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Several new existence theorems on positive, negative, and sign-changing solutions for the following fourth-order beam equation
are obtained: 𝑢(4) = 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ [0, 1]; 𝑢(0) = 𝑢(1) = 𝑢(0) = 𝑢(1) = 0, where 𝑓 ∈ 𝐶([0, 1] ×R1

,R1
). In particular, an infinitely

many sign changing solution theorem is established. The method of the invariant set of decreasing flow is employed to discuss this
problem.

1. Introduction and Main Results

It is well known that the following fourth-order two-point
boundary value problem (BVP):

𝑢
(4)
= 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0

(1)

describes the deformation of an elastic beam both of whose
ends are simply supported at 0 and 1. Owing to the impor-
tance of high-order differential equations both in theory and
practice, much attention has been paid to such problems by a
number of authors, see [1–15] and references therein.

Among these literatures, some of the authors used to
deal with the existence of positive solutions by employing
the cone expansion and compression fixed point theorem
of norm type [1, 2, 5, 6], the five functionals fixed point
theorem [10], and the abstract fixed point index theory [3, 4].
The main assumptions imposed on the nonlinear term 𝑓

included that it is superlinear or sublinear in 𝑢, and its growth
on some intervals is restricted by suitable functions, or it is
asymptotically linear in 0 and∞.

Various methods have been applied to these problems in
recent years. In [7], by using the strongly monotone operator
principle and the critical point theory, Li et al. established

some sufficient conditions for 𝑓 to guarantee that the prob-
lem has a unique solution, at least one nonzero solution,
or infinitely many solutions. In [8], some new existence
theorems on multiple positive, negative, and sign-changing
solutions of BVP (1) were established by combining the
critical point theory and the method of sub- and supsolution.
In [11], the authors obtained a three-solution theorem and
an infinitely-many-solution theorem by applying the Morse
theory, in which they removed a condition in [7]. In [13, 15],
Yang and Zhang got some infinitely many mountain pass
solutions theorems for the problems with parameters by the
mountain pass theorem in order interval, in which they
imposed conditions on 𝑓 to guarantee that the equation has
infinitely many pairs sub- and supsolutions.

Besides, a few papers are concerned with the existence
and multiplicity of the sign-changing solutions for kinds of
fourth-order boundary value problems [8, 9, 12] recently.
One reason is from the following fact. Consider the linear
eigenvalue problem

𝑢
(4)
= 𝜆𝑢, 𝑡 ∈ [0, 1] ,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0.

(2)
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It is known that (2) has an unbounded sequence of eigenval-
ues

𝜋
4
< (2𝜋)

4
< ⋅ ⋅ ⋅ < (𝑚𝜋)

4
< ⋅ ⋅ ⋅ (3)

with corresponding eigenfunctions

sin𝜋𝑡, sin 2𝜋𝑡, . . . , sin𝑚𝜋𝑡, . . . . (4)

Obviously, the first eigenfunction sin𝜋𝑡 > 0 for all 𝑡 ∈
(0, 1) and other eigenfunctions sin𝑚𝜋𝑡 (𝑚 = 2, 3, . . .) are
all sign-changing functions on [0, 1]. This fact suggests that
BVP (1) regarded as a nonlinear perturbation of (2) should
havemore sign-changing solutions than positive and negative
solutions. Another reason is that sign-changing solutions
should havemore complicated properties, such as the times of
changing sign. Thus, sign-changing solutions are interesting
challenges in mathematics. In a word, the study on sign-
changing solutions is the natural extension and deepening
of the previous research on positive solutions. In [12], using
the fixed point index and the critical group, Li et al. obtained
that the fourth-order Neumann problem has at least one
positive solution and two sign-changing solutions under
certain conditions. In [9], Li proved that the fourth-order
problem in which 𝑓 contains the bending moment term 𝑢



has multiple sign-changing solutions by the fixed point index
theory in cones and an antisymmetrical extension method of
solution.

In the present paper, motivated by the above results, we
investigate the positive, negative, and sign-changing solutions
for BVP (1) as well. By applying the method of the invariant
set of decreasing flow, we establish several multiple solutions
theorems. Furthermore, an infinitely many sign changing-
solution theorem is obtained. The comparisons with the
results in the literatures are stated in the remarks below our
main theorems. And we present four simple examples to
which our theorems can be applied, respectively.

For convenience, we list our conditions as follows:

(H1) 𝑓 ∈ 𝐶([0, 1] ×R1
,R1

),

(H2) lim sup𝑢→0|𝑓(𝑡, 𝑢)/𝑢| < 𝜋
4 for all 𝑡 ∈ [0, 1] uni-

formly,

(H3) there exist 𝜇 ∈ (0, 1/2) and𝑀 > 0 such that

𝐹 (𝑡, 𝑢) ≜ ∫

𝑢

0

𝑓 (𝑡, V) dV ⩽ 𝜇𝑢𝑓 (𝑡, 𝑢) ∀ |𝑢| ⩾ 𝑀, 𝑡 ∈ [0, 1] ;

(5)

(H4) 𝑓(𝑡, 0) = 0 for all 𝑡 ∈ [0, 1],

(H5) there exist two real numbers 𝑐 > 0 and 𝑞 > 2 such that





𝑓 (𝑡, 𝑢)





⩽ 𝑐 (1 + |𝑢|

𝑞−1
) ∀ (𝑡, 𝑢) ∈ [0, 1] ×R

1
, (6)

(H6) 𝑓(𝑡, 𝑢) is odd in 𝑢, that is, 𝑓(𝑡, −𝑢) = −𝑓(𝑡, 𝑢) for all
(𝑡, 𝑢) ∈ [0, 1] ×R1.

The following three conditions are a little weaker than
(H2) and (H3), respectively:

(H
2) lim sup𝑢→0+(𝑓(𝑡, 𝑢)/𝑢) < 𝜋

4 for all 𝑡 ∈ [0, 1]

uniformly,
(H

2 ) lim sup𝑢→0(𝑓(𝑡, 𝑢)/𝑢) < 𝜋
4 for all 𝑡 ∈ [0, 1]

uniformly,
(H

3) there exist 𝜇 ∈ (0, 1/2) and𝑀 > 0 such that

𝐹 (𝑡, 𝑢) ≜ ∫

𝑢

0

𝑓 (𝑡, V) 𝑑V ⩽ 𝜇𝑢𝑓 (𝑡, 𝑢) ∀𝑢 ⩾ 𝑀, 𝑡 ∈ [0, 1] .

(7)

Now, the main results can be stated as follows.

Theorem 1. Assume that (𝐻1), (H
2), and (H

3) hold. In
addition, 𝑓(𝑡, 𝑢) ⩾ 0 for all 𝑢 ∈ [0, +∞). Then, BVP (1) has
at least a positive solution in 𝐶4

[0, 1].

Remark 2. We will apply the method of the invariant set of
decreasing flow to prove this theorem in Section 3. When
dealing with BVP (1) by the cone expansion and compression
theorems [16, 17], we usually assume that

lim sup
𝑢→0+

𝑓 (𝑡, 𝑢)

𝑢

= 0, lim sup
𝑢→+∞

𝑓 (𝑡, 𝑢)

𝑢

= +∞. (8)

The first equation is stronger than (H
2), while the latter is

weaker than (H3). So, both of the twomethods have their own
characteristics.

Example 3. Let

𝑓 (𝑡, 𝑢)

= {
𝑎𝑢 + 𝑏 (𝑡) ln (1 + 𝑢) arctan 𝑢 + 𝑐|𝑢|

𝛾
𝑢, (𝑡, 𝑢) ∈ [0, 1] × [0, +∞) ,

0, (𝑡, 𝑢) ∈ [0, 1] × (−∞, 0) ,

(9)

where 𝑎 ∈ [0, 𝜋
4
), 𝑏 ∈ 𝐶([0, 1], [0, +∞)) and 𝑐, 𝛾 > 0. It is

easy to check that all conditions of Theorem 1 are satisfied.
So, BVP (1) with the nonlinear term (9) has at least a positive
solution.

Theorem 4. Assume that (H1), (H
2 ), and (H3) hold. In

addition, 𝑓(𝑡, 𝑢)𝑢 ⩾ 0 for all 𝑢 ∈ R1. Then, BVP (1) has at
least a positive solution and a negative solution in 𝐶4

[0, 1].

Remark 5. In [7], using the mountain pass lemma, Li et al.
obtained that BVP (1) has at least one nonzero solution in
𝐶
4
[0, 1] under the assumptions that (H1), (H


2 ), and (H3)

hold [7, Theorem 3.3]. By adding a condition 𝑓(𝑡, 𝑢)𝑢 ⩾ 0,
we get two solutions, one positive and the other negative. So,
Theorem 4 can be seen as a complement of [7, Theorem 3.3].

Example 6. Let

𝑓 (𝑡, 𝑢) = 𝑎 arctan 𝑢 + 𝑏 (𝑡) 𝑢 

𝑒
𝑢
− 1





+ 𝑐|𝑢|

𝛾
𝑢

for (𝑡, 𝑢) ∈ [0, 1] ×R
1
,

(10)
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where 𝑎 ∈ [0, 𝜋
4
), 𝑏 ∈ 𝐶([0, 1], [0, +∞)) and 𝑐, 𝛾 > 0. It is

easy to verify that all conditions ofTheorem 4 are satisfied. So,
BVP (1)with the nonlinear term (10) has at least two solutions,
one positive and the other negative. Reference [7, Theorem
3.3] can only guarantee a nonzero solution for this example.

Theorem 7. Assume that (H1)–(H5) hold. Then, BVP (1) has
at least a positive solution, a negative solution, and a sign-
changing solution in 𝐶4

[0, 1].

Remark 8. Theorem 7 can be regarded as an improvement
of [8, Corollary 18] though we add a growth condition (H5).
Firstly, the nonlinear term𝑓 here only needs to be continuous
while 𝑓 is locally Lipschitz continuous with respect to 𝑢 and
strictly increasing in [8]. Secondly, as is known, when the
method of the invariant set of decreasing flow is applied to
differential equations, the main difficulty is that the cone
has an empty interior in the function space we work in,
such as the positive cone in 𝐿

2
[0, 1]. Generally, one needs

the 𝐸-regular operator or the bootstrap argument [8]. In
our proof of this theorem, from the idea of [18, 19], we
construct open sets in 𝐿2[0, 1] directly instead of introducing
𝐶0[0, 1] → 𝐿

2
[0, 1] as in [8].

Example 9. Let

𝑓 (𝑡, 𝑢) = 𝑎𝑢 + 𝑏 (𝑡) |sin 𝑢| arctan 𝑢 + 𝑐𝑢4

for (𝑡, 𝑢) ∈ [0, 1] ×R
1
,

(11)

where 𝑎 ∈ [0, 𝜋
4
), 𝑏 ∈ 𝐶[0, 1] and 𝑐 > 0. It is easy

to verify that all conditions of Theorem 7 are satisfied. So,
Theorem 7 ensures that BVP (1) with the nonlinear term (11)
has at least a positive solution, a negative solution, and a sign-
changing solution. Since neither 𝑓(𝑡, 𝑢) nor 𝑓(𝑡, 𝑢) + 𝑚𝑢 is
strictly increasing, Corollary 18 in [8] cannot be applied to
this example.

Theorem 10. Assume that (H1)–(H3), (H5), and (H6) hold.
Then, BVP (1) has infinitely many sign-changing solutions in
𝐶
4
[0, 1].

Remark 11. Using a symmetric mountain pass lemma [20,
Theorem 9.12] due to Rabinowitz, Li et al. obtained an
infinitely many solutions for BVP (1) [7, Theorem 3.4]. In
[11], we obtained a similar conclusion [11, Theorem 1.3] after
removing condition of [7, Theorem 3.4] and strengthening
the differentiability of 𝑓. Yang and Zhang [13, 15] established
some infinitely many mountain pass solutions theorems for
the fourth-order boundary value problems with parameters
by themountain pass theorem in order interval, inwhich they
supposed that 𝑓 is strictly increasing in 𝑢, and the problem
has infinitely many pairs of sub- and supsolutions, such as
the following [15, condition (H3)].

There exist sequences {𝛼𝑖}, {𝛽𝑖} ⊂ 𝐶0[0, 1] satisfying

0 < 𝛼1 < 𝛽1 < ⋅ ⋅ ⋅ < 𝛼𝑖 < 𝛽𝑖 < 𝛼𝑖+1 < 𝛽𝑖+1

< ⋅ ⋅ ⋅ < 𝛼𝑛 < 𝛽𝑛 < ⋅ ⋅ ⋅ ,

(12)

and {𝛼𝑖, 𝛽𝑖} (𝑖 = 1, 2, . . .) is a pair of strict subsolution and
supsolution of BVP. . ..

This condition seems somewhat strong. Actually, it is
not easy to impose conditions on the nonlinear term 𝑓 to
guarantee that [15, condition (H3)] holds. Besides, in [7, 11,
13, 15], though the authors have obtained the existence of
infinitely many solutions, they have not given the signs of
them. In fact, to our knowledge, none of the infinitely-many-
sign-changing-solution theorem for BVP (1) has been found
in the literatures so far. In contrast to [7,Theorem 3.4] and [11,
Theorem 1.3], by adding a growth condition (H5),Theorem 10
getsmore information for those infinite solutions; that is, they
all change their signs in the interval [0, 1]. Compared with
the theorems in [13, 15], our conditions are more natural and
easier to verify.

Example 12. Let

𝑓 (𝑡, 𝑢) = 𝑎 tan 𝑢 + 𝑏 (𝑡) arctan 𝑢 ln (1 + 𝑢2) + 𝑐|𝑢|𝛾𝑢

for (𝑡, 𝑢) ∈ [0, 1] ×R
1
,

(13)

where 𝑎 ∈ [0, 𝜋
4
], 𝑏(𝑡) ∈ 𝐶[0, 1] and 𝑐, 𝛾 > 0. It is easy

to verify that all conditions of Theorem 10 are satisfied. So,
Theorem 10 ensures that BVP (1) with the nonlinear term
(13) has infinitelymany sign-changing solutions.Theorem 3.4
in [7] and Theorem 1.3 in [11] can also guarantee that the
problem has infinitely many solutions but cannot get their
signs.

This paper is organized as follows. In Section 2, we recall
some facts on the method of the invariant set of descending
flow and prove two useful abstract theorems.Themain results
are proved in Section 3.

2. Preliminaries

In this section, we firstly outline some basic concepts on the
method of the invariant set of descending flow. Secondly, four
theorems which will be used in the proofs of our main results
are listed. Among them, two are our new results, and the other
two are due to [19]. Please refer to [21, 22] for more details
about the method of the invariant set of descending flow.

Let 𝑋 be a real Banach space, 𝐽 a 𝐶1 functional defined
on 𝑋, 𝐽(𝑢) the gradient operator of 𝐽 at 𝑢 ∈ 𝑋, and 𝑊 a
pseudogradient vector field for 𝐽. Let

Cr (𝐽) = {𝑢 ∈ 𝑋 : 𝐽

(𝑢) = 𝜃} , 𝑋0 = 𝑋 \ Cr (𝐽) . (14)

For 𝑢0 ∈ 𝑋0, consider the following initial problem in𝑋0:

d
d𝑡
𝜑 (𝑡) = −𝑊(𝜑 (𝑡)) , 𝑡 ⩾ 0,

𝜑 (0) = 𝑢0.

(15)

By the theory of ordinary differential equations in Banach
space, (15) has a unique solution in 𝑋0, denoted by 𝜑(𝑡, 𝑢0),
with the right maximal interval of existence [0, 𝜂(𝑢0)). Note
that 𝜂(𝑢0)may be either a positive number or+∞. It is easy to
see that 𝐽(𝜑(𝑡, 𝑢0)) is monotonically decreasing on [0, 𝜂(𝑢0)),
so 𝜑(𝑡, 𝑢0) is called a descending flow curve.
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Definition 13 (see [21]). A nonempty subset𝑀 of 𝐸 is called
an invariant set of descending flow of 𝐽 if

{𝜑 (𝑡, 𝑢0) : 0 ⩽ 𝑡 < 𝜂 (𝑢0)} ⊂ 𝑀 (16)

for all 𝑢0 ∈ 𝑀 \ Cr (𝐽).

Definition 14 (see [21]). Let 𝑀 and 𝐷 be invariant sets of
descending flow of 𝐽,𝐷 ⊂ 𝑀. Denote

𝐶𝑀 (𝐷) = {𝑢0 : 𝑢0 ∈ 𝐷 or 𝑢0 ∈ 𝑀 \ 𝐷

and there exists 0 < 𝑡 < 𝜂 (𝑢0)

such that 𝜑 (𝑡, 𝑢0) ∈ 𝐷} .

(17)

If 𝐷 = 𝐶𝑀(𝐷), then 𝐷 is called a complete invariant set of
descending flow relative to𝑀.

For a subset 𝑀 of 𝑋, 𝐽 is called satisfying PS condition
on𝑀 if any sequence {𝑢𝑛} ⊂ 𝑀 such that {𝐽(𝑢𝑛)} is bounded
and 𝐽(𝑢𝑛) → 0 as 𝑛 → +∞ possesses a convergent subse-
quence.

Following this, we use 𝜕𝐴𝐵, and int𝐴𝐵 and clos𝐴𝐵 denote
the boundary, the interior, and the closure of the set 𝐵 in set
𝐴, respectively.

Theorem 15 (see [21]). Assume that𝑀 is closed and connected
and is an invariant set of descending flow for 𝐽, and 𝐷 is an
open subset of𝑀 and an invariant set of descending flow for 𝐽
as well. If 𝐶𝑀(𝐷) ̸=𝑀, inf𝑢∈𝜕𝑀𝐷𝐽(𝑢) > −∞, and 𝐽 satisfies PS
condition on𝑀 \ 𝐷, then

inf
𝑢∈𝜕𝑀𝐶𝑀(𝐷)

𝐽 (𝑢) ⩾ inf
𝑢∈𝜕𝑀𝐷

𝐽 (𝑢) > −∞, (18)

inf𝑢∈𝜕𝑀𝐶𝑀(𝐷)𝐽(𝑢) is a critical value of 𝐽, and there exists at least
one point on 𝜕𝑀𝐶𝑀(𝐷) corresponding to this value.

Next, we list four theorems, of which two are our new
results, and two are due to [19].

Assume that𝐻 is a real Hilbert space, 𝑃 is a positive cone
in 𝐻, and the partial order on 𝐻 is given by 𝑃. 𝐽 is a 𝐶1

functional on 𝐻, and 𝐽(𝑢) can be expressed in the form of
𝐽

(𝑢) = 𝑢 − 𝐴𝑢.

Theorem 16. Suppose that 𝐽 satisfies PS condition on 𝑃 and
𝐴 : 𝑃 → 𝑃.𝐷 is an open convex subset of 𝑃 and𝐴(𝜕𝑃𝐷) ⊂ 𝐷.
If there exists 𝑢0 ∈ 𝑃 \ 𝐷 such that inf𝑢∈𝜕𝑃𝐷𝐽(𝑢) > 𝐽(𝑢0), then
𝐽 has at least a positive critical point.

Proof. According to [21, Lemma 2.5], since 𝐴 : 𝑃 → 𝑃

and 𝐴(𝜕𝑃𝐷) ⊂ 𝐷, one can construct a pseudogradient vector
field 𝑊 for 𝐽 such that 𝑃 and 𝐷 both are invariant sets of
descending flow for 𝐽 determined by 𝑊. We only need to
show 𝐶𝑃(𝐷) ̸= 𝑃. In fact, 𝑢0 ∉ 𝐶𝑃(𝐷). Otherwise, if 𝑢0 ∈

𝐶𝑃(𝐷), then there exists 0 < 𝑡

⩽ 𝜂(𝑢0) such that 𝜑(𝑡, 𝑢0) ∈

𝐷. Then, we can find 0 < 𝑡1 < 𝑡
 with 𝜑(𝑡1, 𝑢0) ∈ 𝜕𝑃𝐷.

Thus, 𝐽(𝑢0) ⩾ 𝐽(𝜑(𝑡1, 𝑢0)), which contradicts the fact that
𝐽(𝑢0) < inf𝑢∈𝜕𝑃𝐷𝐽(𝑢).Theorem 15 implies the conclusion.The
proof is completed.

Remark 17. In contrast to the cone expansion and compres-
sion theorems, the operator 𝐴 needs not to be completely
continuous, and 𝐷 needs not to be bounded as well. But 𝐴 is
a gradient operator, and 𝐽 satisfies PS condition. These facts
indicate that both methods have their own characteristics.

By symmetry, we can easily obtain the following theorem,
and we omit its proof.

Theorem 18. In addition to all the conditions of Theorem 16,
suppose that 𝐽 satisfies PS condition on−𝑃, and𝐴 : −𝑃 → −𝑃,
𝐷1 is an open convex subset of −𝑃 and𝐴(𝜕−𝑃𝐷1) ⊂ 𝐷1. If there
exists 𝑢1 ∈ −𝑃 \ 𝐷1 such that inf𝑢∈𝜕−𝑃𝐷𝐽(𝑢) > 𝐽(𝑢1), then 𝐽
has at least two critical points, one is positive, and the other is
negative.

The following two theorems are due to [19]. For ease of
use in Section 3, here we write their special cases. See [19] for
more general results.

Let D± be two closed convex subsets of 𝐻. We need the
following assumptions:

(A1) O = int𝐻D
+
∩ int𝐻D

−
̸= 0,

(A2) 𝐴(D
±
) ⊂ int𝐻D

±,
(A3) there exists a path ℎ : [0, 1] → 𝐻 such that ℎ(0) ∈

(int𝐻D
+
) \D−, ℎ(1) ∈ (int𝐻D

−
) \D+ and

max
𝑠∈[0,1]

𝐽 (ℎ (𝑠)) < 𝛼0 = inf
𝑢∈D+∩D−

𝐽 (𝑢) , (19)

(A4) there exist a number 𝛼1, a sequence {𝐻𝑛} of subspaces
of 𝐻, and a sequence {𝑅𝑛} of positive numbers
satisfying

dim 𝐻𝑛 ⩾ 𝑛 for 𝑛 ∈ N, sup
𝑢∈𝐻𝑛\𝐵𝑛

𝐽 (𝑢) ⩽ 𝛼1 < 𝛼0, (20)

where 𝐵𝑛 = {𝑢 ∈ 𝐻𝑛 : ‖𝑢‖ ⩽ 𝑅𝑛}.

Remark 19. According to [21, Lemma 2.5], we deduce from
(A1) and (A2) that O and D± are the invariant sets of
decreasing flow.

Theorem 20. Assume that (𝐴1)–(𝐴3) hold, and 𝐽 satisfies PS
condition on𝐻. Then, 𝐽 has a critical point in each of the four
mutually disjoint sets: 𝜕𝐻𝐶𝐻(O) \ (D

+
∪ D−

), 𝜕𝐻𝐶𝐻(O) ∩
int𝐻D

+, 𝜕𝐻𝐶𝐻(O) ∩ int𝐻D
−, and O.

Theorem 21. Assume that (A1), (A2), and (A4) hold, and 𝐽
is an even functional and satisfies PS condition on 𝐻. Then,
𝐽 has a sequence of solutions {±𝑢𝑛} in M = 𝜕𝐻𝐶𝐻(O) \
(𝐶𝐻(int𝐻D

+
) ∪ 𝐶𝐻(int𝐻D

−
)) such that

𝐽 (𝑢𝑛) → +∞ as 𝑛 → ∞. (21)

3. Proof of the Main Results

In this section, we will employ the abstract theorems in
Section 2 to proveTheorems 1–10.

Let 𝐸 = 𝐶[0, 1] denote the usual real Banach space with
the norm ‖𝑢‖𝐶 = max𝑡∈[0,1]|𝑢(𝑡)| for all 𝑢 ∈ 𝐶[0, 1]. By 𝐻 =
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𝐿
2
[0, 1]we denote the usual real Hilbert space with the norm

‖𝑢‖ = (∫

1

0
|𝑢(𝑡)|d𝑡)1/2 for 𝑢 ∈ 𝐻. Let

𝑃 = {𝑢 ∈ 𝐻 : 𝑢 (𝑡) ⩾ 0 a.e. 𝑡 ∈ [0, 1]} , (22)

and then 𝑃 is a cone in𝐻 and has an empty interior in𝐻.
Define a functional 𝐽 : 𝐻 → R1 by

𝐽 (𝑢) =

1

2

‖𝑢‖
2
− ∫

1

0

𝐹 (𝑡, 𝐾𝑢 (𝑡)) d𝑡, 𝑢 ∈ 𝐻, (23)

where 𝐹(𝑡, 𝑢) = ∫𝑢
0
𝑓(𝑡, V)dV, 𝐾𝑢(𝑡) = ∫1

0
𝐺(𝑡, 𝑠)𝑢(𝑠)d𝑠 and

𝐺 (𝑡, 𝑠) = {

𝑠 (1 − 𝑡) , 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1,

𝑡 (1 − 𝑠) , 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1.

(24)

Then, it is easy to see that 𝐽 ∈ 𝐶
1
(𝐻,R1

) with derivatives
given by

𝐽

(𝑢) = 𝑢 − 𝐾f𝐾𝑢 ≜ 𝑢 − 𝐴𝑢, ∀𝑢 ∈ 𝐻, (25)

where (f𝑢)(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) is a Nemytskii operator.

Remark 22. The following results are known. See [7] for
details.

(i) 𝐺 : [0, 1] × [0, 1] → [0, 1] is nonnegative continuous
and max(𝑡,𝑠)∈[0,1]×[0,1]𝐺(𝑡, 𝑠) = 1/4.

(ii) f : 𝐸 → 𝐸 is bounded and continuous.
(iii) 𝐾 is linear completely continuous as an operator both

from 𝐸 → 𝐸 and 𝐻 to 𝐻. Moreover, ‖𝐾‖L(𝐻,𝐻) =

1/𝜋
2, whereL(𝐻,𝐻) denotes the Banach space of all

bounded linear operators from𝐻 to𝐻.
(iv) 𝐾2

= 𝐾 ∘ 𝐾 : 𝐻 → 𝐻 is linear, compact, and
symmetric, and the norm ‖𝐾

2
‖L(𝐻,𝐻) = 1/𝜋

4. We
omit the subscriptL(𝐻,𝐻) in the following.

(v) 𝐴 = 𝐾f𝐾 : 𝐻 → 𝐻 is a completely continuous
operator.

(vi) According to [7, Lemma 3.1], BVP (1) has a nontrivial
solution in 𝐶4

[0, 1] if and only if the functional 𝐽 has
a nontrivial critical point in𝐻 (i.e.,𝐴 has a nontrivial
fixed point in 𝐻). More precisely, if 𝑢 ∈ 𝐶

4
[0, 1] is

a solution of (1), then V = 𝐾f𝑢 is a critical point of
𝐽; on the other hand, if V ∈ 𝐻 is a critical point of
𝐽, then 𝐾V is a solution of (1) in 𝐶4

[0, 1]. Moreover,
since𝐾 is a positive operator,𝐾V has the same sign as
V; that is, if V ∈ 𝐻 is a positive/negative/sign-changing
critical point of 𝐽, then𝐾V is a positive/negative/sign-
changing solution of (1) in 𝐶4

[0, 1], respectively.
Before proving main results, we first give several lemmas.

Lemma 23. Let ] = 1/𝜇.
(i) Assume that (H1) and (𝐻

3) hold. Then, 𝐽 satisfies PS
condition on 𝑃, and there exist three positive numbers
𝐶1, 𝐶2, and 𝐶3 such that

𝐹 (𝑡, 𝑢) ⩽ 𝜇𝑢𝑓 (𝑡, 𝑢) + 𝐶1 ∀ (𝑡, 𝑢) ∈ [0, 1] × [0, +∞) , (26)

𝐹 (𝑡, 𝑢) ⩾ 𝐶2|𝑢|
]
− 𝐶3 ∀ (𝑡, 𝑢) ∈ [0, 1] × [0, +∞) . (27)

(ii) Assume that (H1) and (H3) hold. Then, 𝐽 satisfies PS
condition on𝐻, and there exist three positive numbers
𝐶1, 𝐶2, and 𝐶3 such that

𝐹 (𝑡, 𝑢) ⩽ 𝜇𝑢𝑓 (𝑡, 𝑢) + 𝐶1 ∀ (𝑡, 𝑢) ∈ × [0, 1] ×R
1
, (28)

𝐹 (𝑡, 𝑢) ⩾ 𝐶2|𝑢|
]
− 𝐶3 ∀ (𝑡, 𝑢) ∈ [0, 1] ×R

1
. (29)

Proof . Since the proof of (i) is analogous to that of (ii), we
only need to prove (ii).

𝐽 is the special case of 𝐽1 defined in (53) as 𝑚 = 0 and
𝐾1 = 𝐾. See the proof of Lemma 24 for the fact that 𝐽 satisfies
PS condition.

Since ]𝐹(𝑡, 𝑢)−𝑢𝑓(𝑡, 𝑢) is continuous on [0, 1]×[−𝑀,𝑀],
there exists 𝐶1 > 0 such that

𝐹 (𝑡, 𝑢) ⩽ 𝜇𝑢𝑓 (𝑡, 𝑢) + 𝐶1 ∀𝑡 ∈ [0, 1] , 𝑢 ∈ [−𝑀,𝑀] .

(30)

So, by (H3), we obtain

𝐹 (𝑡, 𝑢) ⩽ 𝜇𝑢𝑓 (𝑡, 𝑢) + 𝐶1 ∀𝑡 ∈ [0, 1] , 𝑢 ∈ R
1
. (31)

According to (H3), for all 𝑡 ∈ [0, 1] and 𝑢 ⩾ 𝑀, we have

(

𝐹 (𝑡, 𝑢)

𝑢
]

)



𝑢

=

𝑢
]
𝑓 (𝑡, 𝑢) − ]𝑢]−1𝐹 (𝑡, 𝑢)

𝑢
2]

=

𝑢𝑓 (𝑡, 𝑢) − ]𝐹 (𝑡, 𝑢)

𝑢
]+1

⩾ 0.

(32)

Hence,

𝐹 (𝑡, 𝑢)

𝑢
]

⩾

𝐹 (𝑡,𝑀)

𝑀
]

⩾ 𝑀
−] min

𝑡∈[0,1]
𝐹 (𝑡,𝑀) = 𝐶


> 0 (33)

for all 𝑡 ∈ [0, 1] and 𝑢 ⩾ 𝑀. This implies that 𝐹(𝑡, 𝑢) ⩾ 𝐶
|𝑢|

]

for all 𝑡 ∈ [0, 1] and 𝑢 ⩾ 𝑀. Similarly, we can prove that
there is a constant 𝐶

> 0 such that 𝐹(𝑥, 𝑢) ⩾ 𝐶

|𝑢|

] for all
𝑡 ∈ [0, 1] and 𝑢 ⩽ −𝑀. Since 𝐹(𝑡, 𝑢) − 𝐶2|𝑢|

] is continuous
on [0, 1] × [−𝑀,𝑀], there exists 𝐶3 > 0 such that 𝐹(𝑡, 𝑢) −
𝐶2|𝑢|

]
> −𝐶3 on [0, 1] × [−𝑀,𝑀]. Thus, we have

𝐹 (𝑡, 𝑢) ⩾ 𝐶2|𝑢|
]
− 𝐶3 ∀ (𝑡, 𝑢) ∈ [0, 1] ×R

1
, (34)

where 𝐶2 = min{𝐶
, 𝐶


}.

Proof of Theorem 1. From (H1), we have 𝐴 : 𝑃 → 𝑃.
By (H

2), there exists a sufficiently small number 𝑟 > 0

such that

𝑓 (𝑡, 𝑢) ⩽ 𝜋
4
𝑢, ∀ (𝑡, 𝑢) ∈ [0, 1] × [0, 𝑟] , (35)

𝑓 (𝑡, 𝑢) < 𝜋
4
𝑢, ∀ (𝑡, 𝑢) ∈ [0, 1] × (0, 𝑟] . (36)

Define 𝐷 = {𝑢 ∈ 𝑃 : ‖𝑢‖ < 𝑟} as an open convex subset of 𝑃
then

𝜕𝑃𝐷 = {𝑢 ∈ 𝑃 : ‖𝑢‖ = 𝑟} . (37)
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For given 𝑢 ∈ 𝐻, it follows from (i) of Remark 22 that

|𝐾𝑢 (𝑡)| =











∫

1

0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) d𝑠










⩽

1

4

∫

1

0

|𝑢 (𝑠)| d𝑠

⩽

1

4

(∫

1

0

|𝑢 (𝑠)|
2d𝑠)

1/2

=

1

4

‖𝑢‖ , 𝑡 ∈ [0, 1] .

(38)

This implies that

‖𝐾𝑢‖𝐶 ⩽
1

4

‖𝑢‖ , 𝑢 ∈ 𝐻. (39)

Thus,

‖𝐾𝑢‖𝐶 ⩽
1

4

‖𝑢‖ =

1

4

𝑟, ∀𝑢 ∈ 𝜕𝑃𝐷. (40)

Thereafter, for 𝑢 ∈ 𝜕𝑃𝐷, we have from (35) that

(𝐴𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑡, (𝐾𝑢) (𝑠)) d𝑠

⩽ ∫

1

0

𝐺 (𝑡, 𝑠) 𝜋
4
(𝐾𝑢) (𝑠) d𝑠

= 𝜋
4
(𝐾

2
𝑢) (𝑡) , 𝑡 ∈ [0, 1] .

(41)

Then, by (41), (36), and (iii) of Remark 22, we have

‖𝐴𝑢‖ < 𝜋
4 



𝐾

2
𝑢






⩽ ‖𝑢‖ , ∀𝑢 ∈ 𝜕𝑃𝐷, (42)

namely, 𝐴(𝜕𝑃𝐷) ⊂ 𝐷.
Since 𝐸 → 𝐻, f : 𝐸 → 𝐸 is a bounded continuous

operator and𝐾 is bounded linear operator, there exists𝑀
>

0 such that

‖f𝐾𝑢‖ ⩽ 𝑀
‖𝑢‖ = 𝑀


𝑟, ∀𝑢 ∈ 𝜕𝑃𝐷. (43)

Thus, by (26), Hölder’s inequality, and (43), we have

𝐽 (𝑢) =

1

2

‖𝑢‖
2
− ∫

1

0

𝐹 (𝑡, (𝐾𝑢) (𝑡)) d𝑡

⩾

1

2

𝑟
2
− 𝜇∫

1

0

𝑓 (𝑡, (𝐾𝑢) (𝑡)) (𝐾𝑢) (𝑡) d𝑡 − 𝐶1

⩾

1

2

𝑟
2
− 𝜇 ‖f (𝐾𝑢)‖ ‖𝐾𝑢‖ − 𝐶1

⩾ (

1

2

−

𝜇𝑀


𝜋
2
) 𝑟

2
− 𝐶1

= constant, ∀𝑢 ∈ 𝜕𝑃𝐷.

(44)

Choose 𝑅 > 0. Let 𝑢𝑅(𝑡) = 𝑅 sin𝜋𝑡, 𝑡 ∈ [0, 1]. Obviously,
𝑢𝑅 ∈ 𝑃. Since ] > 2, 𝐿

]
[0, 1] → 𝐻, that is, there exists 𝐶4 > 0

such that

‖⋅‖ ⩽ 𝐶4‖⋅‖𝐿][0,1]. (45)

Consequently, we have from (27) that

𝐽 (𝑢𝑅) =
1

2





𝑢𝑅





2
− ∫

1

0

𝐹 (𝑡, (𝐾𝑢𝑅) (𝑡)) d𝑡

⩽

1

4

𝑅
2
− ∫

1

0

[𝐶2




(𝐾𝑢𝑅) (𝑡)






]
− 𝐶3] d𝑡

=

1

4

𝑅
2
− 𝐶2





𝐾𝑢𝑅






]

𝐿][0,1]
+ 𝐶3

⩽

1

4

𝑅
2
− 𝐶2𝐶

−]
4





𝐾𝑢𝑅






]
+ 𝐶3

=

1

4

𝑅
2
− 𝐶1𝐶

−]
4 𝜋

−2]
(

1

2

)

]/2

𝑅
]
+ 𝐶2.

(46)

Since ] > 2, we have

lim
𝑅→+∞

𝐽 (𝑢𝑅) = −∞. (47)

Combining (47) and (44), we obtain that there exists 𝑢1 ∈

𝑃 \ 𝐷 such that

inf
𝑢∈𝜕𝑃𝐷

𝐽 (𝑢) > 𝐽 (𝑢) . (48)

Now, all the conditions ofTheorem 16 are satisfied.Therefore,
Theorem 16 ensures that BVP (1) has at least a positive
solution. The proof is completed.

Proof of Theorem 4. By the symmetry of 𝑃 and −𝑃, it is
easy to verify that all the conditions of Theorem 18 are
satisfied. Theorem 18 ensures that BVP (1) has at least a
positive solution and a negative solution. This completes the
proof.

In order to prove Theorem 7 and Theorem 10, we need
to construct convex subset D± of 𝐻 and an operator 𝐴
satisfying the assumptions (A1) and (A2). We begin by
transforming BVP (1) into the following equivalent boundary
value problem:

𝑢
(4)
+ 𝑚𝑢 = 𝑓1 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑢 (0) = 𝑢 (1) = 𝑢

(0) = 𝑢


(1) = 0,

(49)

where𝑚 > 0 and𝑓1(𝑡, 𝑢) = 𝑓(𝑡, 𝑢)+𝑚𝑢 for all (𝑡, 𝑢) ∈ [0, 1]×
R1. Let 𝐺1(𝑡, 𝑠) be Green’s function for the linear boundary
value problem

−𝑢

+ 𝑚𝑢 = 0, 𝑢 (0) = 𝑢 (1) = 0, (50)

which is explicitly given by

𝐺1 (𝑡, 𝑠)

= {

(𝜔 sinh𝜔)−1 ⋅ sinh𝜔𝑠 ⋅ sinh𝜔 (1 − 𝑡) , 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1,

(𝜔 sinh𝜔)−1 ⋅ sinh𝜔𝑡 ⋅ sinh𝜔 (1 − 𝑠) , 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1,

(51)
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where 𝜔 = √𝑚, sinh𝑥 = (𝑒
𝑥
− 𝑒

−𝑥
)/2 is the hyperbolic sine

function. It is easy to verify that𝐺1(𝑡, 𝑠) > 0 for all 𝑡, 𝑠 ∈ [0, 1].
Define operators𝐾1, f1 : 𝐶[0, 1] → 𝐶[0, 1], respectively, by

𝐾1𝑢 (𝑡) = ∫

1

0

𝐺1 (𝑡, 𝑠) 𝑢 (𝑠) d𝑠, 𝑡 ∈ [0, 1] ,

∀𝑢 ∈ 𝐶 [0, 1] , 𝐾
2

1 = 𝐾1 ∘ 𝐾1,

f1𝑢 (𝑡) = 𝑓1 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] , ∀𝑢 ∈ 𝐶 [0, 1] .

(52)

Obviously, 𝐾1 and f1 have the same properties of 𝐾 and f as
in Remark 22, respectively. Besides, ‖𝐾1‖ = 1/(𝜋

2
+ 𝑚) and

‖𝐾
2
1‖ = 1/(𝜋

4
+ 𝑚).

Define a functional 𝐽1 : 𝐻 → R1 by

𝐽1 (𝑢) =
1

2

‖𝑢‖
2
− ∫

1

0

𝐹1 (𝑡, 𝐾1𝑢 (𝑡)) d𝑡, 𝑢 ∈ 𝐻, (53)

where 𝐹1(𝑡, 𝑢) = ∫
𝑢

0
𝑓1(𝑡, V)dV. Then, it is easy to see that 𝐽1 ∈

𝐶
1
(𝐻,R1

) with derivatives given by 𝐽1(𝑢) = 𝑢 − 𝐾1f1𝐾1𝑢 for
all 𝑢 ∈ 𝐻. Set

𝐴1 = 𝐾1f1𝐾1. (54)

Then, according to [7, Lemma 3.1], BVP (49) (i.e., BVP
(1)) has a nontrivial solution in 𝐶

4
[0, 1] if and only if the

functional 𝐽1 has a nontrivial critical point in𝐻 (i.e., 𝐴1 has
a nontrivial fixed point in𝐻). Similarly, since𝐾1 is a positive
operator, if V ∈ 𝐻 is a positive/negative/sign-changing critical
point of 𝐽1, then 𝐾1V is a positive/negative/sign-changing
solution of BVP (1) in 𝐶4

[0, 1], respectively.

Lemma 24. Assume that (H1) and (H3) hold. Then, the
functional 𝐽1 satisfies PS condition on𝐻.

Proof. Suppose that {𝑢𝑛} ⊂ 𝐻, and there exists𝑀1 > 0 such
that |𝐽1(𝑢𝑛)| ⩽ 𝑀1 and

𝐽


1 (𝑢𝑛) = 𝑢𝑛 − 𝐴1𝑢𝑛 → 0 in 𝐻 as 𝑛 → ∞. (55)

Notice that

(𝐽


1 (𝑢𝑛) , 𝑢𝑛) = (𝑢𝑛 − 𝐾1f1𝐾1𝑢𝑛, 𝑢𝑛)

=




𝑢𝑛





2
− ∫

1

0

𝑓1 (𝑡, 𝐾1𝑢𝑛 (𝑡))𝐾1𝑢𝑛 (𝑡) d𝑡
(56)

and ‖ 𝐾1‖
2
= 1/(𝜋

2
+ 𝑚)

2. It follows from (28) and the
definition of 𝐽1 that

𝑀1 ⩾ 𝐽 (𝑢𝑛) =
1

2





𝑢𝑛





2
− ∫

1

0

𝐹1 (𝑡, 𝐾1𝑢𝑛 (𝑡)) d𝑡

=

1

2





𝑢𝑛





2
− ∫

1

0

(𝐹 (𝑡, 𝐾1𝑢𝑛 (𝑡)) +
𝑚

2

(𝐾1𝑢𝑛 (𝑡))
2
) d𝑡

⩾

1

2





𝑢𝑛





2
− 𝜇∫

1

0

𝑓 (𝑡, 𝐾1𝑢𝑛 (𝑡))𝐾1𝑢𝑛 (𝑡) d𝑡

−

𝑚

2

∫

1

0

(𝐾1𝑢𝑛 (𝑡))
2d𝑡 − 𝐶1

=

1

2





𝑢𝑛





2
− 𝜇∫

1

0

𝑓1 (𝑡, 𝐾1𝑢𝑛 (𝑡))𝐾1𝑢𝑛 (𝑡) d𝑡

− (

1

2

− 𝜇)𝑚




𝐾1𝑢𝑛






2
− 𝐶1

⩾

1

2





𝑢𝑛





2
− 𝜇∫

1

0

𝑓1 (𝑡, 𝐾1𝑢𝑛 (𝑡))𝐾1𝑢𝑛 (𝑡) d𝑡

− (

1

2

− 𝜇)𝑚




𝐾1





2



𝑢𝑛





2
− 𝐶1

= (

1

2

− 𝜇)




𝑢𝑛





2
+ 𝜇 (𝐽



1 (𝑢𝑛) , 𝑢𝑛)

− (

1

2

− 𝜇)

𝑚

(𝜋
2
+ 𝑚)

2





𝑢𝑛





2
− 𝐶1

⩾ (

1

2

− 𝜇)(1 −

𝑚

(𝜋
2
+ 𝑚)

2
)




𝑢𝑛





2

− 𝜇






𝐽


1 (𝑢𝑛)










𝑢𝑛




− 𝐶1, 𝑛 = 1, 2, . . . . (57)

Since 𝐽1(𝑢𝑛) → 0 as 𝑛 → ∞, there exists𝑁0 ∈ N such that

𝑀1 ⩾ (
1

2

− 𝜇)(1 −

𝑚

(𝜋
2
+ 𝑚)

2
)




𝑢𝑛





2

−




𝑢𝑛




− 𝐶1, 𝑛 > 𝑁0.

(58)

This implies that {𝑢𝑛} ⊂ 𝐻 is bounded. Since 𝐴1 : 𝐻 → 𝐻

is completely continuous, we have from (55) that {𝑢𝑛} has a
convergent subsequence in𝐻. Thus, 𝐽1 satisfies PS condition
on𝐻.

Lemma 25. Assume that (H1)–(H5) hold. Then, there exist
𝑚 > 0 and 𝜀0 > 0 such that

𝐴1 (D
±

𝜀 ) ⊂ int (D±

𝜀 ) for 𝜀 ∈ (0, 𝜀0] , (59)

where 𝐴1 is as defined in (54) and

D
±

𝜀 = {𝑢 ∈ 𝐻 : dist (𝑢, ±𝑃) ⩽ 𝜀} . (60)

Proof. As a consequence of (H1)–(H3) and (H5), there exists
𝑚 > 0 such that

𝑢𝑓 (𝑡, 𝑢) + 𝑚𝑢
2
> 0 ∀𝑡 ∈ [0, 1] , 𝑢 ∈ R

1 with 𝑢 ̸= 0. (61)
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By (H2) and (H5), there exist 𝛿 > 0 and 𝑐1 > 0 such that





𝑓 (𝑡, 𝑢) + 𝑚𝑢





⩽ (𝜋

4
+ 𝑚 − 𝛿) |𝑢| + 𝑐1|𝑢|

𝑞−1

∀ (𝑡, 𝑢) ∈ [0, 1] ×R
1
.

(62)

Next, we show that there exists 𝜀0 > 0 such that

dist (𝐴1𝑢, 𝑃) < dist (𝑢, 𝑃) as 0 < dist (𝑢, 𝑃) ⩽ 𝜀0, (63)

dist (𝐴1𝑢, −𝑃) < dist (𝑢, −𝑃) as 0 < dist (𝑢, −𝑃) ⩽ 𝜀0.
(64)

For any 𝑢 ∈ 𝐻, define its positive part and negative part as
follows:

𝑢
+
(𝑡) = max {𝑢 (𝑡) , 0} , 𝑢

−
(𝑡) = min {𝑢 (𝑡) , 0} . (65)

Obviously, 𝑢 = 𝑢+ + 𝑢− for all 𝑢 ∈ 𝐻. From (61), we have

𝑓1 (𝑡, 𝑢) = 𝑓 (𝑡, 𝑢) + 𝑚𝑢 > 0 ∀𝑢 > 0,

𝑓1 (𝑡, 𝑢) = 𝑓 (𝑡, 𝑢) + 𝑚𝑢 < 0 ∀𝑢 < 0.

(66)

This implies that

(𝑓1 (𝑡, 𝑢))
−
= (𝑓 (𝑡, 𝑢) + 𝑚𝑢)

−
= 𝑓 (𝑡, 𝑢

−
) + 𝑚𝑢

− (67)

for all 𝑢 ∈ 𝐻. Since𝐾1 is a positive operator, (𝐾1𝑢)
−
= 𝐾1𝑢

−.
So, we have from (67) that

(𝐴1𝑢)
−
= (𝐾1f1𝐾1𝑢)

−
= 𝐾1(f1𝐾1𝑢)

−

= 𝐾1f1(𝐾1𝑢)
−
= 𝐾1f1𝐾1𝑢

−
(68)

for all 𝑢 ∈ 𝐻. For any 𝑢 ∈ 𝐻, it follows that





𝐾1𝑢

−
(𝑡)




=











∫

1

0

𝐺1 (𝑡, 𝑠) 𝑢
−
(𝑠) d𝑠











⩽ max
(𝑡,𝑠)∈[0,1]×[0,1]

𝐺1 (𝑡, 𝑠) ∫

1

0





𝑢
−
(𝑠)




d𝑠

⩽ max
(𝑡,𝑠)∈[0,1]×[0,1]

𝐺1 (𝑡, 𝑠) (∫

1

0





𝑢
−
(𝑠)





2d𝑠)
1/2

= max
(𝑡,𝑠)∈[0,1]×[0,1]

𝐺1 (𝑡, 𝑠)




𝑢
−



, 𝑡 ∈ [0, 1] .

(69)

Thereafter, for 𝑡 ∈ [0, 1], we have

𝐾1 (




𝐾1𝑢

−
(𝑡)





𝑞−1
) ⩽ 𝐾1 [( max

(𝑡,𝑠)∈[0,1]×[0,1]
𝐺1 (𝑡, 𝑠)





𝑢
−



)

𝑞−1

]

= 𝑐2




𝑢
−




𝑞−1
,

(70)

where 𝑐2 = (max(𝑡,𝑠)∈[0,1]×[0,1] ∫
1

0
𝐺(𝑡, 𝑠)d𝑠)𝑞 > 0.

Consider 𝑢 ∈ 𝐻 and set V = 𝐴1𝑢. Then, by (68), (62), and
(70), we obtain





V
−




2
= ∫

1

0






(𝐾1f1𝐾1𝑢)

−




2
d𝑡

= ∫

1

0





𝐾1 (𝑓 (𝑡, 𝐾1𝑢

−
) + 𝑚𝐾1𝑢

−
)





2d𝑡

⩽ ∫

1

0








𝐾1 ((𝜋
4
+ 𝑚 − 𝛿)





𝐾1𝑢

−



+ 𝑐1





𝐾1𝑢

−




𝑞−1
)








2

d𝑡

= ∫

1

0

[(𝜋
4
+ 𝑚 − 𝛿)






𝐾

2

1𝑢
−



+ 𝑐1𝐾1 (





𝐾1𝑢

−




𝑞−1
)]

2

d𝑡

⩽ ∫

1

0

[(𝜋
4
+ 𝑚 − 𝛿)






𝐾

2

1𝑢
−



+ 𝑐1𝑐2‖𝑢‖

𝑞−1
]

2
d𝑡

=






(𝜋

4
+ 𝑚 − 𝛿)






𝐾

2

1𝑢
−



+ 𝑐1𝑐2‖𝑢‖

𝑞−1




2
.

(71)

Therefore, we obtain that





V
−



⩽






(𝜋

4
+ 𝑚 − 𝛿)






𝐾

2

1𝑢
−



+ 𝑐1𝑐2‖𝑢‖

𝑞−1




⩽ (𝜋
4
+ 𝑚 − 𝛿)






𝐾

2

1𝑢
−



+ 𝑐1𝑐2





𝑢
−




𝑞−1

⩽ (1 − 𝛿(𝜋
4
+ 𝑚)

−1
)




𝑢
−



+ 𝑐1𝑐2





𝑢
−




𝑞−1
.

(72)

Since V = V+ + V− and V+ ∈ 𝑃,

dist (V, 𝑃) ⩽ 

V − V

+



=




V
−



. (73)

Thus, it follows from (72) that

dist (V, 𝑃) ⩽ (1 − 𝛿(𝜋4 + 𝑚)
−1
)




𝑢
−



+ 𝑐1𝑐2





𝑢
−




𝑞−1
. (74)

For any 𝑤 ∈ 𝑃, we have




𝑢
−



⩽ ‖𝑢 − 𝑤‖ . (75)

In fact, let 𝐼1 = {𝑡 ∈ [0, 1] : 𝑢(𝑡) ⩾ 0} = {𝑡 ∈ [0, 1] : 𝑢
−
(𝑡) = 0},

𝐼2 = [0, 1] \ 𝐼1. Then, 𝑢−(𝑡) = 𝑢(𝑡) < 0 for all 𝑡 ∈ 𝐼2. So,

𝑢 (𝑡) − 𝑤 (𝑡) ⩽ 𝑢 (𝑡) = 𝑢
−
(𝑡) < 0 (76)

for all 𝑡 ∈ 𝐼2, and then

|𝑢 (𝑡) − 𝑤 (𝑡)| ⩾




𝑢
−
(𝑡)





(77)

for all 𝑤 ∈ 𝑃 and 𝑡 ∈ 𝐼2. Thus

‖𝑢 − 𝑤‖
2
⩾ ∫

𝐼2

|𝑢 − 𝑤|
2d𝑡 ⩾ ∫

𝐼2





𝑢
−




2d𝑡 = 

𝑢
−




2
. (78)

Combining (74) and (75), we deduce that

dist (V, 𝑃) ⩽ (1 − 𝛿(𝜋4 + 𝑚)
−1
) ‖𝑢 − 𝑤‖ + 𝑐1𝑐2‖𝑢 − 𝑤‖

𝑞−1

(79)
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for all 𝑤 ∈ 𝑃. Consequently,

dist (V, 𝑃) ⩽ (1 − 𝛿(𝜋4 + 𝑚)
−1
) dist (𝑢, 𝑃)

+ 𝑐1𝑐2(dist (𝑢, 𝑃))
𝑞−1

< dist (𝑢, 𝑃) + 𝑐1𝑐2(dist (𝑢, 𝑃))
𝑞−1
.

(80)

Since 𝑞 > 2, there exists 𝜀0 > 0 such that

dist (V, 𝑃) < dist (𝑢, 𝑃) as 0 < dist (𝑢, 𝑃) ⩽ 𝜀0. (81)

Similarly, we can find 𝜀0 > 0 small enough such that (64)
holds. Up to now, these constants 𝑚 > 0 and 𝜀0 > 0 are as
required. The proof is completed.

Proof of Theorem 7. We only need to verify that all the con-
ditions of Theorem 20 hold. From Lemmas 25 and 24, 𝐽1
satisfies PS condition on 𝐻, and it is easy to see that 𝐴1 and
D±

𝜀 satisfy (A1) and (A2). Now, we show that (A3) holds.
It follows from (59) that 𝐴1 has no fixed point on 𝜕𝐻D

±
𝜀

for 𝜀 ∈ (0, 𝜀0]. This implies that

Cr (𝐽1) ∩ (D
+

𝜀 ∩D
−

𝜀 ) = {𝜃} , (82)

where 𝜃 denotes the function 𝑢(𝑡) ≡ 0 for 𝑡 ∈ [0, 1]. Then, by
(59) and [19, Lemma 3.2],

inf
𝑢∈D+
𝜀
∩D−
𝜀

𝐽1 (𝑢) = 𝐽1 (𝜃) = 0. (83)

Define a path ℎ𝑅 : [0, 1] → 𝐻 as

ℎ𝑅 (𝑠) = 𝑅 cos𝜋𝑠 sin𝜋𝑡 + 𝑅 sin𝜋𝑠 sin 2𝜋𝑡, 𝑅 > 0. (84)

Then, ℎ𝑅(0) = 𝑅 sin𝜋𝑡 and ℎ𝑅(1) = −𝑅 sin𝜋𝑡. Since

dist (±𝑅 sin𝜋𝑡, ∓𝑃) = ‖𝑅 sin𝜋𝑡‖ = 𝑅

√2

, (85)

it is easy to see that ℎ𝑅(0) ∈ (int𝐻D
+
𝜀 ) \ D

−
𝜀 and ℎ𝑅(1) ∈

(int𝐻D
−
𝜀 ) \D

+
𝜀 as 𝑅 is large enough.

It follows from (29), (45), and a direct computation that

𝐽1 (ℎ𝑅 (𝑠)) =
1

2





ℎ𝑅 (𝑠)






2
− ∫

1

0

𝐹1 (𝑡, 𝐾1ℎ𝑅 (𝑠)) d𝑡

⩽

1

4

𝑅
2

− ∫

1

0

(𝐶2




𝐾1ℎ𝑅 (𝑠)






]
− 𝐶3 +

1

2

𝑚(𝐾1ℎ𝑅 (𝑠))
2
) d𝑡

=

1

4

𝑅
2
− 𝐶2





𝐾1ℎ𝑅 (𝑠)






]

𝐿][0,1]

−

1

2

𝑚




𝐾1ℎ𝑅 (𝑠)






2
+ 𝐶3

⩽

1

4

𝑅
2
− 𝐶2𝐶

−]
4





𝐾1ℎ𝑅 (𝑠)






]

−

1

2

𝑚




𝐾1ℎ𝑅 (𝑠)






2
+ 𝐶3

=

1

4

𝑅
2
− 𝐶2𝐶

−]
4 [𝑔 (𝑠)]

]
𝑅
]
−

1

2

𝑚[𝑔 (𝑠)]
2
𝑅
2
+ 𝐶3

⩽ 𝐶5𝑅
2
− 𝐶6𝑅

]
+ 𝐶3,

(86)

where

𝑔 (𝑠)

= (

(𝑚
2
+2𝜋

2
𝑚+𝜋

4
) sin2𝜋𝑠+(𝑚2

+8𝜋
2
𝑚+16𝜋

4
) cos2𝜋𝑠

2𝑚
4
+ 20𝜋

2
𝑚

3
+ 66𝜋

4
𝑚

2
+ 80𝜋

6
𝑚 + 32𝜋

8
)

1/2

,

𝐶5 =
1

4

−

1

2

𝑚min
𝑠∈[0,1]

(𝑔 (𝑠))
2
,

𝐶6 = 𝐶2𝐶
−]
4 min

𝑠∈[0,1]
(𝑔 (𝑠))

]
> 0.

(87)

Since ] > 2, we have

lim
𝑅→+∞

max
𝑠∈[0,1]

𝐽1 (ℎ𝑅 (𝑠)) = −∞. (88)

Therefore,

max
𝑠∈[0,1]

𝐽1 (ℎ𝑅 (𝑠)) < 0 = inf
𝑢∈D+
𝜀
∩D−
𝜀

𝐽1 (𝑢) (89)

as 𝑅 is large enough.
Now, all the conditions of Theorem 20 are satisfied, and

Theorem 20 ensures that BVP (1) has at least four solutions.
According to the construction of D±

𝜀 and the locations of
these solutions, we can easily see that one is zero, one is
positive, one is negative, and one is sign changing. This
completes the proof.

Proof of Theorem 10. From Lemmas 25 and 24, 𝐽1 satisfies PS
condition on 𝐻, and it is easy to see that 𝐴1 and D±

𝜀 satisfy
(A1) and (A2). From (H6), 𝐽1 is an even functional. Next, we
show that (A4) holds.
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Denote that 𝐻𝑛 = span {𝑒1, 𝑒2, . . . , 𝑒𝑛}, where 𝑒𝑘 = √2

sin 𝑘𝜋𝑡, 𝑘 = 1, 2, . . . , 𝑛. For 𝑢 ∈ 𝐻𝑛, there exist 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈
R1 such that

𝑢 = 𝑎1𝑒1 + 𝑎2𝑒2 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑒𝑛, 𝑟 = ‖𝑢‖ = (

𝑛

∑

𝑖=1

𝑎
2

𝑖 )

1/2

.

(90)

So, we have from (29) that

𝐽1 (𝑢) =
1

2

‖𝑢‖
2
− ∫

1

0

𝐹1 (𝑡, 𝐾1𝑢 (𝑡)) d𝑡

⩽

1

2

𝑟
2
− ∫

1

0

(𝐶2




𝐾1𝑢 (𝑡)






]
− 𝐶3 +

1

2

𝑚(𝐾1𝑢 (𝑡))
2
) d𝑡

=

1

2

𝑟
2
− 𝐶2





𝐾1𝑢






]

𝐿][0,1]
−

1

2

𝑚




𝐾1𝑢






2
+ 𝐶3

⩽

1

2

𝑟
2
− 𝐶2𝐶

−]
4





𝐾1𝑢






]
−

1

2

𝑚




𝐾1𝑢






2
+ 𝐶3

=

1

2

𝑟
2
− 𝐶2𝐶

−]
4












𝑛

∑

𝑖=1

𝑎𝑖𝜆𝑖𝑒𝑖












]

−

1

2

𝑚












𝑛

∑

𝑖=1

𝑎𝑖𝜆𝑖𝑒𝑖












2

+ 𝐶3

=

1

2

𝑟
2
− 𝐶2𝐶

−]
4 (

𝑛

∑

𝑖=1

𝑎
2

𝑖 𝜆
2

𝑖)

]/2

−

1

2

𝑚(

𝑛

∑

𝑖=1

𝑎
2

𝑖 𝜆
2

𝑖) + 𝐶3

⩽

1

2

𝑟
2
− 𝐶2𝐶

−]
4 (𝜆

2

𝑛

𝑛

∑

𝑖=1

𝑎
2

𝑖 )

]/2

−

1

2

𝑚(𝜆
2

𝑛

𝑛

∑

𝑖=1

𝑎
2

𝑖 ) + 𝐶3

=

1

2

(1 − 𝑚𝜆
2

𝑛) 𝑟
2
− 𝐶2𝐶

−]
4 𝜆𝑛𝑟

]
+ 𝐶3,

(91)

where 𝜆𝑖 denotes the 𝑖th eigenvalue of𝐾1. Consequently,

lim
‖𝑢‖→+∞

𝐽 (𝑢) = −∞, 𝑢 ∈ 𝐻𝑛. (92)

This implies that

sup
𝑢∈𝐻𝑛\𝐵𝑛

𝐽1 (𝑢) ⩽ 𝛼1 < 𝛼0 = 0 = inf
𝑢∈D+
𝜀
∩D−
𝜀

𝐽1 (𝑢) , (93)

where 𝐵𝑛 = {𝑢 ∈ 𝐻𝑛 : ‖𝑢‖𝐻 ⩽ 𝑅𝑛}. Up to now, all the con-
ditions of Theorem 21 are satisfied. So, BVP (1) has infinitely
many solutions in

M = 𝜕𝐻𝐶𝐻 (O) \ (𝐶𝐻 (int𝐻D
+

𝜀 ) ∪ 𝐶𝐻 (int𝐻D
−

𝜀 )) . (94)

Obviously, all of them are sign changing. This completes the
proof.
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