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Two iterative methods of order four and five, respectively, are presented for solving nonlinear systems of equations. Numerical
comparisons are made with other existing second- and fourth-order schemes to solve the nonlinear system of equations of the
Global Positioning System and some academic nonlinear systems.

1. Introduction

The search for solutions of nonlinear systems of equations
is an old and difficult problem with wide applications in
sciences and engineering. The best known method, for being
very simple and effective, is Newton’s method. Its general-
ization to a system of equations was proposed by Ostrowski
[1] and to Banach spaces by Kantorovič [2]. In the literature,
severalmodifications have beenmade on classicalmethods in
order to accelerate the convergence or to reduce the number
of operations and evaluations of functions in each step of the
iterative process. The extension of the variants of Newton’s
method described by Weerakoon and Fernando in [3], by
Özban in [4] and Gerlach in [5], to the functions of several
variables has been developed in [6–9]. In [6, 7], families
of variants of Newton’s method of third-order have been
designed by using open and closed formulas of quadrature,
including the families of themethods defined by Frontini and
Sormani in [8]. Using the generic formula of the interpolatory
quadrature, in [9] a family of methods is obtained with
order of convergence 2𝑑+ 1, under certain conditions, where
𝑑 is the order up to which the partial derivatives of each
coordinate function evaluated in the solution are canceled.
Indeed, Darvishi and Barati improved in [10] the method
from Frontini and Sormani, getting a fourth-order scheme.
In addition to multistep methods based on interpolatory
quadrature, other schemes have been developed by using
different techniques, as extension to several variables of one-
dimensional schemes (see [11]), Adomian decomposition

(see [12, 13], e.g.), the one proposed by Darvishi and Barati
in [14, 15] with super cubic convergence, and the methods
proposed by Cordero et al. in [16] with orders of convergence
four and five. Another procedure to develop iterative meth-
ods for nonlinear systems is the replacement of the second
derivative by some approximation. In [17], Traub presented
a family of multipoint methods based on approximating the
second derivative that appears in the iterative formula of
Chebyshev’s scheme, and more recently, Babajee et al. in
[18] designed two Chebyshev-like methods free from second
derivatives. Recently, Sharma et al. [19] designed a fourth-
order scheme by using weight-function technique. Another
well-known acceleration technique is the composition of
two iterative methods of orders 𝑝

1
and 𝑝

2
, respectively,

obtaining a method of order 𝑝
1
𝑝
2
(see [17]). New evaluations

of the Jacobian matrix and the nonlinear function are usually
needed in order to increase the order of convergence.

Now, we are going to introduce the problem and some
necessary concepts in order to develop themodifiedmethods
and to analyze their convergence. Let us consider the problem
of finding a real zero of a function 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛, that
is, a solution 𝑥 ∈ 𝐷 of the nonlinear system 𝐹(𝑥) = 0 of 𝑛
equationswith 𝑛unknowns.Thebest known iterativemethod
is the classical Newton method given by

𝑥
(𝑘+1)

= 𝑥
(𝑘)

− 𝐹
󸀠
(𝑥
(𝑘)

)
−1

𝐹 (𝑥
(𝑘)

) , 𝑘 = 0, 1, . . . , (1)

where 𝐹
󸀠
(𝑥
(𝑘)

) is the Jacobian matrix of the function 𝐹

evaluated in the 𝑘th iteration 𝑥
(𝑘). Traub, in [17], introduced
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a variant of Newton’s method of convergence order three.
We are going to describe it because our methods combine
Traub with Newton’s method. Traub’s scheme consists of the
composition of Newton’smethodwith itself, but with a frozen
Jacobian matrix, its iterative expression is

𝑥
(𝑘+1)

= 𝑥
(𝑘)

− 𝐹
󸀠
(𝑥
(𝑘)

)
−1

(𝐹 (𝑥
(𝑘)

) + 𝐹 (𝑦
(𝑘)

)) ,

𝑘 = 0, 1, . . . ,

(2)

where 𝑦
(𝑘) is the 𝑘th iteration of Newton’s method.

On the other hand, recently Sharma et al. in [19] have
developed a fourth-order method for solving nonlinear
systems of equations. The algorithm is composed of two
weighted Newton steps, and it is given by

𝑦
(𝑘)

= 𝑥
(𝑘)

−
2

3
𝐹
󸀠
(𝑥
(𝑘)

)
−1

𝐹 (𝑥
(𝑘)

) ,

𝑥
(𝑘+1)

= 𝑥
(𝑘)

−
1

2
[−𝐼 +

9

4
𝐹
󸀠
(𝑦
(𝑘)

)
−1

𝐹
󸀠
(𝑥
(𝑘)

)

+
3

4
𝐹
󸀠
(𝑥
(𝑘)

)
−1

𝐹
󸀠
(𝑦
(𝑘)

)]

× 𝐹
󸀠
(𝑥
(𝑘)

)
−1

𝐹 (𝑥
(𝑘)

) , 𝑘 = 0, 1, . . . .

(3)

In the following, we remember some known notions and
results that we need in order to analyze the convergence of
the new methods. Let 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 be sufficiently
Frechet differentiable in𝐷. By using the notation introduced
in [20], the 𝑞th derivative of 𝐹 at 𝑢 ∈ R𝑛, 𝑞 ≥ 1 is the 𝑞-
linear function 𝐹

(𝑞)
(𝑢) : R𝑛 ×R𝑛 × ⋅ ⋅ ⋅ ×R𝑛 → R𝑛 such that

𝐹
(𝑞)

(𝑢)(V
1
, V
2
, . . . , V

𝑞
) ∈ R𝑛. It is easy to observe that

(1) 𝐹
(𝑞)

(𝑢)(V
1
, V
2
, . . . , V

𝑞−1
, ⋅) ∈ L(R𝑛),

(2) 𝐹
(𝑞)

(𝑢)(V
𝜎(1)

, V
𝜎(2)

, . . . , V
𝜎(𝑞)

) = 𝐹
(𝑞)

(𝑢)(V
1
, V
2
, . . . , V

𝑞
)

for all permutation 𝜎 of {1, 2, . . . , 𝑞},

whereL(R𝑛) is the set of lineal operators of R𝑛 in R𝑛.
From the above properties, we can use the following

notation:

(1) 𝐹
(𝑞)

(𝑢)(V
1
, V
2
, . . . , V

𝑞
) = 𝐹
(𝑞)

(𝑢)V
1
⋅ ⋅ ⋅ ⋅ ⋅ V

𝑞
,

(2) 𝐹
(𝑞)

(𝑢)V𝑞−1𝐹(𝑝)V𝑝 = 𝐹
(𝑞)

(𝑢)𝐹
(𝑝)

(𝑢)V𝑞+𝑝−1.

On the other hand, for 𝑥 + ℎ ∈ R𝑛 lying in a neighborhood
of a solution 𝑥 of 𝐹(𝑥) = 0, we can apply Taylor’s expansion,
and assuming that the Jacobian matrix 𝐹

󸀠
(𝑥) is nonsingular,

we have

𝐹 (𝑥 + ℎ) = 𝐹
󸀠
(𝑥) [ℎ +

𝑝−1

∑

𝑞=2

𝐶
𝑞
ℎ
𝑞
] + 𝑂 (ℎ

𝑝
) , (4)

where 𝐶
𝑞

= (1/𝑞!)[𝐹
󸀠
(𝑥)]
−1
𝐹
(𝑞)

(𝑥), 𝑞 ≥ 2. We observe that
𝐶
𝑞
ℎ
𝑞
∈ R𝑛 since 𝐹(𝑞)(𝑥) ∈ L(R × ⋅ ⋅ ⋅ ×R,R) and [𝐹

󸀠
(𝑥)]
−1

∈

L(R𝑛).

In addition, we can express 𝐹󸀠 as

𝐹
󸀠
(𝑥 + ℎ) = 𝐹

󸀠
(𝑥) [𝐼 +

𝑝−1

∑

𝑞=2

𝑞𝐶
𝑞
ℎ
𝑞−1

] + 𝑂 (ℎ
𝑝
)

= 𝐹
󸀠
(𝑥)𝐷 (ℎ) + 𝑂 (ℎ

𝑝
) ,

(5)

where 𝐼 is the identity matrix. Therefore, 𝑞𝐶
𝑞
ℎ
𝑞−1

∈ L(R𝑛).
From the previous equation, we obtain

[𝐹
󸀠
(𝑥 + ℎ)]

−1

= 𝐷(ℎ)
−1
[𝐹
󸀠
(𝑥)]
−1

+ 𝑂 (ℎ
𝑝
) . (6)

Then, if the inverse of𝐷(ℎ) is

𝐷(ℎ)
−1

= 𝐼 + 𝑋
2
ℎ + 𝑋

3
ℎ
2
+ 𝑋
4
ℎ
3
+ ⋅ ⋅ ⋅ , (7)

provided that 𝑋
𝑖
, 𝑖 = 2, 3, . . . verify

𝐷 (ℎ)𝐷(ℎ)
−1

= 𝐷(ℎ)
−1
𝐷 (ℎ) = 𝐼. (8)

Solving the system involved in (8), we have that

𝑋
2
= −2𝐶

2
,

𝑋
3
= 4𝐶
2

2
− 3𝐶
3
,

𝑋
4
= −8𝐶

3

2
+ 6𝐶
2
𝐶
3
+ 6𝐶
3
𝐶
2
− 4𝐶
4
,

...

(9)

We denote 𝑒(𝑘) = 𝑥
(𝑘)

−𝑥 as the error in the 𝑘th iteration.The
equation

𝑒
(𝑘+1)

= 𝐿𝑒
(𝑘)
𝑝

+ 𝑂(𝑒
(𝑘)
𝑝+1

) , (10)

where 𝐿 is a 𝑝-linear function 𝐿 ∈ L(R× ⋅ ⋅ ⋅×R,R), is called
the error equation, and 𝑝 is the order of convergence. Observe
that 𝑒(𝑘)

𝑝

is (𝑒(𝑘), 𝑒(𝑘), . . . , 𝑒(𝑘)).
In [7], the concept of computational order of convergence

was introduced as follows.

Definition 1. Let 𝑥 be a zero of a function 𝐹, and suppose that
𝑥
(𝑘−1), 𝑥(𝑘), and 𝑥

(𝑘+1) are three consecutive iterations close
to 𝑥. Then, the computational order of convergence 𝑝 can be
approximated using the formula

𝑝 ≈ ACOC =

ln (
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑘+1)

− 𝑥
(𝑘)󵄩󵄩󵄩󵄩󵄩

/
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑘)

− 𝑥
(𝑘−1)󵄩󵄩󵄩󵄩󵄩

)

ln (
󵄩󵄩󵄩󵄩𝑥
(𝑘)

− 𝑥
(𝑘−1)󵄩󵄩󵄩󵄩 /

󵄩󵄩󵄩󵄩𝑥
(𝑘−1)

− 𝑥
(𝑘−2)󵄩󵄩󵄩󵄩)

. (11)

In addition, in order to compare different methods, we
use the efficiency index, 𝐼 = 𝑝

1/𝑑, where 𝑝 is the order of
convergence and 𝑑 is the total number of new functional
evaluations (per iteration) required by themethod.This is the
most used index, but not the only one. In [17], Traub uses a
computational index defined as 𝐶𝐼 = 𝑝

1/𝑜𝑝, where 𝑜𝑝 is the
number of products/quotients per iteration.We recall that the
number of products and quotients that we need for solving𝑚
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linear systems with the same matrix of coefficients, by using
𝐿𝑈 factorization, is

1

3
𝑛
3
+ 𝑚𝑛
2
−

1

3
𝑛, (12)

where 𝑛 is the size of each system. We will use these indices
in order to compare the different iterative methods. Kung
and Traub in [21] conjectured that the order of convergence
of any multipoint method without memory for solving
nonlinear equations cannot exceed the bound 2

𝑑−1 (called
the optimal order). Ostrowski’s method [1], Jarrett’s scheme
[22], and King’s procedure [23] are some of the optimal
one-dimensional fourth-ordermethods.We have adapted the
definition of optimal order of convergence to the case of
iterative methods to solve nonlinear systems. The extension
to several variables of the conjecture of Kung and Traub could
be done in the following way [24].

Conjecture 2. Given a multipoint iterative method to solve
nonlinear systems of equations which requires 𝑑 = 𝑘

1
+ 𝑘
2

functional evaluations per step such that 𝑘
1
of them correspond

to the functional evaluations of the Jacobian matrix and 𝑘
2
to

evaluations of the nonlinear function. We conjecture that the
optimal order for this method is 2𝑘1+𝑘2−1 if 𝑘

1
≤ 𝑘
2
.

In this paper, we propose two new and competitive
iterative methods of orders four and five, respectively, that
improve other known methods.

The rest of this paper is organized as follows: in Section 2,
we make an introduction to the Global Positioning System
(GPS), focusing on the way that the receiver calculates
the user position using the ephemeris data of the artificial
satellites. In Section 3, we present our new iterative methods
and analyze its convergence order, and by using the idea of a
technique presented in [25], it is also proved that, in general, if
we combine twomethods of orders𝑝 and 𝑞, respectively, with
𝑝 ≥ 𝑞, in the same way that we do it in our method of order
five, the order of convergence of the resultant method is 𝑝+𝑞.
In Section 4, we show an application of this analysis in order
to solve the nonlinear systemof theGPS and several academic
nonlinear systems of equations. A comparison is established
among the new methods and Newton and Sharma’s methods
in terms of convergence order, approximated computational
convergence order (ACOC), and computational and effi-
ciency indices, CI and I, respectively.

2. Basics on Global Positioning System

This section introduces the basic concept of how a GPS
receiver determines its position. From the satellite constel-
lation, the equations required for solving the user position
conform a nonlinear system of equations. In addition, some
practical considerations (i.e., the inaccuracy of the user clock)
will be included in these equations. These equations are
usually solved through a linearization and a fixed point
iteration method. The obtained solution is in a Cartesian
coordinate system, and after that the result will be converted
into a spherical coordinate system.However, the Earth is not a
perfect sphere; therefore, once the user position is estimated,

𝑥
1

𝑥
3

𝑥
2

𝑆
1

𝑆
2

𝑆
3

𝑈

Figure 1: Two-dimensional user position.

the shape of the Earth must be taken into consideration.
The user position is then translated into the Earth-based
coordinate system. In this paper, we are going to focus our
attention in solving the nonlinear system of equations of the
GPS giving the results in a Cartesian coordinate system. We
can find further information about GPS in [26].

2.1. Basic GPS Concepts. The position of a point in space can
be found by using the distances measured from this point
to some known position in space. We are going to use an
example to illustrate this point.

Figure 1 shows a two-dimensional case. In order to
determine the user position 𝑈, three satellites 𝑆

1
, 𝑆
2
, and

𝑆
3
and three distances are required. The trace of a point

with constant distance to a fixed point is a circle in the
two-dimensional case. Two satellites and two distances give
two possible solutions because two circles intersect at two
points. A third circle is needed to uniquely determine the user
position. For similar reasons in a three-dimensional case, four
satellites and four distances are needed. The equal-distance
trace to a fixed point is a sphere in a three-dimensional case.
Two spheres intersect to make a circle. This circle intersects
another sphere, and this intersection produces two points.
In order to determine which point is the user position, one
more satellite should be needed. In GPS, the position of the
satellite is known from the ephemeris data transmitted by the
satellite. By measuring the distance from the receiver to the
satellite, the position of the receiver can be determined. In the
above discussion, the distance measured from the user to the
satellite is assumed to be very accurate, and there is no bias
error. However, the distance measured between the receiver
and the satellite has a constant unknown bias, because the
user clock usually is different from the GPS clock. In order to
solve this bias error, one more satellite is required. Therefore,
in order to find the user position, five satellites are needed.
If one uses four satellites and the measured distance with
bias error to measure a user position, two possible solutions
can be obtained.Theoretically, one cannot determine the user
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position. However, one of the solutions is close to the Earth’s
surface, and the other one is in the space. In fact, as we will
see in Section 4, in this memory, we have used four satellites,
and sometimes we have found the solution in the space.
Since the user position is usually close to the surface of the
earth, it can be uniquely determined. Therefore, the general
statement is that four satellites can be used to determine a
user position, even though the distance measured has a bias
error. The method of solving the user position discussed in
the next subsections is through iteration. The initial position
is often selected at the center of the Earth. In the following
discussion, four satellites are considered as the minimum
number required for finding the user position.

2.2. Basic Equations for Finding User Position. In this section,
the basic equations for determining the user position will be
presented. Assume that the distance measured is accurate,
and under this condition, three satellites should be sufficient.
Let us suppose that there are three known points at locations
𝑟
1
or (𝑥

1
, 𝑦
1
, 𝑧
1
), 𝑟
2
or (𝑥

2
, 𝑦
2
, 𝑧
2
), and 𝑟

3
or (𝑥

3
, 𝑦
3
, 𝑧
3
)

and an unknown point at 𝑟
𝑢
or (𝑥
𝑢
, 𝑦
𝑢
, 𝑧
𝑢
). If the distances

between the three known points to the unknown point can
be measured as 𝜌

1
, 𝜌
2
, and 𝜌

3
, these distances can be written

as

𝜌
1
= √(𝑥

1
− 𝑥
𝑢
)
2

+ (𝑦
1
− 𝑦
𝑢
)
2

+ (𝑧
1
− 𝑧
𝑢
)
2

,

𝜌
2
= √(𝑥

2
− 𝑥
𝑢
)
2

+ (𝑦
2
− 𝑦
𝑢
)
2

+ (𝑧
2
− 𝑧
𝑢
)
2

,

𝜌
3
= √(𝑥

3
− 𝑥
𝑢
)
2

+ (𝑦
3
− 𝑦
𝑢
)
2

+ (𝑧
3
− 𝑧
𝑢
)
2

.

(13)

Because there are three unknowns and three equations, the
values of 𝑥

𝑢
, 𝑦
𝑢
, and 𝑧

𝑢
can be determined from these

equations.Theoretically, there should be two sets of solutions
as they are second-order equations. These equations can be
solved by linearizing them andmaking an iterative approach.
The solution of these equations will be discussed later in
Section 2.4. In GPS operation, the positions of the satellites
are given. This information can be obtained from the data
transmitted from the satellites. The distances from the user
(the unknown position) to the satellites must be measured
simultaneously at a certain time instance. Each satellite
transmits a signal with a time reference associated with it. By
measuring the time of the signal traveling from the satellite
to the user, the distance between the user and the satellite can
be found. The distance measurement is discussed in the next
section.

2.3. Measurement of Pseudorange. Every satellite sends a
signal at a certain time 𝑡

𝑠𝑖
. The receiver will receive the signal

at a later time 𝑡
𝑢
. The distance between the user and the

satellite 𝑖 can be determined as

𝜌
𝑖𝑇

= 𝑐 (𝑡
𝑢
− 𝑡
𝑠𝑖
) , (14)

where 𝑐 is the speed of light, 𝜌
𝑖𝑇

is often referred to as the
true value of pseudorange fromuser to satellite 𝑖, 𝑡

𝑠𝑖
is referred

to as the true time of transmission from satellite 𝑖, and 𝑡
𝑢
is

the true time of reception. From a practical point of view, it
is difficult, if not impossible, to obtain the correct time from
the satellite or the user. The actual satellite clock time 𝑡

󸀠

𝑠𝑖
and

actual user clock time 𝑡
󸀠

𝑢
are related to the true time as

𝑡
󸀠

𝑠𝑖
= 𝑡
𝑠𝑖
+ Δ𝑏
𝑖
, 𝑡

󸀠

𝑢
= 𝑡
𝑢
+ 𝑏
𝑢𝑡
, (15)

where Δ𝑏
𝑖
is the satellite clock error and 𝑏

𝑢𝑡
is the user clock

bias error. Besides the clock error, there are other factors
affecting the pseudorangemeasurement.Themeasured pseu-
dorange 𝜌

𝑖
can be written as

𝜌
𝑖
= 𝜌
𝑖𝑇

+ Δ𝐷
𝑖
− 𝑐 (Δ𝑏

𝑖
− 𝑏
𝑢𝑡
)

+ 𝑐 (Δ𝑇
𝑖
+ Δ𝐼
𝑖
+ V
𝑖
+ ΔV
𝑖
) ,

(16)

where Δ𝐷
𝑖
is the satellite position error effect on the range,

Δ𝑇
𝑖
is the tropospheric delay error, Δ𝐼

𝑖
is the ionospheric

delay error, V
𝑖
is the receiver measurement noise error, and

ΔV
𝑖
is the relativistic time correction. Some of these errors

can be corrected; for example, the tropospheric delay can be
modeled, and the ionospheric error can be corrected in a
two-frequency receiver. The errors will cause inaccuracy of
the user position. However, the user clock error cannot be
corrected through receiver information. Thus, it will remain
as an unknown. So, the system of (13) must be modified as

𝜌
1
= √(𝑥

1
− 𝑥
𝑢
)
2

+ (𝑦
1
− 𝑦
𝑢
)
2

+ (𝑧
1
− 𝑧
𝑢
)
2

+ 𝑏
𝑢
,

𝜌
2
= √(𝑥

2
− 𝑥
𝑢
)
2

+ (𝑦
2
− 𝑦
𝑢
)
2

+ (𝑧
2
− 𝑧
𝑢
)
2

+ 𝑏
𝑢
,

𝜌
3
= √(𝑥

3
− 𝑥
𝑢
)
2

+ (𝑦
3
− 𝑦
𝑢
)
2

+ (𝑧
3
− 𝑧
𝑢
)
2

+ 𝑏
𝑢
,

𝜌
4
= √(𝑥

4
− 𝑥
𝑢
)
2

+ (𝑦
4
− 𝑦
𝑢
)
2

+ (𝑧
4
− 𝑧
𝑢
)
2

+ 𝑏
𝑢
,

(17)

where 𝑏
𝑢
is the user clock bias error expressed in distance,

which is related to the quantity 𝑏
𝑢𝑡
by 𝑏
𝑢
= 𝑐𝑏
𝑢𝑡
. In the system

of (17), four equations are needed to solve four unknowns 𝑥
𝑢
,

𝑦
𝑢
, 𝑧
𝑢
, and 𝑏

𝑢
. Thus, in a GPS receiver, a minimum of four

satellites is required to solve the user position.

2.4. Solution of User Position from Pseudoranges. One com-
mon way to solve the system of (17) is to linearize them. The
system can be written in a simplified form as

𝜌
𝑖
= √(𝑥

𝑖
− 𝑥
𝑢
)
2

+ (𝑦
𝑖
− 𝑦
𝑢
)
2

+ (𝑧
𝑖
− 𝑧
𝑢
)
2

+ 𝑏
𝑢
, (18)

(with 𝑖 = 1, 2, 3, 4, and 𝑥
𝑢
, 𝑦
𝑢
, 𝑧
𝑢
and 𝑏
𝑢
) are the unknowns.

The pseudorange 𝜌
𝑖
and the positions of the satellites 𝑥

𝑖
, 𝑦
𝑖
, 𝑧
𝑖

are known. By differentiating (18),

𝛿𝜌
𝑖
=

(𝑥
𝑖
− 𝑥
𝑢
) 𝛿𝑥
𝑢
+ (𝑦
𝑖
− 𝑦
𝑢
) 𝛿𝑦
𝑢
+ (𝑧
𝑖
− 𝑧
𝑢
) 𝛿𝑧
𝑢

√(𝑥
𝑖
− 𝑥
𝑢
)
2

+ (𝑦
𝑖
− 𝑦
𝑢
)
2

+ (𝑧
𝑖
− 𝑧
𝑢
)
2

+ 𝛿𝑏
𝑢

=
(𝑥
𝑖
− 𝑥
𝑢
) 𝛿𝑥
𝑢
+ (𝑦
𝑖
− 𝑦
𝑢
) 𝛿𝑦
𝑢
+ (𝑧
𝑖
− 𝑧
𝑢
) 𝛿𝑧
𝑢

𝜌
𝑖
− 𝑏
𝑢

+ 𝛿𝑏
𝑢
.

(19)
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In (19), 𝛿𝑥
𝑢
, 𝛿𝑦
𝑢
, 𝛿𝑧
𝑢
, and 𝛿𝑏

𝑢
can be considered as the only

unknowns. The quantities 𝑥
𝑢
, 𝑦
𝑢
, 𝑧
𝑢
, and 𝑏

𝑢
are treated as

known values because one can assume some initial values for
these quantities. From these initial values, a new set of 𝛿𝑥

𝑢
,

𝛿𝑦
𝑢
, 𝛿𝑧
𝑢
, and 𝛿𝑏

𝑢
can be calculated. These values are used to

modify the original 𝑥
𝑢
, 𝑦
𝑢
, 𝑧
𝑢
, and 𝑏

𝑢
to find another new

set of solutions. This new set of 𝑥
𝑢
, 𝑦
𝑢
, 𝑧
𝑢
, and 𝑏

𝑢
can be

considered again as known quantities.This process continues
until the absolute values of 𝛿𝑥

𝑢
, 𝛿𝑦
𝑢
, 𝛿𝑧
𝑢
, and 𝛿𝑏

𝑢
are very

small and within a certain predetermined limit. The final
values of 𝑥

𝑢
, 𝑦
𝑢
, 𝑧
𝑢
, and 𝑏

𝑢
are the desired solution. This

method is often referred to as an iteration method of fixed
point. With 𝛿𝑥

𝑢
, 𝛿𝑦
𝑢
, 𝛿𝑧
𝑢
, and 𝛿𝑏

𝑢
as unknowns, the above

equation becomes a set of linear equations. This procedure is
often referred to as linearization. The expression (19) can be
written in matrix form as

[
[
[

[

𝛿𝜌
1

𝛿𝜌
2

𝛿𝜌
3

𝛿𝜌
4

]
]
]

]

=

[
[
[

[

𝛼
11

𝛼
12

𝛼
13

1

𝛼
21

𝛼
22

𝛼
23

1

𝛼
31

𝛼
32

𝛼
33

1

𝛼
41

𝛼
42

𝛼
43

1

]
]
]

]

[
[
[

[

𝛿𝑥
𝑢

𝛿𝑦
𝑢

𝛿𝑧
𝑢

𝛿𝑏
𝑢

]
]
]

]

, (20)

where

𝛼
𝑖1

=
𝑥
𝑖
− 𝑥
𝑢

𝜌
𝑖
− 𝑏
𝑢

, 𝛼
𝑖2

=
𝑦
𝑖
− 𝑦
𝑢

𝜌
𝑖
− 𝑏
𝑢

, 𝛼
𝑖3

=
𝑧
𝑖
− 𝑧
𝑢

𝜌
𝑖
− 𝑏
𝑢

. (21)

The solution of (20) is

[
[
[

[

𝛿𝑥
𝑢

𝛿𝑦
𝑢

𝛿𝑧
𝑢

𝛿𝑏
𝑢

]
]
]

]

=

[
[
[

[

𝛼
11

𝛼
12

𝛼
13

1

𝛼
21

𝛼
22

𝛼
23

1

𝛼
31

𝛼
32

𝛼
33

1

𝛼
41

𝛼
42

𝛼
43

1

]
]
]

]

−1

[
[
[

[

𝛿𝜌
1

𝛿𝜌
2

𝛿𝜌
3

𝛿𝜌
4

]
]
]

]

. (22)

This process obviously does not provide the needed solutions
directly. However, the desired solutions can be obtained
from it. In order to find the desired position solution, this
procedure must be used repetitively in an iterative way. A
quantity is often used to determine whether the desired result
is reached, and this quantity can be defined as

𝛿𝜐 = √𝛿𝑥
2

𝑢
+ 𝛿𝑦
2

𝑢
+ 𝛿𝑧
2

𝑢
+ 𝛿𝑏
2

𝑢
. (23)

When 𝛿𝜐 is lower than a certain predetermined threshold,
the iteration will stop. Sometimes, the clock bias 𝑏

𝑢
is not

included in (23). In this paper, we use as stopping criterion
the quantity ||𝑥(𝑘+1)−𝑥

(𝑘)
||+||𝐹(𝑥

(𝑘+1)
)|| because it is stronger

than (23). As we can verify in [27] the above iterative method
used to calculate via software, the receiver position in theGPS
is Newton’s method, a well-known method of second-order
of convergence. In this work, we improve the GPS software
by means of two methods of order four and five, respectively,
that converge to the solution with less number of iterations
and better I or CI than Newton scheme.

3. Description of the Methods and
Convergence Analysis

3.1. A Fourth-Order Method. In this section, we display a
new method for solving nonlinear systems that we call M4,

obtained by combining (Newton and Traub’s method). Its
iterative expression is

𝑧
(𝑘)

= 𝑥
(𝑘)

− 𝐹
󸀠
(𝑥
(𝑘)

)
−1

(𝐹 (𝑥
(𝑘)

) + 𝐹 (𝑦
(𝑘)

)) ,

𝑥
(𝑘+1)

= 𝑦
(𝑘)

− [𝐹
󸀠
(𝑧
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

) ,

(24)

where 𝑦(𝑘) is the 𝑘th iteration of Newton’smethod. In the next
result, we are going to prove that the convergence order of the
method is four.

Theorem 3. Let 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 be sufficiently differ-
entiable at each point of an open neighborhood 𝐷 of 𝑥 ∈ R𝑛

that is a solution of the nonlinear system 𝐹(𝑥) = 0. Let one
suppose that 𝐹󸀠(𝑥) is continuous and nonsingular in 𝑥. Then,
the sequence {𝑥(𝑘)}

𝑘≥0
obtained by using the iterative expression

(24) converges to 𝑥 with order four. The error equation is

𝑒
(𝑘+1)

= −𝐶
3

2
𝑒
(𝑘)
4

+ 𝑂(𝑒
(𝑘)
5

) , (25)

where 𝐶
𝑘

= (1/𝑘!)[𝐹
󸀠
(𝑥)]
−1
𝐹
(𝑘)

(𝑥), 𝑘 = 2, 3, . . ., and 𝑒
(𝑘)

=

𝑥
(𝑘)

− 𝑥.

Proof. Taylor expansion of 𝐹(𝑥
(𝑘)

) and 𝐹
󸀠
(𝑥
(𝑘)

) around 𝑥

gives

𝐹 (𝑥
(𝑘)

) = 𝐹
󸀠
(𝑥) [𝑒

(𝑘)
+ 𝐶
2
𝑒
(𝑘)
2

+ 𝐶
3
𝑒
(𝑘)
3

+ 𝐶
4
𝑒
(𝑘)
4

]

+ 𝑂(𝑒
(𝑘)
5

) ,

𝐹
󸀠
(𝑥
(𝑘)

) = 𝐹
󸀠
(𝑥) [𝐼 + 2𝐶

2
𝑒
(𝑘)

+3𝐶
3
𝑒
(𝑘)
2

+4𝐶
4
𝑒
(𝑘)
3

+5𝐶
5
𝑒
(𝑘)
4

]

+ 𝑂(𝑒
(𝑘)
5

) ,

(26)

where 𝐶
𝑘

= (1/𝑘!)[𝐹
󸀠
(𝑥)]
−1
𝐹
(𝑘)

(𝑥), 𝑘 = 2, 3, . . ., and 𝑒
(𝑘)

=

𝑥
(𝑘)

− 𝑥. From (26), we obtain

[𝐹
󸀠
(𝑥
(𝑘)

)]
−1

= [𝐼 + 𝑋
2
𝑒
(𝑘)

+ 𝑋
3
𝑒
(𝑘)
2

+ 𝑋
4
𝑒
(𝑘)
3

]

× [𝐹
󸀠
(𝑥)]
−1

+ 𝑂(𝑒
(𝑘)
4

) ,

(27)

where𝑋
2
= −2𝐶

2
,𝑋
3
= 4𝐶
2

2
−3𝐶
3
, and𝑋

4
= −8𝐶

3

2
+6𝐶
2
𝐶
3
+

6𝐶
3
𝐶
2
− 4𝐶
4
. Taylor’s expansion of 𝑦(𝑘) is

𝑦
(𝑘)

− 𝑥 = 𝐶
2
𝑒
(𝑘)
2

+ (2𝐶
3
− 2𝐶
2

2
) 𝑒
(𝑘)
3

+ (4𝐶
3

2
− 4𝐶
2
𝐶
3
− 3𝐶
3
𝐶
2
+ 3𝐶
4
) 𝑒
(𝑘)
4

+ 𝑂(𝑒
(𝑘)
5

) .

(28)
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On the other hand, we have that

𝐹 (𝑦
(𝑘)

) = 𝐹
󸀠
(𝑥) [(𝑦

(𝑘)
− 𝑥) + 𝐶

2
(𝑦
(𝑘)

− 𝑥)
2

] + 𝑂(𝑒
(𝑘)
5

) ,

(29)

and by operating, we get

𝐹 (𝑦
(𝑘)

) = 𝐹
󸀠
(𝑥) [𝐶

2
𝑒
(𝑘)
2

+ (2𝐶
3
− 2𝐶
2

2
) 𝑒
(𝑘)
3

+ (5𝐶
3

2
− 4𝐶
2
𝐶
3
− 3𝐶
3
𝐶
2

+ 3𝐶
4
) 𝑒
(𝑘)
4

] + 𝑂(𝑒
(𝑘)
5

) .

(30)

Analogously, we obtain the expression of 𝑧(𝑘) − 𝑥. Given that
the 𝑘th iteration of Traub’s scheme is

𝑧
(𝑘)

= 𝑦
(𝑘)

− [𝐹
󸀠
(𝑥
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

) , (31)

then

𝑧
(𝑘)

− 𝑥

= 2𝐶
2

2
𝑒
(𝑘)
3

+ (−9𝐶
3

2
+ 4𝐶
2
𝐶
3
+ 3𝐶
3
𝐶
2
) 𝑒
(𝑘)
4

+ 𝑂(𝑒
(𝑘)
5

) .

(32)

Besides, the expression of 𝐹󸀠(𝑧(𝑘)) is

𝐹
󸀠
(𝑧
(𝑘)

) = 𝐹
󸀠
(𝑥) [𝐼 + 2𝐶

2
(𝑧
(𝑘)

− 𝑥)] + 𝑂(𝑒
(𝑘)
5

) , (33)

or, equivalently from (32),

𝐹
󸀠
(𝑧
(𝑘)

)

= 𝐹
󸀠
(𝑥) [𝐼 + 4𝐶

3

2
𝑒
(𝑘)
3

+ (−18𝐶
4

2
+ 8𝐶
2

2
𝐶
3
+ 6𝐶
2
𝐶
3
𝐶
2
) 𝑒
(𝑘)
4

]

+ 𝑂(𝑒
(𝑘)
5

) .

(34)

So,

[𝐹
󸀠
(𝑧
(𝑘)

)]
−1

= [𝐼 + 𝑊
2
𝑒
(𝑘)

+ 𝑊
3
𝑒
(𝑘)
2

+ 𝑊
4
𝑒
(𝑘)
3

+ 𝑊
5
𝑒
(𝑘)
4

]

× [𝐹
󸀠
(𝑥)]
−1

+ 𝑂(𝑒
(𝑘)
5

) ,

(35)

and provided that [𝐹󸀠(𝑧(𝑘))]−1𝐹󸀠(𝑧(𝑘)) = 𝐼, solving the linear
system of equations involved, we have 𝑊

2
= 𝑊
3
= 0, 𝑊

4
=

−4𝐶
3

2
, and𝑊

5
= 18𝐶

4

2
− 8𝐶
2

2
𝐶
3
− 6𝐶
2
𝐶
3
𝐶
2
, so

[𝐹
󸀠
(𝑧
(𝑘)

)]
−1

= [𝐼 − 4𝐶
3

2
𝑒
(𝑘)
3

+ (18𝐶
4

2
− 8𝐶
2

2
𝐶
3
− 6𝐶
2
𝐶
3
𝐶
2
) 𝑒
(𝑘)
4

]

× [𝐹
󸀠
(𝑥)]
−1

+ 𝑂(𝑒
(𝑘)
5

) .

(36)

Then,

[𝐹
󸀠
(𝑧
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

)

= 𝐶
2
𝑒
(𝑘)
2

+ 2 (𝐶
3
− 𝐶
2

2
) 𝑒
(𝑘)
3

+ (5𝐶
3

2
− 4𝐶
2
𝐶
3
− 3𝐶
3
𝐶
2
+ 3𝐶
4
) 𝑒
(𝑘)
4

+ 𝑂(𝑒
(𝑘)
5

) .

(37)

Finally, by replacing (28) and (37) in the iterative expression
(24), we obtain the error equation

𝑒
(𝑘+1)

= 𝑥
(𝑘+1)

− 𝑥

= 𝑦
(𝑘)

− 𝑥 − [𝐹
󸀠
(𝑧
(𝑘)

)]
−1

𝐹 (𝑦
(𝑘)

)

= −𝐶
3

2
𝑒
(𝑘)
4

+ 𝑂(𝑒
(𝑘)
5

) ,

(38)

and the proof of the theorem is completed.

3.2. A Fifth-Order Method. In this section, we show a new
method for solving nonlinear systems that we callM5, which
is obtained by combining again Newton and Traub’s methods
but in a different way. Its iterative expression is

𝑧
(𝑘)

= 𝑥
(𝑘)

− 𝐹
󸀠
(𝑥
(𝑘)

)
−1

(𝐹 (𝑥
(𝑘)

) + 𝐹 (𝑦
(𝑘)

)) ,

𝑥
(𝑘+1)

= 𝑧
(𝑘)

− [𝐹
󸀠
(𝑦
(𝑘)

)]
−1

𝐹 (𝑧
(𝑘)

) ,

(39)

where 𝑦
(𝑘) is the 𝑘th iteration of Newton’s method. We prove

in the next result that the convergence order of this method
is five.

Theorem 4. Let 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 be sufficiently dif-
ferentiable at each point of an open neighborhood𝐷 of 𝑥 ∈ R𝑛

that is a solution of the nonlinear system 𝐹(𝑥) = 0. Let one
suppose that 𝐹󸀠(𝑥) is continuous and nonsingular in 𝑥. Then,
the sequence {𝑥(𝑘)}

𝑘≥0
obtained by using the iterative expression

(39) converges to 𝑥 with order five. The error equation is

𝑒
(𝑘+1)

= 4𝐶
4

2
𝑒
(𝑘)
5

+ 𝑂(𝑒
(𝑘)
6

) , (40)

where 𝐶
𝑘

= (1/𝑘!)[𝐹
󸀠
(𝑥)]
−1
𝐹
(𝑘)

(𝑥), 𝑘 = 2, 3, . . ., and 𝑒
(𝑘)

=

𝑥
(𝑘)

− 𝑥.
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Proof. Following the procedure used in Theorem 3, we have
that

𝐹 (𝑦
(𝑘)

) = 𝐹
󸀠
(𝑥) [𝐶

2
𝑒
(𝑘)
2

+ (2𝐶
3
− 2𝐶
2

2
) 𝑒
(𝑘)
3

+ (5𝐶
3

2
− 4𝐶
2
𝐶
3
− 3𝐶
3
𝐶
2
+ 3𝐶
4
) 𝑒
(𝑘)
4

+ (−6𝐶
2

3
− 12𝐶

4

2
+ 10𝐶

2

2
𝐶
3
+ 8𝐶
2
𝐶
3
𝐶
2

+ 6𝐶
3
𝐶
2

2
−6𝐶
2
𝐶
4
−4𝐶
4
𝐶
2
+4𝐶
5
) 𝑒
(𝑘)
5

]

+ 𝑂(𝑒
(𝑘)
6

) ,

(41)

𝑧
(𝑘)

− 𝑥 = 2𝐶
2

2
𝑒
(𝑘)
3

+ (−9𝐶
3

2
+ 4𝐶
2
𝐶
3
+ 3𝐶
3
𝐶
2
) 𝑒
(𝑘)
4

+ (30𝐶
4

2
− 18𝐶

2

2
𝐶
3
+ 6𝐶
2

3
− 12𝐶

3
𝐶
2

2

−14𝐶
2
𝐶
3
𝐶
2
+6𝐶
2
𝐶
4
+ 4𝐶
4
𝐶
2
) 𝑒
(𝑘)
5

+𝑂(𝑒
(𝑘)
6

) .

(42)

On the other hand,

𝐹 (𝑧
(𝑘)

) = 𝐹
󸀠
(𝑥) [(𝑧

(𝑘)
− 𝑥)] + 𝑂(𝑒

(𝑘)
4

) , (43)

[𝐹
󸀠
(𝑦
(𝑘)

)]
−1

= [𝐼 + 𝑋
2
(𝑦
(𝑘)

− 𝑥) + 𝑋
3
(𝑦
(𝑘)

− 𝑥)
2

]

× [𝐹
󸀠
(𝑥)]
−1

+ 𝑂(𝑒
(𝑘)
5

) .

(44)

Finally, by replacing (42) and (44) in the iterative expression
(39), we obtain the error equation

𝑒
(𝑘+1)

= 𝑥
(𝑘+1)

− 𝑥

= 𝑧
(𝑘)

− 𝑥 − [𝐹
󸀠
(𝑦
(𝑘)

)]
−1

𝐹 (𝑧
(𝑘)

)

= 4𝐶
4

2
𝑒
(𝑘)
5

+ 𝑂(𝑒
(𝑘)
6

) ,

(45)

and the proof of the theorem is completed.

3.3. Pseudocomposition. In [25] a technique called pseudo-
composition that uses a known method as a predictor and the
Gaussian quadrature as a corrector was introduced.The order
of convergence of the resulting scheme depends, among other
factors, on the order of the last two steps of the predictor.
Following this idea, we generalize the procedure used to
design methodM5.

Then, we can establish the next result.
Theorem 5. Let 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 be sufficiently
differentiable at each point of an open neighborhood 𝐷 of 𝑥 ∈

R𝑛 that is a solution of the nonlinear system 𝐹(𝑥) = 0. Let one
suppose that 𝐹󸀠(𝑥) is continuous and nonsingular in 𝑥. Let 𝑦(𝑘)

be the 𝑘th iteration of an iterative method of order 𝑞 and 𝑧
(𝑘)

the 𝑘th iteration of an iterative method of order 𝑝, with 𝑝 ≥ 𝑞.
The sequence {𝑥(𝑘)}

𝑘≥0
obtained by the iterative expression

𝑥
(𝑘+1)

= 𝑧
(𝑘)

− [𝐹
󸀠
(𝑦
(𝑘)

)]
−1

𝐹 (𝑧
(𝑘)

) , (46)

converges to 𝑥 with the order of convergence 𝑝 + 𝑞.

Proof. Taylor’s expansions of 𝑦(𝑘) and 𝑧
(𝑘) are

𝑦
(𝑘)

= 𝑥 + 𝑀
1
𝑒
(𝑘)
𝑞

+ 𝑀
2
𝑒
(𝑘)
𝑞+1

+ ⋅ ⋅ ⋅

+ 𝑀
𝑝+1

𝑒
(𝑘)
𝑞+𝑝

+ 𝑂(𝑒
(𝑘)
𝑝+𝑞+1

) ,

𝑧
(𝑘)

= 𝑥 + 𝑁
1
𝑒
(𝑘)
𝑝

+ 𝑁
2
𝑒
(𝑘)
𝑝+1

+ ⋅ ⋅ ⋅

+ 𝑁
𝑞+1

𝑒
(𝑘)
𝑝+𝑞

+ 𝑂(𝑒
(𝑘)
𝑝+𝑞+1

) .

(47)

Taylor’s expansion of 𝐹(𝑧(𝑘)) around 𝑥 gives

𝐹 (𝑧
(𝑘)

) = 𝐹
󸀠
(𝑥) [𝑧

(𝑘)
− 𝑥 + 𝐶

2
(𝑧
(𝑘)

− 𝑥)
2

] + 𝑂(𝑒
(𝑘)
2(𝑝+𝑞)+1

)

= 𝐹
󸀠
(𝑥) [𝑁

1
𝑒
(𝑘)
𝑝

+ 𝑁
2
𝑒
(𝑘)
𝑝+1

+ ⋅ ⋅ ⋅ + 𝑁
𝑞+1

𝑒
(𝑘)
𝑝+𝑞

+ 𝐶
2
(𝑁
1
𝑒
(𝑘)
𝑝

+ 𝑁
2
𝑒
(𝑘)
𝑝+1

+ ⋅ ⋅ ⋅

+ 𝑁
𝑞+1

𝑒
(𝑘)
𝑝+𝑞

)

2

] + 𝑂(𝑒
(𝑘)
2(𝑝+𝑞)+1

) ,

(48)

where 𝐶
𝑘

= (1/𝑘!)[𝐹
󸀠
(𝑥)]
−1
𝐹
(𝑘)

(𝑥), 𝑘 = 2, 3, . . ., and 𝑒
(𝑘)

=

𝑥
(𝑘)

− 𝑥. On the other hand, we have that

[𝐹
󸀠
(𝑦
(𝑘)

)]
−1

= [𝐼 + 𝑋
2
(𝑦
(𝑘)

− 𝑥) + 𝑋
3
(𝑦
(𝑘)

− 𝑥)
2

]

× [𝐹
󸀠
(𝑥)]
−1

+ 𝑂(𝑒
(𝑘)
2𝑞+1

)

= [𝐼 + 𝑋
2
(𝑀
1
𝑒
(𝑘)
𝑞

+ 𝑀
2
𝑒
(𝑘)
𝑞+1

+ ⋅ ⋅ ⋅

+𝑀
𝑝+1

𝑒
(𝑘)
𝑞+𝑝

)+𝑋
3
(𝑅
1
𝑒
(𝑘)
2𝑞

+⋅ ⋅ ⋅ )]

× [𝐹
󸀠
(𝑥)]
−1

+ 𝑂(𝑒
(𝑘)
𝑚

) ,

(49)

where 𝑚 = min{𝑝 + 𝑞 + 1, 2𝑞 + 1} = 𝑝 + 𝑞 + 1. Finally, by
replacing (47), (48), and (49) in the iterative expression (46),
we obtain the error equation

𝑒
(𝑘+1)

= 𝑥
(𝑘+1)

− 𝑥

= 𝑧
(𝑘)

− 𝑥 − [𝐹
󸀠
(𝑦
(𝑘)

)]
−1

𝐹 (𝑧
(𝑘)

)

= 2𝐶
2
𝑀
1
𝑁
1
𝑒
(𝑘)
𝑝+𝑞

+ 𝑂(𝑒
(𝑘)
𝑝+𝑞+1

) .

(50)

Then, the convergence order of the method that results from
this combination of amethod of order 𝑞with another of order
𝑝 with 𝑝 ≥ 𝑞 is 𝑝 + 𝑞.

4. Numerical Results

Numerical computations have been carried out using
variable precision arithmetic, with 2000 digits of man-
tissa, in MATLAB 7.1. The stopping criterion has been
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||𝑥
(𝑘+1)

−𝑥
(𝑘)

||+||𝐹(𝑥
(𝑘+1)

)|| < 10
−250, and therefore, we check

that the iterate sequence converges to an approximation of
the solution of the nonlinear system. For every method, we
count the number of iterations needed to reach the wished
tolerance, and we calculate the approximated computational
order of convergence ACOC, the efficiency index 𝐼, the
computational index 𝐶𝐼, and an error estimation made with
the last values of ||𝑥(𝑘+1) − 𝑥

(𝑘)
|| and ||𝐹(𝑥

(𝑘+1)
)||.

4.1. Numerical Results Obtained with Academic Nonlinear
Systems. Now, we are going to compareM4,M5, andNewton
(N) and Sharma’s (S) schemes with some nonlinear academic
systems in order to prove the effectiveness and the computa-
tional order of convergence of the methods developed in this
work. The test systems used are as follows:

(a) 𝐹(𝑥
1
, 𝑥
2
) = (exp(𝑥2

1
) − exp(√2𝑥

1
), 𝑥
1
− 𝑥
2
), 𝑥 =

(√2,√2)
𝑇,

(b) 𝐹(𝑥
1
, 𝑥
2
) = (𝑥

1
+ exp(𝑥

2
) − cos(𝑥

2
), 3𝑥
1
− 𝑥
2
−

sin(𝑥
2
)), 𝑥 = (0, 0)

𝑇,
(c) 𝐹(𝑥) = (𝑓

1
(𝑥), 𝑓
2
(𝑥), . . . , 𝑓

𝑛
(𝑥)), where 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 and 𝑓

𝑖
: R𝑛 → R, 𝑖 = 1, 2, . . . , 𝑛

such that

𝑓
𝑖
(𝑥) = 𝑥

𝑖
𝑥
𝑖+1

− 1, 𝑖 = 1, 2, . . . 𝑛 − 1,

𝑓
𝑛
(𝑥) = 𝑥

𝑛
𝑥
1
− 1.

(51)

When 𝑛 is odd, the exact zeros of 𝐹 are 𝑥
1

=

(1, 1, . . . , 1) and 𝑥
2
= (−1, −1, . . . , −1).

In Table 1, we can find a comparative among the different
numerical methods for the nonlinear systems (a), (b), and
(c). As we can see, the approximated computational orders
of convergence are the expected ones, and methods 𝑀4 and
𝑀5 are clearly very competitive in terms of error estimation.

The efficiency index, 𝐼, and the computational index, 𝐶𝐼,
of the different methods are as follows:

𝐼
𝑁

= 2
1/(𝑛+𝑛

2
)
, 𝐼

𝑆
= 4
1/(𝑛+2𝑛

2
)
,

𝐼
𝑀4

= 4
1/(2𝑛+2𝑛

2
)
, 𝐼

𝑀5
= 5
1/(3𝑛+2𝑛

2
)
,

𝐶𝐼
𝑁

= 2
3/(𝑛
3
+3𝑛
2
−𝑛)

, 𝐶𝐼
𝑆
= 4
3/(2𝑛
3
+15𝑛
2
−2𝑛)

,

𝐶𝐼
𝑀4

= 4
3/(2𝑛
3
+6𝑛
2
−2𝑛)

, 𝐶𝐼
𝑀5

= 5
3/(2𝑛
3
+6𝑛
2
−2𝑛)

.

(52)

In Figures 2 and 3, we show these efficiency indices for 𝑛 =

2, 3, . . . , 10. It can be concluded that our methods improve
Sharma’s scheme in terms of 𝐶𝐼, although the classical
efficiency of Sharma’s procedure is better for 𝑛 ≤ 6. 𝑀4 and
𝑀5 are competitive, obtaining better error estimation than𝑁

and 𝑆, with the same number of iterations.

4.2. Numerical Results for the GPS Problem. In order to test
the proposed schemes on the problem of a user position of a
GPS device, we have requested to the Cartographic Institute
of Valencia to provide us with data of known geocentric
coordinates.
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Figure 2: Comparative among the efficiency indices of themethods.
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Figure 3: Comparative among the computational indices of the
methods.

Concretely, the Cartographic Institute of Valencia pro-
vided us with the following:

(i) an example of a fixed-point GPS in the geocentric
coordinates: 𝑥 = 4984687, 426, 𝑦 = −41199, 155,
and 𝑧 = 3966605, 952. It is a point located in Alcoy
(Alicante, Spain),

(ii) observations from that fixed point (file ∗.09o) for a
day,

(iii) positions of the satellites for that day:∗.09n and ∗.sp3
files,
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Table 1: Comparative of the iterative methods with nonlinear systems (a) to (c).

Function 𝑥
(0) Method Iter ACOC ||𝑥

(𝑘+1)
− 𝑥
(𝑘)

|| ||𝐹(𝑥
(𝑘+1)

)||

(a) (2, 2)
𝑇

𝑁 13 2 0.163𝑒 − 338 0

𝑆 7 4 0.962𝑒 − 270 0

𝑀4 7 4 0.140𝑒 − 805 0

𝑀5 7 5 0.893𝑒 − 831 0

(b) (−0.1, −0.1)
𝑇

𝑁 9 2 0.94𝑒 − 307 0.28𝑒 − 921

𝑆 5 4 0.53𝑒 − 276 0.83𝑒 − 1106

𝑀4 5 4 0.98𝑒 − 300 0.32𝑒 − 1801

𝑀5 5 5 0.435𝑒 − 647 0.1𝑒 − 3941

(c)
𝑛 = 99

(2, 2, . . . , 2)
𝑇

𝑁 11 2 0.535𝑒 − 488 0.286𝑒 − 976

𝑆 6 4 0.113𝑒 − 408 0.960𝑒 − 1636

𝑀4 6 4 0.380𝑒 − 704 0

𝑀5 6 5 0.122𝑒 − 1201 0

Table 2: Comparative of the iterative methods with the nonlinear system of equations of the GPS.

Method 𝑥
(0) Iter ACOC ||𝑥

(𝑘+1)
− 𝑥
(𝑘)

|| ||𝐹(𝑥
(𝑘+1)

)|| 𝑥

𝑁

(0, 0, 0, 0)
𝑇

12 2 0.6𝑒 − 374 0.830𝑒 − 739 𝑥
∗

𝑆 7 4 0.173𝑒 − 767 0.2𝑒 − 1991 𝑥
∗

𝑀4 7 4 0.823𝑒 − 512 0.1𝑒 − 1991 𝑥
∗

𝑀5 7 5 0.222𝑒 − 814 0.3𝑒 − 1991 𝑥
𝑠

𝑁

(10
6
, 10
6
, 10
6
, 10
6
)
𝑇

15 2 0.421𝑒 − 317 0.537𝑒 − 627 𝑥
𝑠

𝑆 8 4 0.739𝑒 − 799 0.1𝑒 − 1991 𝑥
∗

𝑀4 7 4 0.191𝑒 − 735 0 𝑥
∗

𝑀5 8 5 0.104𝑒 − 563 0.1𝑒 − 1991 𝑥
𝑠

𝑁

(−10
4
, −10
4
, −10
4
, −10
4
)
𝑇

12 2 0.371𝑒 − 381 0.317𝑒 − 753 𝑥
∗

𝑆 7 4 0.138𝑒 − 784 0.3𝑒 − 1991 𝑥
∗

𝑀4 7 4 0.704𝑒 − 520 0 𝑥
∗

𝑀5 7 4.9968 0.510𝑒 − 692 0.1𝑒 − 1991 𝑥
𝑠

(iv) description of RINEX format (∗.09o file): http://www.
igs.org/components/formats.html

(v) description of the ephemeris file and satellite posi-
tions sp3: http://igscb.jpl.nasa.gov/igscb/data/format/
sp3c.txt

(vi) link to other libraries for analysis calculations:
http://www.ngs.noaa.gov/gps-toolbox/exist.htm.

With these data, we obtain the positions of the visible
satellites in the instant that corresponds to the provided
data. With these coordinates, we calculate the approximated
pseudoranges for every satellite, and then we are able to build
the nonlinear system of equations of GPS (18) using four of
the satellites, with which we check the iterative methods of
Newton, Sharma,M4, andM5.

In Table 2, we can find a comparative among the iterative
methods N, S, M4, and M5 for the nonlinear system of the
GPS. We recall that the coordinates of the center of the Earth
and 𝑏

𝑢
= 0, that is, 𝑥(0) = (0, 0, 0, 0)

𝑇, are usually used
as initial estimation. Despite this, we have also tested the
methods with some other initial conditions. We denote that
𝑥
∗

≈ (4984687.426, −41199.155, 3966605.952, and 0.116𝑒 −

8)
𝑇 as the Earth’s solution and 𝑥

𝑠
≈ (−39720114.893,

−16748760.539, −23938190.113, and−0.159)
𝑇 as the exterior

space solution.
As we can see, for this particular system of equations,

Newton’s method does not converge to the user position for
all the initial estimations, so does M5, but M4 is a good
method in all senses, very competitive in respect of known
methods.

5. Conclusions

In this paper, we have gone in depth on an emerging line
of investigation, the GPS receivers software improvement.
Concretely, GPS receivers currently use Newton’s method
to solve the nonlinear system (18) and to calculate their
exact position with the information obtained from signals
received from the GPS constellation of satellites. We propose
two different combinations of Newton method and Traub’s
methods, obtaining two methods of fourth- (M4) and fifth-
order (M5). Using the idea presented in [25], called pseudo-
composition, it is proved that combining in a particular way
two methods of order 𝑝 and 𝑞, respectively, with 𝑝 ≥ 𝑞, the
order of convergence of the resulting scheme is𝑝+𝑞.We have
numerically compared the different methods, and we have
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concluded that M4 and M5 are very competitive in terms of
the error estimation.
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