Clearly Ψ
𝑖
(𝑥, 𝑡) ∈ 𝑊(Ω). For each fixed V(𝑥, 𝑡) ∈ 𝑊(Ω), if

⟨V(𝑥, 𝑡), Ψ
𝑖
(𝑥, 𝑡)⟩

𝑊
= 0, 𝑖 = 1, 2, . . . (50)
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then

⟨V (𝑥, 𝑡) , (𝐿
∗
Φ
𝑖
) (𝑥, 𝑡)⟩

𝑊

= ⟨𝐿V (𝑥, 𝑡) , Φ
𝑖
(𝑥, 𝑡)⟩

�̂�

= (𝐿V) (𝑥
𝑖
, 𝑡
𝑖
) = 0, 𝑖 = 1, 2, . . . .

(51)

Note that {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in𝑊(Ω), hence, (𝐿V)(𝑥, 𝑡) = 0.

It follows that V = 0 from the existence of 𝐿−1. So the proof is
complete.

Theorem 6. If {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω, then the solution of

(39) is

V (𝑥, 𝑡) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V (𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V (𝑥
𝑘
, 𝑡
𝑘
)) Ψ̂
𝑖
(𝑥, 𝑡) .

(52)

Proof. Since {Ψ
𝑖
(𝑥, 𝑡)}

∞

𝑖=1
is complete system in𝑊(Ω), we have

V (𝑥, 𝑡) =

∞

∑

𝑖=1

⟨V (𝑥, 𝑡) , Ψ̂
𝑖
(𝑥, 𝑡)⟩

𝑊
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨V(𝑥, 𝑡), Ψ

𝑘
(𝑥, 𝑡)⟩

𝑊
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨V(𝑥, 𝑡), 𝐿

∗
Φ
𝑘
(𝑥, 𝑡)⟩

𝑊
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝐿V (𝑥, 𝑡) , Φ

𝑘
(𝑥, 𝑡)⟩

�̂�
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
⟨𝐿V(𝑥, 𝑡), 𝐺

(𝑥
𝑘
,𝑡
𝑘
)
(𝑥, 𝑡)⟩

�̂�
Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝐿𝑢 (𝑥
𝑘
, 𝑡
𝑘
) Ψ̂
𝑖
(𝑥, 𝑡)

=

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V (𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V (𝑥
𝑘
, 𝑡
𝑘
)) Ψ̂
𝑖
(𝑥, 𝑡) .

(53)

Now the approximate solution V
𝑛
(𝑥, 𝑡) can be obtained from

the 𝑛-term intercept of the exact solution V(𝑥, 𝑡) and

V
𝑛
(𝑥, 𝑡) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V (𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V (𝑥
𝑘
, 𝑡
𝑘
)) Ψ̂
𝑖
(𝑥, 𝑡) .

(54)

Obviously





V
𝑛
(𝑥, 𝑡) − V (𝑥, 𝑡)





→ 0, (𝑛 → ∞) . (55)

4. The Method Implementation

If we write

𝐴
𝑖
=

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V (𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V (𝑥
𝑘
, 𝑡
𝑘
)) , (56)

then (52) can be written as

V (𝑥, 𝑡) =

∞

∑

𝑖=1

𝐴
𝑖
Ψ̂
𝑖
(𝑥, 𝑡) . (57)

Now let (𝑥
1
, 𝑡
1
) = 0; then from the initial conditions of (39),

V(𝑥
1
, 𝑡
1
) is known.We put V

0
(𝑥
1
, 𝑡
1
) = V(𝑥

1
, 𝑡
1
) and define the

𝑛-term approximation to V(𝑥, 𝑡) by

V
𝑛
(𝑥, 𝑡) =

𝑛

∑

𝑖=1

𝐵
𝑖
Ψ̂
𝑖
(𝑥, 𝑡) , (58)

where

𝐵
𝑖
=

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑡
𝑘
, V
𝑘−1
(𝑥
𝑘
, 𝑡
𝑘
) , 𝜕
𝑥
V
𝑘−1
(𝑥
𝑘
, 𝑡
𝑘
)) . (59)

In the sequel, we verify that the approximate solution V
𝑛
(𝑥, 𝑡)

converges to the exact solution, uniformly. First the following
lemma is given.

Lemma 7. If V
𝑛

‖⋅‖

→ V̂, (𝑥
𝑛
, 𝑡
𝑛
) → (𝑦, 𝑠), and 𝑓(𝑥, 𝑡, V(𝑥, 𝑡),

V
𝑥
(𝑥, 𝑡)) is continuous, then

𝑓 (𝑥
𝑛
, 𝑡
𝑛
, V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) , 𝜕
𝑥
V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
))

→ 𝑓 (𝑦, 𝑠, V̂ (𝑦, 𝑠) , 𝜕
𝑥
V̂ (𝑦, 𝑠)) .

(60)

Proof. Since




V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) − V̂ (𝑦, 𝑠)






=




V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) − V
𝑛−1
(𝑦, 𝑠) + V

𝑛−1
(𝑦, 𝑠) − V̂ (𝑦, 𝑠)






≤




V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) − V
𝑛−1
(𝑦, 𝑠)





+




V
𝑛−1
(𝑦, 𝑠) − V̂ (𝑦, 𝑠)





.

(61)

From the definition of the reproducing kernel, we have

V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) = ⟨V

𝑛−1
(𝑥, 𝑡), 𝐾

(𝑥
𝑛
,𝑡
𝑛
)
(𝑥, 𝑡)⟩

𝑊
,

V
𝑛−1
(𝑦, 𝑠) = ⟨V

𝑛−1
(𝑥, 𝑡) , 𝐾

(𝑦,𝑠)
(𝑥, 𝑡)⟩

𝑊
.

(62)

It follows that




V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) − V
𝑛−1
(𝑦, 𝑠)






=






⟨V
𝑛−1
(𝑥, 𝑡) , 𝐾

(𝑥
𝑛
,𝑡
𝑛
)
(𝑥, 𝑡) − 𝐾

(𝑦,𝑠)
(𝑥, 𝑡)⟩






.

(63)

From the convergence of V
𝑛−1
(𝑥, 𝑡), there exists a constant𝑀,

such that




V
𝑛−1
(𝑥, 𝑡)




𝑊
≤ 𝑁





V̂ (𝑦, 𝑠)




𝑊
, as 𝑛 ≥ 𝑀. (64)
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At the same time, we can prove





𝐾
(𝑥
𝑛
,𝑡
𝑛
)
(𝑥, 𝑡) − 𝐾

(𝑦,𝑠)
(𝑥, 𝑡)





𝑊
→ 0, as 𝑛 → ∞ (65)

usingTheorem 3. Hence

V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) → V̂ (𝑦, 𝑠) , as (𝑥

𝑛
, 𝑡
𝑛
) → (𝑦, 𝑠) . (66)

In a similiar way it can be shown that

𝜕
𝑥
V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) → 𝜕

𝑥
V̂ (𝑦, 𝑠) , as (𝑥

𝑛
, 𝑡
𝑛
) → (𝑦, 𝑠) .

(67)

So

𝑓 (𝑥
𝑛
, 𝑡
𝑛
, V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
) , 𝜕
𝑥
V
𝑛−1
(𝑥
𝑛
, 𝑡
𝑛
))

→ 𝑓 (𝑦, 𝑠, V̂ (𝑦, 𝑠) , 𝜕
𝑥
V̂ (𝑦, 𝑠)) .

(68)

This completes the proof.

Theorem 8. Suppose that ‖V
𝑛
‖ is a bounded in (58) and (39)

has a unique solution. If {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω, then the

𝑛-term approximate solution V
𝑛
(𝑥, 𝑡) derived from the above

method converges to the analytical solution V(𝑥, 𝑡) of (39) and

V (𝑥, 𝑡) =

∞

∑

𝑖=1

𝐵
𝑖
Ψ̂
𝑖
(𝑥, 𝑡) , (69)

where 𝐵
𝑖
is given by (59).

Proof. First, we prove the convergence of V
𝑛
(𝑥, 𝑡). From (58),

we infer that

V
𝑛+1
(𝑥, 𝑡) = V

𝑛
(𝑥, 𝑡) + 𝐵

𝑛+1
Ψ̂
𝑛+1
(𝑥, 𝑡) . (70)

The orthonormality of {Ψ̂
𝑖
}

∞

𝑖=1
yields that





V
𝑛+1






2

=




V
𝑛






2

+ 𝐵
2

𝑛+1
=

𝑛+1

∑

𝑖=1

𝐵
2

𝑖
. (71)

In terms of (71), it holds that ‖V
𝑛+1
‖ > ‖V

𝑛
‖. Due to the

condition that ‖V
𝑛
‖ is bounded, ‖V

𝑛
‖ is convergent and there

exists a constant 𝑐 such that
∞

∑

𝑖=1

𝐵
2

𝑖
= 𝑐. (72)

This implies that

{𝐵
𝑖
}
∞

𝑖=1
∈ 𝑙
2
. (73)

If𝑚 > 𝑛, then





V
𝑚
− V
𝑛






2

=




V
𝑚
− V
𝑚−1
+ V
𝑚−1
− V
𝑚−2
+ ⋅ ⋅ ⋅ + V

𝑛+1
− V
𝑛






2

=




V
𝑚
− V
𝑚−1






2

+




V
𝑚−1
− V
𝑚−2






2

+ ⋅ ⋅ ⋅ +




V
𝑛+1
− V
𝑛






2

.

(74)

On account of




V
𝑚
− V
𝑚−1






2

= 𝐵
2

𝑚
, (75)

consequently





V
𝑚
− V
𝑛






2

=

𝑚

∑

𝑙=𝑛+1

𝐵
2

𝑙
→ 0, as 𝑛 → ∞. (76)

The completeness of𝑊(Ω) shows that V
𝑛
→ V̂ as 𝑛 → ∞.

Now, let we prove that V̂ is the solution of (39). Taking limits
in (58) we get

V̂ (𝑥, 𝑡) =

∞

∑

𝑖=1

𝐵
𝑖
Ψ̂
𝑖
(𝑥, 𝑡) . (77)

Note that

(𝐿V̂) (𝑥, 𝑡) =

∞

∑

𝑖=1

𝐵
𝑖
𝐿Ψ̂
𝑖
(𝑥, 𝑡) ,

(𝐿V̂) (𝑥
𝑙
, 𝑡
𝑙
) =

∞

∑

𝑖=1

𝐵
𝑖
𝐿Ψ̂
𝑖
(𝑥
𝑙
, 𝑡
𝑙
)

=

∞

∑

𝑖=1

𝐵
𝑖
⟨𝐿Ψ̂
𝑖
(𝑥, 𝑡), Φ

𝑙
(𝑥, 𝑡)⟩

�̂�

=

∞

∑

𝑖=1

𝐵
𝑖
⟨Ψ̂
𝑖
(𝑥, 𝑡), 𝐿

∗
Φ
𝑙
(𝑥, 𝑡)⟩

𝑊

=

∞

∑

𝑖=1

𝐵
𝑖
⟨Ψ̂
𝑖
(𝑥, 𝑡), Ψ

𝑙
(𝑥, 𝑡)⟩

𝑊
.

(78)

Therefore
𝑖

∑

𝑙=1

𝛽
𝑖𝑙
(𝐿V̂) (𝑥

𝑙
, 𝑡
𝑙
) =

∞

∑

𝑖=1

𝐵
𝑖
⟨Ψ̂
𝑖
(𝑥, 𝑡) ,

𝑖

∑

𝑙=1

𝛽
𝑖𝑙
Ψ
𝑙
(𝑥, 𝑡)⟩

𝑊

=

∞

∑

𝑖=1

𝐵
𝑖
⟨Ψ̂
𝑖
(𝑥, 𝑡), Ψ̂

𝑙
(𝑥, 𝑡)⟩

𝑊
= 𝐵
𝑙
.

(79)

In view of (71), we have

𝐿V̂ (𝑥
𝑙
, 𝑡
𝑙
) = 𝑓 (𝑥

𝑙
, 𝑡
𝑙
, 𝑢
𝑙−1
(𝑥
𝑙
, 𝑡
𝑙
) , 𝜕
𝑥
𝑢
𝑙−1
(𝑥
𝑙
, 𝑡
𝑙
)) . (80)

Since {(𝑥
𝑖
, 𝑡
𝑖
)}
∞

𝑖=1
is dense in Ω, for each (𝑦, 𝑠) ∈ Ω, there

exists a subsequence {(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

)}
∞

𝑗=1

such that

(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

) → (𝑦, 𝑠) , 𝑗 → ∞. (81)

We know that

𝐿V̂ (𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

) = 𝑓 (𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

, 𝑢
𝑛
𝑗−1

(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

) , 𝜕
𝑥
𝑢
𝑛
𝑗−1

(𝑥
𝑛
𝑗

, 𝑡
𝑛
𝑗

)) .

(82)

Let 𝑗 → ∞; by Lemma 7 and the continuity of 𝑓, we have

(𝐿V̂) (𝑦, 𝑠) = 𝑓 (𝑦, 𝑠, V̂ (𝑦, 𝑠) , 𝜕
𝑥
V̂ (𝑦, 𝑠)) , (83)

which indicates that V̂(𝑥, 𝑡) satisfy (39). This completes the
proof.
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Figure 1: The absolute error for Example 10 at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

Remark 9. In a same manner, it can be proved that










𝜕V
𝑛
(𝑥, 𝑡)

𝜕𝑥

−

𝜕V (𝑥, 𝑡)

𝜕𝑥










→ 0, as 𝑛 → ∞, (84)

where

𝜕V (𝑥, 𝑡)

𝜕𝑥

=

∞

∑

𝑖=1

𝐵
𝑖

𝜕Ψ̂
𝑖
(𝑥, 𝑡)

𝜕𝑥

,

𝜕V
𝑛
(𝑥, 𝑡)

𝜕𝑥

=

𝑛

∑

𝑖=1

𝐵
𝑖

𝜕Ψ̂
𝑖
(𝑥, 𝑡)

𝜕𝑥

,

(85)

where 𝐵
𝑖
is given by (59).

5. Numerical Results

In this section, two numerical examples are provided to show
the accuracy of the present method. All computations are
performed by Maple 16. Results obtained by the method are
compared with exact solution and the ADM [13] of each
example are found to be in good agreement with each others.
TheRKMdoes not require discretization of the variables, that
is, time and space, it is not effected by computation round off
errors and one is not faced with necessity of large computer
memory and time. The accuracy of the RKM for the KdV
equation is controllable and absolute errors are very small
with present choice of 𝑥 and 𝑡 (see Tables 1, 2, 3, and 4 and
Figures 1, 2, and 3). The numerical results that we obtained
justify the advantage of this methodology.

Example 10 (see [13]). Consider the following KdV equation
with initial condition

𝑢
𝑡
(𝑥, 𝑡) + 𝜀𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡)

+ 𝑢
𝑥𝑥𝑥
(𝑥, 𝑡) = 0, −∞ < 𝑥 < ∞, 𝑡 > 0,

𝑢 (𝑥, 0) = 2sech2𝑥, −∞ < 𝑥 < ∞

(86)
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Figure 2: The absolute error for Example 11 at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.
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Figure 3: The relative error for Example 11 at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

with 𝜀 = 6. The exact solution is 𝑢(𝑥, 𝑡) = 2sech2(𝑥 − 4𝑡). If
we apply (3) to (86), then the following (87) is obtained

V
𝑡
(𝑥, 𝑡) − 24sech3𝑥 sinh𝑥V (𝑥, 𝑡)

+ 12sech2𝑥V
𝑥𝑥
(𝑥, 𝑡) + V

𝑥𝑥𝑥
(𝑥, 𝑡)

= −6V (𝑥, 𝑡) V
𝑥
(𝑥, 𝑡) − 32

sinh𝑥
cosh3𝑥

+ 48

sinh3𝑥
cosh5𝑥

+ 48sech5𝑥 sinh𝑥,

V (𝑥, 0) = 0.

(87)

Example 11 (see [13]). We now consider the KdV equation
with initial condition

𝑢
𝑡
(𝑥, 𝑡) + 𝜀𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡)

+ 𝑢
𝑥𝑥𝑥
(𝑥, 𝑡) = 0, −∞ < 𝑥 < ∞, 𝑡 > 0,

𝑢 (𝑥, 0) = 6sech2𝑥, −∞ < 𝑥 < ∞.

(88)
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Table 1: The exact solution of Example 10 for initial condition at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

𝑥/𝑡 0.1 0.2 0.3 0.4 0.5 0.6
0.1 1.830273924 1.269479180 0.718402632 0.36141327 0.17121984 0.07882210
0.2 1.922085966 1.423155525 0.839948683 0.43230491 0.20711674 0.09585068
0.3 1.980132581 1.572895466 0.973834722 0.51486639 0.25001974 0.11644607
0.4 2 1.711277572 1.118110335 0.61003999 0.30105415 0.14130164
0.5 1.980132581 1.830273924 1.269479180 0.71840263 0.36141327 0.17121984
0.6 1.922085966 1.922085966 1.423155525 0.83994868 0.43230491 0.20711674

Table 2: The approximate solution of Example 10 for initial condition at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

𝑥/𝑡 0.1 0.2 0.3 0.4 0.5 0.6
0.1 1.830273864 1.269478141 0.718402628 0.36141327 0.17128272 0.07883011
0.2 1.922085928 1.423155537 0.839948629 0.43230491 0.20711710 0.09585155
0.3 1.980132606 1.572896076 0.973834717 0.51486633 0.25001974 0.11644677
0.4 2.000000027 1.711278098 1.118110380 0.61004008 0.30105468 0.14130128
0.5 1.980133013 1.830274266 1.269479288 0.71840299 0.36141338 0.17122050
0.6 1.922086667 1.922086057 1.423155510 0.83994874 0.43230465 0.20711669

Table 3: The absolute error of Example 11 for initial condition at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

𝑥/𝑡 0.1 0.2 0.3 0.4 0.5 0.6
0.1 1.78 × 10−6 3.01 × 10−9 8.55 × 10−7 3.49 × 10−7 2.85 × 10−7 6.28 × 10−7

0.2 6.38 × 10−7 6.98 × 10−7 6.52 × 10−7 4.51 × 10−7 8.33 × 10−6 2.42 × 10−7

0.3 2.2 × 10−8 9.09 × 10−7 6.88 × 10−6 1.35 × 10−7 2.97 × 10−6 1.69 × 10−7

0.4 1.70 × 10−7 1.03 × 10−7 5.38 × 10−7 1.20 × 10−6 3.98 × 10−7 1.68 × 10−7

0.5 2.26 × 10−7 1.29 × 10−7 8.74 × 10−7 3.13 × 10−7 4.02 × 10−7 9.63 × 10−7

0.6 8.94 × 10−7 7.83 × 10−7 4.34 × 10−7 9.79 × 10−7 2.77 × 10−7 1.45 × 10−8

Table 4: The relative error of Example 11 for initial condition at 0.1 ≤ 𝑥, 𝑡 ≤ 0.6.

𝑥/𝑡 0.1 0.2 0.3 0.4 0.5 0.6
0.1 9.201 × 10−7 5.113 × 10−10 5.707 × 10−7 3.868 × 10−7 6.06 × 10−7 2.76 × 10−6

0.2 3.441 × 10−7 3.498 × 10−7 3.968 × 10−7 4.320 × 10−7 1.48 × 10−6 8.84 × 10−7

0.3 1.255 × 10−8 4.555 × 10−7 3.881 × 10−6 1.132 × 10−7 4.49 × 10−6 5.13 × 10−7

0.4 1.032 × 10−7 5.264 × 10−8 2.862 × 10−7 8.964 × 10−7 5.13 × 10−7 4.27 × 10−7

0.5 1.460 × 10−7 6.857 × 10−8 4.469 × 10−7 2.089 × 10−7 4.44 × 10−7 2.04 × 10−6

0.6 6.079 × 10−7 4.410 × 10−7 2.175 × 10−7 5.958 × 10−7 2.65 × 10−7 2.58 × 10−8

The exact solution is 𝑢(𝑥, 𝑡) = 12((3 + 4 cosh(2𝑥 − 8𝑡) +
cosh(4𝑥 − 64𝑡))/[3 cosh(𝑥 − 28𝑡) + cosh(3𝑥 − 36𝑡)]2). If we
apply (3) to (88), then the following (89) is obtained:

V
𝑡
(𝑥, 𝑡) − 72sech3𝑥 sinh𝑥V (𝑥, 𝑡)

+ 36sech2𝑥V
𝑥𝑥
(𝑥, 𝑡) + V

𝑥𝑥𝑥
(𝑥, 𝑡)

= −6V (𝑥, 𝑡) V
𝑥
(𝑥, 𝑡) − 96

sinh𝑥
cosh3𝑥

+ 144

sinh3𝑥
cosh5𝑥

+ 432sech5𝑥 sinh𝑥,

V (𝑥, 0) = 0.

(89)

Using our method we choose 36 points on [0, 1]. We replace
V with 𝑢 for simplicity. In Tables 3 and 4, we compute the
absolute errors |𝑢(𝑥, 𝑡) − 𝑢

𝑛
(𝑥, 𝑡)| and the relative errors

|𝑢(𝑥, 𝑡) − 𝑢
𝑛
(𝑥, 𝑡)|/|𝑢(𝑥, 𝑡)| at the points {(𝑥

𝑖
, 𝑡
𝑖
) : 𝑥
𝑖
= 𝑡
𝑖
=

𝑖, 𝑖 = 0.1, . . . , 0.6}.

Remark 12. The problem discussed in this paper has been
solved with Adomian method [13] and Homotopy analysis
method [31]. In these studies, even though the numerical
results give good results for large values of 𝑥, these methods
give away values from the analytical solution for small values
of 𝑥 and 𝑡. However, the method is used in our study for
large and small values of 𝑥 and 𝑡, results are very close to the
analytical solutions can be obtained. In doing so, it is possible
to refine the result by increasing the intensive points.
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6. Conclusion

In this paper, we introduce an algorithm for solving the KdV
equation with initial condition. For illustration purposes,
we chose two examples which were selected to show the
computational accuracy. It may be concluded that the RKM is
very powerful and efficient in finding exact solution for wide
classes of problem.The approximate solution obtained by the
present method is uniformly convergent.

Clearly, the series solutionmethodology can be applied to
much more complicated nonlinear differential equations and
boundary value problems. However, if the problem becomes
nonlinear, then the RKM does not require discretization or
perturbation and it does not make closure approximation.
Results of numerical examples show that the present method
is an accurate and reliable analytical method for the KdV
equation with initial or boundary conditions.
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