
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 598963, 6 pages
http://dx.doi.org/10.1155/2013/598963

Research Article
Korovkin Second Theorem via 𝐵-Statistical 𝐴-Summability

M. Mursaleen1 and A. Kiliçman2

1 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India
2Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Correspondence should be addressed to A. Kiliçman; akilicman@putra.upm.edu.my
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Korovkin type approximation theorems are useful tools to check whether a given sequence (𝐿
𝑛
)
𝑛≥1

of positive linear operators on
𝐶[0, 1] of all continuous functions on the real interval [0, 1] is an approximation process. That is, these theorems exhibit a variety
of test functions which assure that the approximation property holds on the whole space if it holds for them. Such a property was
discovered by Korovkin in 1953 for the functions 1, 𝑥, and 𝑥2 in the space 𝐶[0, 1] as well as for the functions 1, cos, and sin in the
space of all continuous 2𝜋-periodic functions on the real line. In this paper, we use the notion of 𝐵-statistical 𝐴-summability to
prove the Korovkin second approximation theorem. We also study the rate of 𝐵-statistical𝐴-summability of a sequence of positive
linear operators defined from 𝐶

2𝜋
(R) into 𝐶

2𝜋
(R).

1. Introduction and Preliminaries

LetN be the set of all natural numbers,𝐾 ⊆ N, and𝐾
𝑛
= {𝑘 ≤

𝑛 : 𝑘 ∈ 𝐾}. Then the natural density of𝐾 is defined by

𝛿 (𝐾) = lim
𝑛

1

𝑛

𝐾𝑛
 = lim
𝑛

(𝐶
1
𝜒
𝐾
)
𝑛
, (1)

if the limit exists, where the vertical bars indicate the number
of elements in the enclosed set, 𝐶

1
= (𝐶, 1) is the Cesàro

matrix of order 1, and 𝜒
𝐾
denotes the characteristic sequence

of𝐾 given by

(𝜒
𝐾
)
𝑖
= {

0, if 𝑖 ∉ 𝐾,
1, if 𝑖 ∈ 𝐾.

(2)

A sequence 𝑥 = (𝑥
𝑘
) is said to be statistically convergent

to 𝐿 if for every 𝜀 > 0, the set 𝐾
𝜀
:= {𝑘 ∈ N : |𝑥

𝑘
− 𝐿| ≥ 𝜀} has

natural density zero (cf. Fast [1]); that is, for each 𝜀 > 0,

lim
𝑛

1

𝑛

{𝑘 ≤ 𝑛 :
𝑥𝑘 − 𝐿

 ≥ 𝜀}
 = 0. (3)

In this case, we write 𝐿 = st − lim 𝑥. By the symbol st
we denote the set of all statistically convergent sequences.

Statistical convergence of double sequences is studied in [2,
3].

A matrix 𝐴 = (𝑎
𝑛𝑘
)
∞

𝑛,𝑘=0
is called regular if it transforms

a convergent sequence into a convergent sequence leaving
the limit invariant. The well-known necessary and sufficient
conditions (Silverman-Toeplitz) for 𝐴 to be regular are

(i) ||𝐴|| = sup
𝑛
∑
𝑘
|𝑎
𝑛𝑘
| < ∞;

(ii) lim
𝑛
𝑎
𝑛𝑘
= 0, for each 𝑘;

(iii) lim
𝑛
∑
𝑘
𝑎
𝑛𝑘
= 1.

Freedmann and Sember [4] generalized the natural den-
sity by replacing 𝐶

1
with an arbitrary nonnegative regular

matrix 𝐴. A subset 𝐾 of N has 𝐴-density if

𝛿
𝐴
(𝐾) = lim

𝑛

∑
𝑘∈𝐾

𝑎
𝑛𝑘 (4)

exists. Connor [5] andKolk [6] extended the idea of statistical
convergence to 𝐴-statistical convergence by using the notion
of 𝐴-density.

A sequence 𝑥 is said to be𝐴-statistically convergent to 𝐿 if
𝛿
𝐴
(𝐾
𝜖
) = 0 for every 𝜖 > 0. In this case we write st

𝐴
− lim𝑥

𝑘
=

𝐿. By the symbol st
𝐴
we denote the set of all 𝐴-statistically

convergent sequences.
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In [7], Edely and Mursaleen generalized these statis-
tical summability methods by defining the statistical 𝐴-
summability and studied its relationship with 𝐴-statistical
convergence.

Let 𝐴=(𝑎
𝑖𝑗
) be a nonnegative regular matrix. A sequence

𝑥 is said to be statistically𝐴-summable to 𝐿 if for every 𝜖 > 0,
𝛿({𝑖 ≤ 𝑛 : |𝑦

𝑖
− 𝐿| ≥ 𝜖}) = 0; that is,

lim
𝑛

1

𝑛

{𝑖 ≤ 𝑛 :
𝑦𝑖 − 𝐿

 ≥ 𝜖}
 = 0, (5)

where 𝑦
𝑖
= 𝐴
𝑖
(𝑥). Thus 𝑥 is statistically 𝐴-summable to 𝐿 if

and only if 𝐴𝑥 is statistically convergent to 𝐿. In this case we
write 𝐿 = (𝐴)st − lim𝑥 = st − lim𝐴𝑥. By (𝐴)st we denote the
set of all statistically𝐴-summable sequences. A more general
case of statistically 𝐴-summability is discussed in [8].

Quite recently, Edely [9] defined the concept of 𝐵-
statistical 𝐴-summability for nonnegative regular matrices 𝐴
and 𝐵 which generalizes all the variants and generalizations
of statistical convergence, for example, lacunary statistical
convergence [10], 𝜆-statistical convergence [11], 𝐴-statistical
convergence [6], statistical 𝐴-summability [7], statistical
(𝐶, 1)-summability [12], statistical (𝐻, 1)-summability [13],
statistical (𝑁, 𝑝)-summability [14], and so forth.

Let 𝐴 = (𝑎
𝑖𝑗
) and 𝐵 = (𝑏

𝑛𝑘
) be two nonnegative regular

matrices. A sequence 𝑥 = (𝑥
𝑘
) of real numbers is said to be 𝐵-

statistically𝐴-summable to 𝐿 if for every 𝜖 > 0, the set𝐾(𝜖) =
{𝑖 : |𝑦
𝑖
− 𝐿| ≥ 𝜖} has 𝐵-density zero, thus

𝛿
𝐵
(𝐾 (𝜖)) = lim

𝑛

∑
𝑘∈𝐾(𝜖)

𝑏
𝑛𝑘
= lim
𝑛

(𝐵𝜒
𝐾(𝜖)

)

= lim
𝑛

∑
𝑘

𝑏
𝑛𝑘
𝜒
𝐾(𝜖)

(𝑘) = 0,

(6)

where 𝑦
𝑖
= 𝐴
𝑖
(𝑥) = ∑

𝑗
𝑎
𝑖𝑗
𝑥
𝑗
. In this case we denote by 𝐿 =

(𝐴)st𝐵 − lim𝑥 = st
𝐵
− lim𝐴𝑥. The set of all 𝐵-statistically 𝐴-

summable sequences will be denoted by (𝐴)st𝐵 .

Remark 1. (1) If 𝐴 = 𝐼 (unit matrix), then (𝐴)st𝐵 is reduced
to the set of 𝐵-statistically convergent sequences which can
be further reduced to lacunary statistical convergence and 𝜆-
statistical convergence for particular choice of the matrix 𝐵.

(2) If 𝐵 = (𝐶, 1) matrix, then (𝐴)st𝐵 is reduced to the set
of statistically 𝐴-summable sequences.

(3) If 𝐴 = 𝐵 = (𝐶, 1)matrix, then (𝐴)st𝐵 is reduced to the
set of statistically (𝐶, 1)-summable sequences.

(4) If 𝐵 = (𝐶, 1)matrix and 𝐴 = (𝑎
𝑗𝑘
) are defined by

𝑎
𝑗𝑘
=
{

{

{

𝑝
𝑘

𝑃
𝑗

if 0 ≤ 𝑘 ≤ 𝑗,

0 otherwise,
(7)

then (𝐴)st𝐵 is reduced to the set of statistically (𝑁, 𝑝)-
summable sequences, where 𝑝 = (𝑝

𝑘
) is a sequence of

nonnegative numbers, such that 𝑝
0
> 0 and

𝑃
𝑗
=

𝑗

∑
𝑘=0

𝑝
𝑘
→ ∞ (𝑗 → ∞) . (8)

(5) If 𝐵 = (𝐶, 1)matrix and 𝐴 = (𝑎
𝑗𝑘
) are defined by

𝑎
𝑗𝑘
=
{

{

{

1

𝑘𝑙
𝑗

if 0 ≤ 𝑘 ≤ 𝑗,

0 otherwise,
(9)

where 𝑙
𝑗
= ∑
𝑗

𝑘=0
(1/(𝑘 + 1)), then (𝐴)st𝐵 is reduced to the set

of statistically (𝐻, 1)-summable sequences.
(6) If a sequence is convergent, then it is 𝐵-statistically𝐴-

summable, since 𝐴𝑥 converges and has 𝐵-density zero, but
not conversely.

(7) The spaces st, st
𝐵
, (𝐴)st, and (𝐴)st𝐵 are not compara-

ble, even if 𝐴 = 𝐵( ̸= (𝐶, 1)).
(8) If a sequence is 𝐴-summable, then it is 𝐵-statistically

𝐴-summable.
(9) If a sequence is bounded and 𝐴-statistically con-

vergent, then it is 𝐴-summable and hence statistically 𝐴-
summable ([7], see Theorem 2.1) and 𝐵-statistically 𝐴-
summable but not conversely.

Example 2. (1) Let us define𝐴 = (𝑎
𝑖𝑗
), 𝐵 = (𝑏

𝑛𝑘
), and 𝑥 = (𝑥

𝑘
)

by

𝑎
𝑖𝑗
= {

1; if 𝑗 = 𝑖2,

0; otherwise,

𝑏
𝑛𝑘
=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1

2
0

1

2
0 0 0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅

1

3
0

1

3
0

1

3
0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅

1

4
0

1

4
0

1

4
0

1

4
0 0 0 0 ⋅ ⋅

1

5
0

1

5
0

1

5
0

1

5
0

1

5
0 0 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

𝑥
𝑘
= {

1; if 𝑘 is odd,
0; if 𝑘 is even.

(10)

Then

∞

∑
𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
= {

1; if 𝑖 is odd,
0; if 𝑖 is even. (11)

Here 𝑥 ∉ st, 𝑥 ∉ (𝐴)st, 𝑥 ∉ st
𝐴
, and 𝑥 ∉ (𝐴)st𝐴 , but 𝑥 is

𝐵-statistically 𝐴-summable to 1, since 𝛿
𝐵
{𝑖 : |𝑦
𝑖
− 1| ≥ 𝜖} = 0.

On the other handwe can see that𝑥 is𝐵-summable and hence
𝑥 is 𝐵-statistically 𝐵-summable, 𝐴-statistically 𝐵-summable,
𝐵-statistically convergent, and statistically 𝐵-summable.

Let 𝐹(R) denote the linear space of all real-valued
functions defined onR. Let𝐶(R) be the space of all functions
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𝑓 continuous on R. We know that 𝐶(R) is a Banach space
with norm

𝑓
∞ := sup

𝑥∈R

𝑓 (𝑥)
 , 𝑓 ∈ 𝐶 (R) . (12)

We denote by 𝐶
2𝜋
(R) the space of all 2𝜋-periodic func-

tions 𝑓 ∈ 𝐶(R) which is a Banach space with

𝑓
2𝜋 = sup

𝑡∈R

𝑓 (𝑡)
 . (13)

The classical Korovkin first and second theorems state-
whatfollows [15, 16]:

Theorem I. Let (𝑇
𝑛
) be a sequence of positive linear operators

from 𝐶[0, 1] into 𝐹[0, 1]. Then lim
𝑛
‖𝑇
𝑛
(𝑓, 𝑥) − 𝑓(𝑥)‖

∞
= 0,

for all 𝑓 ∈ 𝐶[0, 1] if and only if lim
𝑛
‖𝑇
𝑛
(𝑓
𝑖
, 𝑥) − 𝑒

𝑖
(𝑥)‖
∞
= 0,

for 𝑖 = 0, 1, 2, where 𝑒
0
(𝑥) = 1, 𝑒

1
(𝑥) = 𝑥, and 𝑒

2
(𝑥) = 𝑥2.

Theorem II. Let (𝑇
𝑛
) be a sequence of positive linear operators

from𝐶
2𝜋
(R) into 𝐹(R). Then lim

𝑛
‖𝑇
𝑛
(𝑓, 𝑥)−𝑓(𝑥)‖

∞
= 0, for

all𝑓 ∈ 𝐶
2𝜋
(R) if and only if lim

𝑛
‖𝑇
𝑛
(𝑓
𝑖
, 𝑥)−𝑓

𝑖
(𝑥)‖
∞
= 0, for

𝑖 = 0, 1, 2, where 𝑓
0
(𝑥) = 1, 𝑓

1
(𝑥) = cos𝑥, and 𝑓

2
(𝑥) = sin𝑥.

We write 𝐿
𝑛
(𝑓; 𝑥) for 𝐿

𝑛
(𝑓(𝑠); 𝑥), and we say that 𝐿 is a

positive operator if 𝐿(𝑓; 𝑥) ≥ 0 for all 𝑓(𝑥) ≥ 0.
The following result was studied by Duman [17] which is

𝐴-statistical analogue of Theorem II.

Theorem A. Let 𝐴 = (𝑎
𝑛𝑘
) be a nonnegative regular matrix,

and let (𝑇
𝑘
) be a sequence of positive linear operators from

𝐶
2𝜋
(R) into 𝐶

2𝜋
(R). Then for all 𝑓 ∈ 𝐶

2𝜋
(R)

st
𝐴
− lim
𝑘→∞

𝑇𝑘 (𝑓; 𝑥) − 𝑓 (𝑥)
2𝜋 = 0 (14)

if and only if

st
𝐴
− lim
𝑘→∞

𝑇𝑘 (1; 𝑥) − 1
2𝜋 = 0,

st
𝐴
− lim
𝑘→∞

𝑇𝑘 (cos 𝑡; 𝑥) − cos𝑥2𝜋 = 0,

st
𝐴
− lim
𝑘→∞

𝑇𝑘 (sin 𝑡; 𝑥) − sin𝑥2𝜋 = 0.

(15)

Recently, Karakuş and Demirci [18] proved Theorem II
for statistical 𝐴-summability.

Theorem B. Let 𝐴 = (𝑎
𝑛𝑘
) be a nonnegative regular matrix,

and let (𝑇
𝑘
) be a sequence of positive linear operators from

𝐶
2𝜋
(R) into 𝐶

2𝜋
(R). Then for all 𝑓 ∈ 𝐶

2𝜋
(R)

st − lim
𝑛→∞



∑
𝑘

𝑎
𝑛𝑘
𝑇
𝑘
(𝑓; 𝑥) − 𝑓 (𝑥)

2𝜋

= 0 (16)

if and only if

st − lim
𝑛→∞



∑
𝑘

𝑎
𝑛𝑘
𝑇
𝑘
(1; 𝑥) − 1

2𝜋

= 0,

st − lim
𝑛→∞



∑
𝑘

𝑎
𝑛𝑘
𝑇
𝑘
(cos 𝑡; 𝑥) − cos𝑥

2𝜋

= 0,

st − lim
𝑛→∞



∑
𝑘

𝑎
𝑛𝑘
𝑇
𝑘
(sin 𝑡; 𝑥) − sin𝑥

2𝜋

= 0.

(17)

Several mathematicians have worked on extending or
generalizing the Korovkin’s theorems in many ways and to
several settings, including function spaces, abstract Banach
lattices, Banach algebras, and Banach spaces. This theory is
very useful in real analysis, functional analysis, harmonic
analysis, measure theory, probability theory, summability
theory, and partial differential equations. But the foremost
applications are concerned with constructive approximation
theory which uses it as a valuable tool. Even today, the
development of Korovkin-type approximation theory is far
frombeingcomplete. Note that the first and the second the-
orems of Korovkin are actually equivalent to the algebraic
and the trigonometric version, respectively, of the classi-
cal Weierstrass approximation theorem [19]. Recently, such
type of approximation theorems has been proved by many
authors by using the concept of statistical convergence and
its variants, for example, [20–28]. Further Korovkin type
approximation theorems for functions of two variables are
proved in [29–32]. In [29, 33] authors have used the concept
of almost convergence. In this paper, we prove Korovkin
second theorem by applying the notion of 𝐵-statistical 𝐴-
summability. We give here an example to justify that our
result is stronger than Theorems II, A, and B. We also study
the rate of 𝐵-statistical 𝐴-summability of a sequence of
positive linear operators defined from 𝐶

2𝜋
(R) into 𝐶

2𝜋
(R).

2. Main Result

Now, we proveTheorem II for 𝐵-statistically 𝐴-summability.

Theorem 3. Let 𝐴 = (a
𝑛𝑘
) and 𝐵 = (𝑏

𝑛𝑘
) be nonnegative

regular matrices, and let (𝑇
𝑘
) be a sequence of positive linear

operators from 𝐶
2𝜋
(R) into 𝐶

2𝜋
(R). Then for all 𝑓 ∈ 𝐶

2𝜋
(R)

st
𝐵
− lim
𝑛→∞



∑
𝑘

𝑎
𝑛𝑘
𝑇
𝑘
(𝑓; 𝑥) − 𝑓 (𝑥)

2𝜋

= 0 (18)

if and only if

st
𝐵
− lim
𝑛→∞



∑
𝑘

𝑎
𝑛𝑘
𝑇
𝑘
(1; 𝑥) − 1

2𝜋

= 0,

st
𝐵
− lim
𝑛→∞



∑
𝑘

𝑎
𝑛𝑘
𝑇
𝑘
(cos 𝑡; 𝑥) − cos𝑥

2𝜋

= 0,

st
𝐵
− lim
𝑛→∞



∑
𝑘

𝑎
𝑛𝑘
𝑇
𝑘
(sin 𝑡; 𝑥) − sin𝑥

2𝜋

= 0.

(19)
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Proof. Since each of 1, cos𝑥, and sin𝑥 belongs to 𝐶
2𝜋
(R),

conditions (19) follow immediately from (18). Let the condi-
tions (19) hold and 𝑓 ∈ 𝐶

2𝜋
(R). Let 𝐼 be a closed subinterval

of length 2𝜋 of R. Fix 𝑥 ∈ 𝐼. By the continuity of 𝑓 at 𝑥, it
follows that for given 𝜀 > 0 there is a number 𝛿 > 0, such that
for all 𝑡

𝑓 (𝑡) − 𝑓 (𝑥)
 < 𝜀, (20)

whenever |𝑡 − 𝑥| < 𝛿. Since 𝑓 is bounded, it follows that
𝑓 (𝑡) − 𝑓 (𝑥)

 ≤ 2
𝑓
2𝜋, (21)

for all 𝑡 ∈ R. For all 𝑡 ∈ (𝑥 − 𝛿, 2𝜋 + 𝑥 − 𝛿], it is well known
that

𝑓 (𝑡) − 𝑓 (𝑥)
 < 𝜀 +

2
𝑓
2𝜋

sin2 (𝛿/2)
𝜓 (𝑡) , (22)

where 𝜓(𝑡) = sin2((𝑡 − 𝑥)/2). Since the function 𝑓 ∈ 𝐶
2𝜋
(R)

is 2𝜋-periodic, the inequality (22) holds for 𝑡 ∈ R.
Now, operating 𝑇

𝑘
(1; 𝑥) to this inequality, we obtain

𝑇𝑘 (𝑓; 𝑥) − 𝑓 (𝑥)


≤ (𝜀 +
𝑓 (𝑥)

)
𝑇𝑘 (1; 𝑥) − 1

 + 𝜀

+

𝑓
2𝜋

sin2 (𝛿/2)
{
𝑇𝑘 (1; 𝑥) − 1

 + |cos𝑥|

×
𝑇𝑘 (cos 𝑡; 𝑥) − cos𝑥

+ |sin𝑥| 𝑇𝑘 (sin 𝑡; 𝑥) − sin𝑥}

≤ 𝜀 + (𝜀 +
𝑓 (𝑥)

 +

𝑓
2𝜋

sin2 (𝛿/2)
)

× {
𝑇𝑘 (1; 𝑥) − 1

 +
𝑇𝑘 (cos 𝑡; 𝑥) − cos𝑥

+
𝑇𝑘 (sin 𝑡; 𝑥) − sin𝑥} .

(23)

Now, taking sup
𝑥∈𝐼

, we get
𝑇𝑘 (𝑓; 𝑥) − 𝑓 (𝑥)

∞

≤ 𝜀 + 𝐾 (
𝑇𝑘 (1; 𝑥) − 1

2𝜋 +
𝑇𝑘 (cos 𝑡; 𝑥) − cos𝑥2𝜋

+
𝑇𝑘 (sin 𝑡; 𝑥) − sin𝑥2𝜋) ,

(24)

where𝐾 := 𝜀+‖𝑓‖
2𝜋
+(‖𝑓‖

2𝜋
/sin2(𝛿/2)). Now replace𝑇

𝑘
(⋅, 𝑥)

by ∑
𝑘
𝑎
𝑚𝑘
𝑇
𝑘
(⋅, 𝑥) and then by 𝐵

𝑚
(⋅, 𝑥) in (24) on both sides.

For a given 𝑟 > 0 choose 𝜀 > 0, such that 𝜀 < 𝑟. Define the
following sets

𝐷 = {𝑚 ≤ 𝑛 :
𝐵𝑚 (𝑓, 𝑥) − 𝑓 (𝑥)

2𝜋 ≥ 𝑟} ,

𝐷
1
= {𝑚 ≤ 𝑛 :

𝐵𝑚 (𝑓1, 𝑥) − 𝑓0
2𝜋 ≥

𝑟 − 𝜀

3𝐾
} ,

𝐷
2
= {𝑚 ≤ 𝑛 :

𝐵𝑚 (𝑓2, 𝑥) − 𝑓1
2𝜋 ≥

𝑟 − 𝜀

3𝐾
} ,

𝐷
3
= {𝑚 ≤ 𝑛 :

𝐵𝑚 (𝑓3, 𝑥) − 𝑓2
2𝜋 ≥

𝑟 − 𝜀

3𝐾
} .

(25)

Then 𝐷 ⊂ 𝐷
1
∪ 𝐷
2
∪ 𝐷
3
, and so 𝛿

𝐵
(𝐷) ≤ 𝛿

𝐵
(𝐷
1
) + 𝛿
𝐵
(𝐷
2
) +

𝛿
𝐵
(𝐷
3
). Therefore, using conditions (19) we get (18).

This completes the proof of the theorem.

3. Rate of 𝐵-Statistical 𝐴-Summability

In this section, we study the rate of 𝐵-statistical 𝐴-
summability of a sequence of positive linear operators defined
from 𝐶

2𝜋
(R) into 𝐶

2𝜋
(R).

Definition 4. Let 𝐴 = (𝑎
𝑖𝑗
) and 𝐵 = (𝑏

𝑛𝑘
) be two nonneg-

ative regular matrices. Let (𝛼
𝑛
) be a positive nonincreasing

sequence. We say that the sequence 𝑥 = (𝑥
𝑘
) is 𝐵-statistically

𝐴-summable to the number 𝐿 with the rate 𝑜(𝛼
𝑛
) if for every

𝜀 > 0,

lim
𝑛

1

𝛼
𝑛

∑
𝑘∈𝐾(𝜖)

𝑏
𝑛𝑘
= 0, (26)

where 𝐾(𝜖) = {𝑖 : |𝑦
𝑖
− 𝐿| ≥ 𝜖} and 𝑦

𝑖
= 𝐴
𝑖
(𝑥) = ∑

𝑗
𝑎
𝑖𝑗
𝑥
𝑗
as

described above. In this case, we write 𝑥
𝑘
−𝐿 = (𝐴)st𝐵 −𝑜(𝛼𝑛).

As usual we have the following auxiliary result whose
proof is standard.

Lemma 5. Let (𝛼
𝑛
) and (𝛽

𝑛
) be two positive nonincreasing

sequences. Let 𝑥 = (𝑥
𝑘
) and 𝑦 = (𝑦

𝑘
) be two sequences, such

that 𝑥
𝑘
− 𝐿
1
= (𝐴)st𝐵 − 𝑜(𝛼

𝑛
) and 𝑦

𝑘
− 𝐿
2
= (𝐴)st𝐵 − 𝑜(𝛽

𝑛
).

Then

(i) 𝑐(𝑥
𝑘
− 𝐿
1
) = (𝐴)st𝐵 − 𝑜(𝛼𝑛), for any scalar 𝑐,

(ii) (𝑥
𝑘
− 𝐿
1
) ± (𝑦

𝑘
− 𝐿
2
) = (𝐴)st𝐵 − 𝑜(𝛾𝑛),

(iii) (𝑥
𝑘
− 𝐿
1
)(𝑦
𝑘
− 𝐿
2
) = (𝐴)st𝐵 − 𝑜(𝛼𝑛𝛽𝑛),

where 𝛾
𝑛
= max{𝛼

𝑛
, 𝑏
𝑛
}.

Now, we recall the notion of modulus of continuity. The
modulus of continuity of 𝑓 ∈ 𝐶

2𝜋
(R), denoted by 𝜔(𝑓, 𝛿), is

defined by

𝜔 (𝑓, 𝛿) = sup
|𝑥−𝑦|<𝛿

𝑓 (𝑥) − 𝑓 (𝑦)
 . (27)

It is well known that

𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜔 (𝑓, 𝛿) (

𝑥 − 𝑦


𝛿
+ 1) . (28)

Then prove the following result.

Theorem 6. Let (𝑇
𝑘
) be a sequence of positive linear operators

from 𝐶
2𝜋
(R) into 𝐶

2𝜋
(R). Suppose that

(i) ‖𝑇
𝑘
(1; 𝑥) − 1‖

2𝜋
= (𝐴)st𝐵 − 𝑜(𝛼𝑛),

(ii) 𝜔(𝑓, 𝜆
𝑘
) = (𝐴)st𝐵 − 𝑜(𝛽𝑛), where 𝜆𝑘 = √𝑇

𝑘
(𝜑
𝑥
; 𝑥)

and 𝜑
𝑥
(𝑦) = sin2((𝑦 − 𝑥)/2).

Then for all 𝑓 ∈ 𝐶
2𝜋
(R), we have

𝑇𝑘 (𝑓; 𝑥) − 𝑓 (𝑥)
2𝜋 = (𝐴)st𝐵 − 𝑜 (𝛾𝑛) , (29)

where 𝛾
𝑛
= max{𝛼

𝑛
, 𝛽
𝑛
}.
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Proof. Let 𝑓 ∈ 𝐶
2𝜋
(R) and 𝑥 ∈ [−𝜋, 𝜋]. Using (28), we have

𝑇𝑘 (𝑓; 𝑥) − 𝑓 (𝑥)
 ≤ 𝑇
𝑘
(
𝑓 (𝑦) − 𝑓 (𝑥)

 ; 𝑥)

+
𝑓 (𝑥)


𝑇𝑘 (1; 𝑥) − 1



≤ 𝑇
𝑘
(

𝑥 − 𝑦


𝛿
+ 1; 𝑥)𝜔 (𝑓, 𝛿)

+
𝑓 (𝑥)


𝑇𝑘 (1; 𝑥) − 1



≤ 𝑇
𝑘
(1 +

𝜋2

𝛿2
sin2 (

𝑦 − 𝑥

2
) ; 𝑥)𝜔 (𝑓, 𝛿)

+
𝑓 (𝑥)


𝑇𝑘 (1; 𝑥) − 1



≤ (𝑇
𝑘
(1; 𝑥) +

𝜋
2

𝛿2
𝑇
𝑘
(𝜑
𝑥
; 𝑥))𝜔 (𝑓, 𝛿)

+
𝑓 (𝑥)


𝑇𝑘 (1; 𝑥) − 1

 .

(30)

Put 𝛿 = 𝜆
𝑘
= √𝑇
𝑘
(𝜑
𝑥
; 𝑥). Hence we get

𝑇𝑘 (𝑓; 𝑥) − 𝑓 (𝑥)
2𝜋

≤
𝑓
2𝜋

𝑇𝑘 (1; 𝑥) − 1
2𝜋 + (1 + 𝜋

2

) 𝜔 (𝑓, 𝜆
𝑘
)

+ 𝜔 (𝑓, 𝜆
𝑘
)
𝑇𝑘 (1; 𝑥) − 1

2𝜋

≤ 𝐾 {
𝑇𝑘 (1; 𝑥) − 1

2𝜋 + 𝜔 (𝑓, 𝜆𝑘)

+ 𝜔 (𝑓, 𝜆
𝑘
)
𝑇𝑘 (1; 𝑥) − 1

2𝜋} ,

(31)

where𝐾 = max{‖𝑓‖
2𝜋
, 1 + 𝜋2}. Hence

𝑇𝑘 (𝑓; 𝑥) − 𝑓 (𝑥)
2𝜋

≤ 𝐾 {
𝑇𝑘 (1; 𝑥) − 1

2𝜋 + 𝜔 (𝑓, 𝜆𝑘) + 𝜔 (𝑓, 𝜆𝑘)

×
𝑇𝑘 (1; 𝑥) 𝑝𝑘 − 1

2𝜋} .

(32)

Now, using Definition 4 and Conditions (i) and (ii), we get
the desired result.

This completes the proof of the theorem.

4. Example and Concluding Remark

In the following we construct an example of a sequence
of positive linear operators satisfying the conditions of
Theorem 3 but does not satisfy the conditions of Theorems
II, A, and B.

For any 𝑛 ∈ N, denote by 𝑆
𝑛
(𝑓) the 𝑛th partial sum of the

Fourier series of 𝑓; that is,

𝑆
𝑛
(𝑓) (𝑥) =

1

2
𝑎
0
(𝑓) +

𝑛

∑
𝑘=1

𝑎
𝑘
(𝑓) cos 𝑘𝑥 + 𝑏

𝑘
(𝑓) sin 𝑘𝑥.

(33)

For any 𝑛 ∈ N, write

𝐹
𝑛
(𝑓) :=

1

𝑛 + 1

𝑛

∑
𝑘=0

𝑆
𝑘
(𝑓) . (34)

A standard calculation gives that for every 𝑡 ∈ R

𝐹
𝑛
(𝑓; 𝑥) :=

1

2𝜋
∫
𝜋

−𝜋

𝑓 (𝑡)
1

𝑛 + 1

𝑛

∑
𝑘=0

sin ((2𝑘 + 1) (𝑥 − 𝑡) /2)
sin ((𝑥 − 𝑡) /2)

𝑑𝑡

=
1

2𝜋
∫
𝜋

−𝜋

𝑓 (𝑡)
1

𝑛 + 1

𝑛

∑
𝑘=0

sin2 ((𝑛 + 1) (𝑥 − 𝑡) /2)
sin2 ((𝑥 − 𝑡) /2)

𝑑𝑡

=
1

2𝜋
∫
𝜋

−𝜋

𝑓 (𝑡) 𝜑
𝑛
(𝑥 − 𝑡) 𝑑𝑡,

(35)

where

𝜑
𝑛
(𝑥)

:=

{{

{{

{

sin2 ((𝑛+1) (𝑥−𝑡) /2)
(𝑛+1) sin2 ((𝑥−𝑡) /2)

if 𝑥 is not a multiple of 2𝜋,

𝑛 + 1 if 𝑥 is a multiple of 2𝜋.
(36)

The sequence (𝜑
𝑛
)
𝑛∈N is a positive kernel which is called the

Fejér kernel, and the corresponding operators 𝐹
𝑛
, 𝑛 ≥ 1, are

called the Fejér convolution operators.We have

𝐹
𝑛
(1; 𝑥) = 1,

𝐹
𝑛
(cos 𝑡; 𝑥) = (

𝑛

𝑛 + 1
) cos𝑥,

𝐹
𝑛
(sin 𝑡; 𝑥) = (

𝑛

𝑛 + 1
) sin𝑥.

(37)

Note that theTheorems II, A, and B hold for the sequence
(𝐹
𝑛
). In fact, we have for every 𝑓 ∈ 𝐶

2𝜋
(R),

lim
𝑛→∞

𝐹
𝑛
(𝑓) = 𝑓. (38)

Let 𝐴 = (𝑎
𝑖𝑗
), 𝐵 = (𝑏

𝑛𝑘
), and 𝑥 = (𝑥

𝑘
) be defined as in

Example 2. Let 𝐿
𝑛
: 𝐶
2𝜋
(R) → 𝐶

2𝜋
(R) be defined by

𝐿
𝑛
(𝑓; 𝑥) = 𝑥

𝑛
𝐹
𝑛
(𝑓; 𝑥) . (39)

Then 𝑥 is not statistically convergent, not 𝐴-statistically
convergent, and not statistically 𝐴-summable, but it is 𝐵-
statistically 𝐴−summable to 1. Since 𝑥 is 𝐵-statistically 𝐴-
summable to 1, it is easy to see that the operator 𝐿

𝑛
satisfies

the conditions (19), and hence Theorem 3 holds. But on
the other hand, Theorems II, A, and B do not hold for
our operator defined by (39), since 𝑥 (and so 𝐿

𝑛
) is not

statistically convergent, not 𝐴-statistically convergent, and
not statistically 𝐴-summable.

Hence ourTheorem 3 is stronger than all the above three
theorems.

Acknowledgments

This joint work was done when the first author visited
University PutraMalaysia as a visiting scientist duringAugust
27–September 25, 2012. The author is very grateful to the
administration of UPM for providing him local hospitalities.



6 Abstract and Applied Analysis

References

[1] H. Fast, “Sur la convergence statistique,” Colloquium Mathe-
maticum, vol. 2, pp. 241–244, 1951.

[2] Mursaleen and O. H. H. Edely, “Statistical convergence of
double sequences,” Journal of Mathematical Analysis and Appli-
cations, vol. 288, no. 1, pp. 223–231, 2003.

[3] S. A. Mohiuddine, A. Alotaibi, and M. Mursaleen, “Statistical
convergence of double sequences in locally solid Riesz spaces,”
Abstract and Applied Analysis, vol. 2012, Article ID 719729, 9
pages, 2012.

[4] A. R. Freedman and J. J. Sember, “Densities and summability,”
Pacific Journal of Mathematics, vol. 95, no. 2, pp. 293–305, 1981.

[5] J. Connor, “On strong matrix summability with respect to a
modulus and statistical convergence,” Canadian Mathematical
Bulletin. Bulletin Canadien de Mathématiques, vol. 32, no. 2, pp.
194–198, 1989.

[6] E. Kolk, “Matrix summability of statistically convergent sequen-
ces,” Analysis, vol. 13, no. 1-2, pp. 77–83, 1993.

[7] O. H. H. Edely and M. Mursaleen, “On statistical 𝐴-
summability,” Mathematical and Computer Modelling, vol. 49,
no. 3-4, pp. 672–680, 2009.

[8] M. Mursaleen and O. H. H. Edely, “Generalized statistical
convergence,” Information Sciences, vol. 162, no. 3-4, pp. 287–
294, 2004.

[9] O. H. H. Edely, “𝐵-statistically 𝐴-summability,” Thai Journal of
Mathematics. In press.

[10] J. A. Fridy and C. Orhan, “Lacunary statistical convergence,”
Pacific Journal of Mathematics, vol. 160, no. 1, pp. 43–51, 1993.

[11] Mursaleen, “𝜆-statistical convergence,” Mathematica Slovaca,
vol. 50, no. 1, pp. 111–115, 2000.
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