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This paper considers dynamical behaviors of a class of fuzzy impulsive reaction-diffusion delayed cellular neural networks
(FIRDDCNNs) with time-varying periodic self-inhibitions, interconnection weights, and inputs. By using delay differential
inequality, M-matrix theory, and analytic methods, some new sufficient conditions ensuring global exponential stability of the
periodic FIRDDCNN model with Neumann boundary conditions are established, and the exponential convergence rate index is
estimated.The differentiability of the time-varying delays is not needed. An example is presented to demonstrate the efficiency and
effectiveness of the obtained results.

1. Introduction

The fuzzy cellular neural networks (FCNNs) model, which
combines fuzzy logic with the structure of traditional neural
networks (CNNs) [1–3], has been proposed by Yang et al.
[4, 5]. Unlike previous CNNs structures, the FCNNs model
has fuzzy logic between its template and input and/or output
besides the “sum of product” operation. Studies have shown
that the FCNNs model is a very useful paradigm for image
processing and pattern recognition [6–8]. These applications
heavily depend on not only the dynamical analysis of equi-
librium points but also on that of the periodic oscillatory
solutions. In fact, the human brain is naturally in periodic
oscillatory [9], and the dynamical analysis of periodic oscil-
latory solutions is very important in learning theory [10, 11],
because learning usually requires repetition. Moreover, an
equilibriumpoint can be viewed as a special periodic solution
of neural networks with arbitrary period. Stability analysis
problems for FCNNs with and without delays have recently
been probed; see [12–22] and the references therein. Yuan et
al. [13] have investigated stability of FCNNs by linear matrix
inequality approach, and several criteria have been provided

for checking the periodic solutions for FCNNs with time-
varying delays. Huang [14] has probed exponential stability of
fuzzy cellular neural networks with distributed delay, without
considering reaction-diffusion effects.

Strictly speaking, reaction-diffusion effects cannot be
neglected in both biological and man-made neural net-
works [19–32], especially when electrons are moving in
noneven electromagnetic field. In [19], stability is considered
for FCNNs with diffusion terms and time-varying delay.
Wang and Lu [20] have probed global exponential stability
of FCNNs with delays and reaction-diffusion terms. Song
and Wang [21] have studied dynamical behaviors of fuzzy
reaction-diffusion periodic cellular neural networks with
variable coefficients and delays without considering pulsing
effects. Wang et al. [22] have discussed exponential stabil-
ity of impulsive stochastic fuzzy reaction-diffusion Cohen-
Grossberg neural networks withmixed delays. Zhao andMao
[30] have investigated boundedness and stability of nonau-
tonomous cellular neural networks with reaction-diffusion
terms. Zhao and Wang [31] have considered existence of
periodic oscillatory solution of reaction-diffusion neural
networkswith delayswithout fuzzy logic and impulsive effect.
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As we all know, many practical systems in physics, biol-
ogy, engineering, and information science undergo abrupt
changes at certain moments of time because of impulsive
inputs [33]. Impulsive differential equations and impulsive
neural networks have been received much interest in recent
years; see, for example, [34–42] and the references therein.
Yang and Xu [36] have investigated existence and exponential
stability of periodic solution for impulsive delay differential
equations and applications. Li and Lu [38] have discussed
global exponential stability and existence of periodic solution
of Hopfield-type neural networks with impulses without
reaction-diffusion. To the best of our knowledge, few authors
have probed the existence and exponential stability of the
periodic solutions for the FIRDDCNN model with variable
coefficients, and time-varying delays. As a result of the
simultaneous presence of fuzziness, pulsing effects, reaction-
diffusion phenomena, periodicity, variable coefficients and
delays, the dynamical behaviors of this kind ofmodel become
much more complex and have not been properly addressed,
which still remain important and challenging.

Motivated by the above discussion, we will establish some
sufficient conditions for the existence and exponential stabil-
ity of periodic solutions of this kind of FIRDDCNN model,
applying delay differential inequality, 𝑀-matrix theory, and
analytic methods. An example is employed to demonstrate
the usefulness of the obtained results.

Notations. Throughout this paper, R𝑛 and R𝑛×𝑚 denote,
respectively, the 𝑛-dimensional Euclidean space and the set
of all 𝑛 ×𝑚 real matrices.The superscript “T” denotes matrix
transposition and the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌),
where 𝑋 and 𝑌 are symmetric matrices, means that 𝑋 − 𝑌

is positive semidefinite (resp., positive definite). Ω = {𝑥 =

(𝑥
1
, . . . , 𝑥

𝑚
)
T
, |𝑥
𝑖
| < 𝜇} is a bounded compact set in space

R𝑚 with smooth boundary 𝜕Ω and measure mesΩ > 0;
Neumann boundary condition 𝜕𝑢

𝑖
/𝜕𝑛 = 0 is the outer

normal to 𝜕Ω; 𝐿2(Ω) is the space of real functions Ω which
are 𝐿
2 for the Lebesgue measure. It is a Banach space with

the norm ‖𝑢(𝑡, 𝑥)‖
2

= (∑
𝑛

𝑖=1
‖𝑢
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2

2
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1/2, where 𝑢(𝑡, 𝑥) =
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1
(𝑡, 𝑥), . . .,𝑢
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(𝑡, 𝑥))

T, ‖𝑢
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2
= (∫

Ω

|𝑢
𝑖
(𝑡, 𝑥)|

2

𝑑𝑥)
1/2,

|𝑢(𝑡, 𝑥)| = (|𝑢
1
(𝑡, 𝑥)|, . . . , |𝑢

𝑛
(𝑡, 𝑥)|)

T. For function 𝑔(𝑥) with
positive period 𝜔, we denote 𝑔 = max

𝑡∈[0,𝜔]
𝑔(𝑡), 𝑔 =

min
𝑡∈[0,𝜔]

𝑔(𝑡). Sometimes, the arguments of a function or a
matrix will be omitted in the analysis when no confusion can
arise.

2. Preliminaries

Consider the impulsive fuzzy reaction-diffusion delayed cel-
lular neural networks (FIRDDCNN) model:

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

− 𝑐
𝑖
(𝑡) 𝑢
𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) + 𝐽

𝑖
(𝑡)

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) +

𝑛

⋁

𝑗=1

𝐻
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω,

𝑢
𝑖
(𝑡
+

𝑘
, 𝑥) − 𝑢

𝑖
(𝑡
−

𝑘
, 𝑥) = 𝐼

𝑖𝑘
(𝑢
𝑖
(𝑡
−

𝑘
, 𝑥)) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ Z

+
, 𝑥 ∈ Ω,

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑛
= 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω,

𝑢
𝑖
(𝑡
0
+ 𝑠, 𝑥) = 𝜓

𝑖
(𝑠, 𝑥) , −𝜏

𝑗
≤ 𝑠 ≤ 0, 𝑥 ∈ Ω,

(1)

where 𝑛 ≥ 2 is the number of neurons in the network and
𝑢
𝑖
(𝑡, 𝑥) corresponds to the state of the 𝑖th neuron at time 𝑡

and in space 𝑥; 𝐷 = diag(𝐷
1
, 𝐷
2
, . . . , 𝐷
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) is the diffusion-
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𝑘
) is the Laplace operator;

𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥)) denotes the activation function of the 𝑗th unit

and 𝑣
𝑗
(𝑡) the activation function of the 𝑗th unit; 𝐽

𝑖
(𝑡) is an

input at time 𝑡; 𝑐
𝑖
(𝑡) > 0 represents the rate with which the

𝑖th unit will reset its potential to the resting state in isolation
when disconnected from the networks and external inputs
at time 𝑡; 𝑎

𝑖𝑗
(𝑡) and 𝑏

𝑖𝑗
(𝑡) are elements of feedback template

and feed forward template at time 𝑡, respectively.Moreover, in
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and introduce the norm ‖𝜓(𝑡)‖
2
= (∑
𝑛

𝑖=1
‖𝜓
𝑖
(𝑡)‖
2

2
)
1/2, where

‖𝜓
𝑖
(𝑡)‖
2
= (∫
Ω

|𝜓
𝑖
(𝑡, 𝑥)|

2
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Throughout the paper, we make the following assump-
tions.

(H1) There exists a positive diagonal matrix 𝐹 =
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1
, 𝐹
2
, . . . , 𝐹

𝑛
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1
, 𝐺
2
, . . . , 𝐺

𝑛
)

such that

𝐹
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for all 𝑥 ̸= 𝑦, 𝑗 = 1, 2, . . . , 𝑛.
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common positive period 𝜔 for all 𝑡 ≥ 𝑡
0
, 𝑖, 𝑗 = 1,

2, . . . , 𝑛.

(H3) For𝜔 > 0, 𝑖 = 1, 2, . . . , 𝑛, there exists 𝑞 ∈ 𝑍
+
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𝑘
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Lipschitz continuous in R𝑛.

Definition 1. Themodel in (1) is said to be globally exponen-
tially periodic if (i) there exists one 𝜔-periodic solution and
(ii) all other solutions of the model converge exponentially to
it as 𝑡 → +∞.

Definition 2 (see [26]). Let C = ([𝑡 − 𝜏, 𝑡],R𝑛), where 𝜏 ≥

0 and 𝐹(𝑡, 𝑥, 𝑦) ∈ C(R+ × R𝑛 × C,R𝑛). Then the function
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𝑖
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T
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Definition 3 (see [26]). A real matrix𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

is said to be
a nonsingular 𝑀-matrix if 𝑎

𝑖𝑗
≤ 0 (𝑖 ̸= 𝑗; 𝑖, 𝑗 = 1, . . . , 𝑛) and

all successive principal minors of 𝐴 are positive.

Lemma 4 (see [13]). Let 𝑢 and 𝑢
∗ be two states of the model

in (1), then we have
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𝛽
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𝑗
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𝑗
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𝑛
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𝛽
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(3)

Lemma 5 (see [26]). Assume that 𝐹(𝑡, 𝑥, 𝑦) is an𝑀-function,
and (i) 𝑥(𝑡) < 𝑦(𝑡), 𝑡 ∈ [𝑡 − 𝜏, 𝑡

0
], (ii) 𝐷

+

𝑦(𝑡) >

𝐹(𝑡, 𝑦(𝑡), 𝑦
𝑠

(𝑡)), 𝐷+𝑥(𝑡) ≤ 𝐹(𝑡, 𝑥(𝑡), 𝑥
𝑠

(𝑡)), 𝑡 ≥ 𝑡
0
, where

𝑥
𝑠

(𝑡) = sup
−𝜏≤𝑠≤0

𝑥(𝑡 + 𝑠), 𝑦𝑠(𝑡) = sup
−𝜏≤𝑠≤0

𝑦(𝑡 + 𝑠). Then
𝑥(𝑡) < 𝑦(𝑡), 𝑡 ≥ 𝑡

0
.

3. Main Results and Proofs

We should first point out that, under assumptions (H1),
(H2), and (H3), the FIRDDCNN model (1) has at least one
𝜔-periodic solution of [26]. The proof of the existence of
the 𝜔-periodic solution of (1) can be carried out similar to
[26, 28] by the nonlinear functional analysis methods such as
topological degree andhere is omitted.Wewillmainly discuss
the uniqueness of the periodic solution and its exponential
stability.

Theorem 6. Assume that (H1)–(H3) holds. Furthermore,
assume that the following conditions hold

(H4) C − 𝐴F − (𝛼 + 𝛽)𝐺 is a nonsingular𝑀-matrix.

(H5) The impulsive operators ℎ
𝑘
(𝑢) = 𝑢 + 𝐼

𝑘
(𝑢) is Lipschitz

continuous in R𝑛; that is, there exists a nonnegative
diagnose matrix Γ

𝑘
= diag(𝛾1k, . . . , 𝛾nk) such that

|ℎ
𝑘
(𝑢) − ℎ

𝑘
(𝑢
∗

)| ≤ Γ
𝑘
|𝑢 − 𝑢

∗

| for all 𝑢, 𝑢∗ ∈ R𝑛,
𝑘 ∈ 𝑁

+, where |ℎ
𝑘
(𝑢)| = (|ℎ

1𝑘
(𝑢
1
)|, . . . , |ℎ

𝑛𝑘
(𝑢
𝑛
)|)

T,
𝐼
𝑘
(𝑢) = (𝐼

1𝑘
(𝑢
1
), . . .,𝐼

𝑛𝑘
(𝑢
𝑛
))
T.

(H6) 𝜂 = sup
𝑘∈𝑁
+{ln 𝜂
𝑘
/(𝑡
𝑘
− 𝑡
𝑘−1

)} < 𝜆, where 𝜂
𝑘

=

max
1≤𝑖≤𝑛

{1, 𝛾
𝑖𝑘
}, 𝑘 ∈ 𝑁

+.

Then the model (1) is global exponential periodic and
the exponential convergence rate index 𝜆 − 𝜂 and 𝜆 can be
estimated by

𝜉
𝑖
(𝜆 − 𝑐

𝑖
)

+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ 𝑒
𝜏𝜆

(
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) < 0

𝑖 = 1, . . . , 𝑛,

(4)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
) and 𝜉

𝑖
> 0, 𝐴 = (|𝑎

𝑖𝑗
|)
𝑛×𝑛

, 𝛼 =

(|𝛼
𝑖𝑗
|)
𝑛×𝑛

, 𝛽 = (|𝛽
𝑖𝑗
|)
𝑛×𝑛

, satisfies −𝜉
𝑖
𝑐
𝑖
+∑
𝑛

𝑗=1
𝜉
𝑖
(|𝑎
𝑖𝑗
|𝐹
𝑖
+

(|𝛼
𝑖𝑗
| + |𝛽
𝑖𝑗
|)𝐺
𝑖
) < 0.

Proof. For any 𝜙, 𝜓 ∈ PC
Ω
, let 𝑢(𝑡, 𝑥, 𝜙) = (𝑢

1
(𝑡, 𝑥, 𝜙), . . . ,

𝑢
𝑛
(𝑡, 𝑥, 𝜙))

T be a periodic solution of the system (1) starting
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from 𝜙 and 𝑢(𝑡, 𝑥, 𝜓) = (𝑢
1
(𝑡, 𝑥, 𝜓), . . . , 𝑢

𝑛
(𝑡, 𝑥, 𝜓))

T, a solu-
tion of the system (1) starting from 𝜓. Define

𝑢
𝑡
(𝜙, 𝑥) = 𝑢 (𝑡 + 𝑠, 𝑥, 𝜙) ,

𝑢
𝑡
(𝜓, 𝑥) = 𝑢 (𝑡 + 𝑠, 𝑥, 𝜓) , 𝑠 ∈ [−𝜏, 0] ,

(5)

and we can see that 𝑢
𝑡
(𝜙, 𝑥), 𝑢

𝑡
(𝜓, 𝑥) ∈ PC

Ω
for all 𝑡 > 0. Let

𝑈
𝑖
= 𝑢
𝑖
(𝑡, 𝑥, 𝜙) − 𝑢

𝑖
(𝑡, 𝑥, 𝜓), then from (1) we get

𝜕𝑈
𝑖

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑈
𝑖

𝜕𝑥
𝑙

) − 𝑐
𝑖
(𝑡) 𝑈
𝑖
+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡)

× [𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥, 𝜙)) − 𝑓

𝑗
(𝑢
𝑗
(𝑡, 𝑥, 𝜓))]

+ [

[

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙))

−

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓))]

]

+ [

[

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙))

−

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓))]

]

(6)

for all 𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω, 𝑖 = 1, . . . , 𝑛.

Multiplying both sides of (6) by 𝑈
𝑖
and integrating it in

Ω, we have
1

2

d
d𝑡

∫
Ω

𝑈
2

𝑖
d𝑥

= ∫
Ω

𝑈
𝑖

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑈
𝑖

𝜕𝑥
𝑙

) d𝑥

− 𝑐
𝑖
(𝑡) ∫
Ω

𝑈
2

𝑖
𝑑𝑥 +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) ∫
Ω

𝑈
𝑖

× [𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥, 𝜙) − 𝑓

𝑗
(𝑢
𝑗
(𝑡, 𝑥, 𝜓)))] d𝑥

+ ∫
Ω

𝑈
𝑖

[

[

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙))

−

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓))]

]

d𝑥

+ ∫
Ω

𝑈
𝑖

[

[

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙))

−

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓))]

]

d𝑥

(7)

for 𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω, 𝑖 = 1, . . . , 𝑛. By boundary condition and

Green Formula, we can get

∫
Ω

𝑈
𝑖

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑈
𝑖

𝜕𝑥
𝑙

)𝑑𝑥 ≤ −𝐷
𝑖
∫
Ω

(∇𝑈
𝑖
)
2d𝑥. (8)

Then, from (8), (9), (H1)-(H2), Lemma 4, and the Holder
inequality,

𝑑

𝑑𝑡

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩

2

2

≤ −2𝑐
𝑖

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩

2

2
+ 2

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗

󵄩󵄩󵄩󵄩󵄩2

+ 2

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩2

×
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙) − 𝑢

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓)

󵄩󵄩󵄩󵄩󵄩2
,

𝑡 ̸= 𝑡
𝑘
.

(9)

Thus,

𝐷
+󵄩󵄩󵄩󵄩𝑈𝑖

󵄩󵄩󵄩󵄩2

≤ −𝑐
𝑖

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩2

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗

󵄩󵄩󵄩󵄩󵄩
𝑈
𝑗

󵄩󵄩󵄩󵄩󵄩2

+

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗

×
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜙) − 𝑢

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥, 𝜓)

󵄩󵄩󵄩󵄩󵄩2
,

𝑡 ̸= 𝑡
𝑘

(10)

for 𝑖 = 1, . . . , 𝑛. Since 𝐶 − (𝐴𝐹 + (𝛼 + 𝛽)𝐺) is a nonsingular
𝑀-matrix, there exists a vector 𝜉 = (𝜉

1
, . . . , 𝜉

𝑛
)
T
> 0 such that

−𝜉
𝑖
𝑐
𝑖
+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ (

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) < 0. (11)

Considering functions

Ψ
𝑖
(𝑦) = 𝜉

𝑖
(𝑦 − 𝑐

𝑖
)

+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ 𝑒
𝜏𝑦

(
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) ,

𝑖 = 1, . . . , 𝑛,

(12)

we know from (11) that Ψ
𝑖
(0) < 0 and Ψ

𝑖
(𝑦) is continuous.

Since dΨ
𝑖
(𝑦)/d𝑦 > 0, Ψ

𝑖
(𝑦) is strictly monotonically

increasing, there exists a scalar 𝜆
𝑖
> 0 such that

Ψ
𝑖
(𝜆
𝑖
) = 𝜉
𝑖
(𝜆
𝑖
− 𝑐
𝑖
)

+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ 𝑒
𝜏𝜆
𝑖 (
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) = 0,

𝑖 = 1, . . . , 𝑛.

(13)



Abstract and Applied Analysis 5

Choosing 0 < 𝜆 < min{𝜆
1
, . . . , 𝜆

𝑛
}, we have

𝜉
𝑖
(𝜆
𝑖
− 𝑐
𝑖
)

+

𝑛

∑

𝑗=1

𝜉
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
𝑗
+ 𝑒
𝜏𝜆
𝑖 (
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝐺
𝑗
) < 0,

𝑖 = 1, . . . , 𝑛.

(14)

That is,

𝜆𝜉 − (𝐶 − 𝐴𝐹) 𝜉 + (𝛼 + 𝛽)𝐺𝜉𝑒
−𝜆𝑡

< 0. (15)

Furthermore, choose a positive scalar 𝑝 large enough such
that

𝑝𝑒
−𝜆𝑡

𝜉 > (1, 1, . . . , 1)
T
, 𝑡 ∈ [−𝜏, 0] . (16)

For any 𝜀 > 0, let

𝑟 (𝑡) = 𝑝𝑒
−𝜆𝑡

(
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
+ 𝜀) 𝜉, 𝑡

0
≤ 𝑡 < 𝑡

1
. (17)

From (15)–(17), we obtain

𝐷
+

𝑟 (𝑡) > − (𝐶 − 𝐴𝐹) 𝑟 (𝑡) + (𝛼 + 𝛽)𝐺𝑟
𝑠

(𝑡)

=: 𝑉 (𝑡, 𝑟 (𝑡) , 𝑟
𝑠

(𝑡)) , 𝑡
0
≤ 𝑡 < 𝑡

1
,

(18)

where 𝑟𝑠(𝑡) = (𝑟
𝑠

1
(𝑡), . . . , 𝑟

𝑠

𝑛
(𝑡))

T and 𝑟
𝑠

𝑖
(𝑡) = sup

−𝜏≤𝑠≤0
𝑝𝑒
−𝜆(𝑡+𝑠)

(‖𝜙 − 𝜑‖
2
+ 𝜀)𝜉
𝑖
. It is easy to verify that 𝑉(𝑡, 𝑟(𝑡), 𝑟

𝑠

(𝑡)) is an
𝑀-function. It follows also from (16) and (17) that

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩2

≤
󵄩󵄩󵄩󵄩𝜙 − 𝜑

󵄩󵄩󵄩󵄩2
< 𝑝𝑒
−𝜆𝑡

𝜉
𝑖

󵄩󵄩󵄩󵄩𝜙 − 𝜑
󵄩󵄩󵄩󵄩2

< 𝑟
𝑖
(𝑡) , 𝑡 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑛.

(19)

Denote

𝑈
⬦

:= (
󵄩󵄩󵄩󵄩𝑢1 (𝑡, 𝑥, 𝜙) − 𝑢

1
(𝑡, 𝑥, 𝜓)

󵄩󵄩󵄩󵄩2
, . . . ,

󵄩󵄩󵄩󵄩𝑢𝑛 (𝑡, 𝑥, 𝜙) − 𝑢
𝑛
(𝑡, 𝑥, 𝜓)

󵄩󵄩󵄩󵄩2
)
T
,

𝑈
⬦(𝑠)

:= (
󵄩󵄩󵄩󵄩𝑢1 (𝑡, 𝑥, 𝜙) − 𝑢

1
(𝑡, 𝑥, 𝜓)

󵄩󵄩󵄩󵄩

(𝑠)

2
, . . . ,

󵄩󵄩󵄩󵄩𝑢𝑛 (𝑡, 𝑥, 𝜙) − 𝑢
𝑛
(𝑡, 𝑥, 𝜓)

󵄩󵄩󵄩󵄩

(𝑠)

2
)

T
,

(20)

where ‖𝑈
𝑖
‖
(𝑠)

2
= sup

−𝜏≤𝑠≤0
‖𝑢
𝑖
(𝑡 + 𝑠, 𝑥, 𝜙) − 𝑢

𝑖
(𝑡 + 𝑠, 𝑥, 𝜓)‖

2
,

then

𝑈
⬦

< 𝑟 (𝑡) , 𝑡 ∈ [−𝜏, 0] . (21)

From (10), we can obtain

𝐷
+

𝑈
⬦

≤ − (𝐶 − 𝐴𝐹)𝑈
⬦

+ (𝛼 + 𝛽)𝐺𝑈
⬦(𝑠)

= 𝑉 (𝑡, 𝑈
⬦

, 𝑈
⬦(𝑠)

) , 𝑡 ̸= 𝑡
𝑘
.

(22)

Now, it follows from (18)–(22) and Lemma 5 that

𝑈
⬦

< 𝑟 (𝑡) = 𝑝𝑒
−𝜆𝑡

(
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
+ 𝜀) 𝜉,

𝑡
0
≤ 𝑡 < 𝑡

1
.

(23)

Letting 𝜀 → 0, we have

𝑈
⬦

≤ 𝑝𝜉
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

, 𝑡
0
≤ 𝑡 < 𝑡

1
. (24)

And moreover, from (24), we get

(

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑈𝑖
󵄩󵄩󵄩󵄩

2

2
)

1/2

≤ 𝑝(

𝑛

∑

𝑖=1

𝜉
2

𝑖
)

1/2

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
0
≤ 𝑡 < 𝑡

1
.

(25)

Let �̃� = 𝑝(∑
𝑛

𝑖=1
𝜉
2

𝑖
)
1/2, then �̃� ≥ 1. Define𝑊(𝑡) = ‖𝑢

𝑡
(𝑥, 𝜙)−

𝑢
𝑡
(𝑥, 𝜓)‖

2
; it follows from (25) and the definitions of 𝑢

𝑡
(𝜙, 𝑥)

and 𝑢
𝑡
(𝜓, 𝑥) that

𝑊(𝑡) =
󵄩󵄩󵄩󵄩𝑢𝑡(𝑥, 𝜙) − 𝑢

𝑡
(𝑥, 𝜓)

󵄩󵄩󵄩󵄩2

≤ �̃�
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

, 𝑡
0
≤ 𝑡 < 𝑡

1
.

(26)

It is easily observed that

𝑊(𝑡) ≤ �̃�
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

, −𝜏 ≤ 𝑡 ≤ 𝑡
0
= 0. (27)

Because (26) holds, we can suppose that for 𝑙 ≤ 𝑘 inequality

𝑊(𝑡) ≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

�̃�
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
𝑙−1

≤ 𝑡 < 𝑡
𝑙

(28)

holds, where 𝜂
0
= 1. When 𝑙 = 𝑘 + 1, we note (H5) that

𝑊(𝑡
𝑘
) =

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑡
𝑘

(𝑥, 𝜙) − 𝑢
𝑡
𝑘

(𝑥, 𝜓)
󵄩󵄩󵄩󵄩󵄩2

=
󵄩󵄩󵄩󵄩󵄩
ℎ
𝑘
(𝑢
−

𝑡
𝑘

(𝑥, 𝜙)) − ℎ
𝑘
(𝑢
−

𝑡
𝑘

(𝑥, 𝜓))
󵄩󵄩󵄩󵄩󵄩2

≤ 𝜌 (Γ
2

𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝑢
−

𝑡
𝑘

(𝑥, 𝜙) − 𝑢
−

𝑡
𝑘

(𝑥, 𝜓)
󵄩󵄩󵄩󵄩󵄩2

= 𝜌 (Γ
2

𝑘
)𝑊 (𝑡

−

𝑘
)

≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝜌 (Γ
2

𝑘
) �̃�

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡
𝑘

≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝜂
𝑘
𝜌 (Γ
2

𝑘
) �̃�

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡
𝑘 ,

(29)

where 𝜌(Γ
2

𝑘
) is the spectral radius of Γ

2

𝑘
. Let 𝑀 =

max{�̃�, 𝜌(Γ
2

𝑘
)�̃�}, by (28), (29), and 𝜂 ≥ 1, we obtain

𝑊(𝑡) ≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝜂
𝑘
𝑀

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
𝑘
− 𝜏 ≤ 𝑡 ≤ 𝑡

𝑘
.

(30)

Combining (10), (17), (30), and Lemma 5, we get

𝑊(𝑡) ≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝜂
𝑘
𝑀

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
𝑘
≤ 𝑡 < 𝑡

𝑘+1
, 𝑘 ∈ 𝑁

+

.

(31)

Applying mathematical induction, we conclude that

𝑊(𝑡) ≤ 𝜂
0
⋅ ⋅ ⋅ 𝜂
𝑙−1

𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

,

𝑡
𝑘−1

≤ 𝑡 < 𝑡
𝑘
, 𝑘 ∈ 𝑁

+

.

(32)
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From (H6) and (32), we have

𝑊(𝑡) ≤ 𝑒
𝜂𝑡
1𝑒
𝜂(𝑡
2
−𝑡
1
)

⋅ ⋅ ⋅ 𝑒
𝜂(𝑡
𝑘−1
−𝑡
𝑘−2
)

×𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−𝜆𝑡

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
𝜂𝑡

𝑒
−𝜆𝑡

= 𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−(𝜆−𝜂)𝑡

,

𝑡
𝑘−1

≤ 𝑡 < 𝑡
𝑘
, 𝑘 ∈ 𝑁

+

.

(33)

This means that
󵄩󵄩󵄩󵄩𝑢𝑡(𝑥, 𝜙) − 𝑢

𝑡
(𝑥, 𝜓)

󵄩󵄩󵄩󵄩2

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−(𝜆−𝜂)𝑡

≤ 𝑀
󵄩󵄩󵄩󵄩𝜙 − 𝜓

󵄩󵄩󵄩󵄩2
𝑒
−(𝜆−𝜂)(𝑡−𝜏)

, 𝑡 ≥ 𝑡
0
,

(34)

choosing a positive integer𝑁 such that

𝑀𝑒
−(𝜆−𝜂)(𝑁𝜔−𝜏)

≤
1

6
. (35)

Define a Poincare mappingD : Γ → Γ by

D (𝜙) = 𝑢
𝜔
(𝑥, 𝜙) , (36)

Then

D
𝑁

(𝜙) = 𝑢
𝑁𝜔

(𝑥, 𝜙) . (37)

Setting 𝑡 = 𝑁𝜔 in (34), from (35) and (37), we have

󵄩󵄩󵄩󵄩󵄩
D
𝑁

(𝜙) −D
𝑁

(𝜓)
󵄩󵄩󵄩󵄩󵄩2

≤
1

6

󵄩󵄩󵄩󵄩𝜙 − 𝜓
󵄩󵄩󵄩󵄩2
, (38)

which implies thatD𝑁 is a contraction mapping. Thus, there
exists a unique fixed point 𝜙∗ ∈ Γ such that

D
𝑁

(D (𝜙
∗

)) = D (D
𝑁

(𝜙
∗

)) = D (𝜙
∗

) . (39)

From (37), we know that D(𝜙
∗

) is also a fixed point of D𝑁,
and then it follows from the uniqueness of the fixed point that

D (𝜙
∗

) = 𝜙
∗

, that is, 𝑢
𝜔
(𝑥, 𝜙
∗

) = 𝜙
∗

. (40)

Let 𝑢(𝑡, 𝑥, 𝜙
∗

) be a solution of the model (1), then 𝑢(𝑡 +

𝜔, 𝑥, 𝜙
∗

) is also a solution of the model (1). Obviously,

𝑢
𝑡+𝜔

(𝑥, 𝜙
∗

) = 𝑢
𝑡
(𝑢
𝜔
(𝑥, 𝜙
∗

)) = 𝑢
𝑡
(𝑥, 𝜙
∗

) , (41)

for all 𝑡 ≥ 𝑡
0
. Hence, 𝑢(𝑡 + 𝜔, 𝑥, 𝜙

∗

) = 𝑢(𝑡, 𝑥, 𝜙
∗

), which
shows that 𝑢(𝑡, 𝑥, 𝜙∗) is exactly one 𝜔-periodic solution of
model (1). It is easy to see that all other solutions of model (1)
converge to this periodic solution exponentially as 𝑡 → +∞,
and the exponential convergence rate index is 𝜆−𝜂.The proof
is completed.

Remark 7. When 𝑐
𝑖
(𝑡) = 𝑐

𝑖
, 𝑎
𝑖𝑗
(𝑡) = 𝑎

𝑖𝑗
, 𝑏
𝑖𝑗
(𝑡) = 𝑏

𝑖𝑗
, 𝛼
𝑖𝑗
(𝑡) = 𝛼

𝑖𝑗
,

𝛽
𝑖𝑗
(𝑡) = 𝛽

𝑖𝑗
, 𝑇
𝑖𝑗
(𝑡) = 𝑇

𝑖𝑗
,𝐻
𝑖𝑗
(𝑡) = 𝐻

𝑖𝑗
, 𝑣
𝑖
(𝑡) = 𝑣

𝑖
, 𝐼
𝑖
(𝑡) = 𝐼

𝑖
, and

𝜏
𝑡
= 𝜏
𝑖
(𝑐
𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, 𝛼
𝑖𝑗
, 𝛽
𝑖𝑗
, 𝑇
𝑖𝑗
, 𝐻
𝑖𝑗
, 𝑣
𝑖
, 𝐼
𝑖
, and 𝜏

𝑖
are constants),

then the model (1) is changed into

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

− 𝑐
𝑖
𝑢
𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑣
𝑗
+ 𝐽
𝑖

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
𝑣
𝑗
+

𝑛

⋁

𝑗=1

𝐻
𝑖𝑗
𝑣
𝑗
, 𝑡 ̸= 𝑡

𝑘
, 𝑥 ∈ Ω,

𝑢
𝑖
(𝑡
+

𝑘
, 𝑥) − 𝑢

𝑖
(𝑡
−

𝑘
, 𝑥) = 𝐼

𝑖𝑘
(𝑢
𝑖
(𝑡
−

𝑘
, 𝑥)) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ Z

+
, 𝑥 ∈ Ω,

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑛
= 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω,

𝑢
𝑖
(𝑡
0
+ 𝑠, 𝑥) = 𝜓

𝑖
(𝑠, 𝑥) , −𝜏

𝑗
≤ 𝑠 ≤ 0, 𝑥 ∈ Ω.

(42)

For any positive constant 𝜔 ≥ 0, we have 𝑐
𝑖
(𝑡 + 𝜔) = 𝑐

𝑖
(𝑡),

𝑎
𝑖𝑗
(𝑡 + 𝜔) = 𝑎

𝑖𝑗
(𝑡), 𝑏
𝑖𝑗
(𝑡 + 𝜔) = 𝑏

𝑖𝑗
(𝑡), 𝛼
𝑖𝑗
(𝑡 + 𝜔) = 𝛼

𝑖𝑗
(𝑡),

𝛽
𝑖𝑗
(𝑡 + 𝜔) = 𝛽

𝑖𝑗
(𝑡), 𝑇
𝑖𝑗
(𝑡 + 𝜔) = 𝑇

𝑖𝑗
(𝑡), 𝐻

𝑖𝑗
(𝑡 + 𝜔) = 𝐻

𝑖𝑗
(𝑡),

𝑣
𝑖
(𝑡+𝜔) = 𝑣

𝑖
(𝑡), 𝐼
𝑖
(𝑡+𝜔) = 𝐼

𝑖
(𝑡), and 𝜏

𝑖
(𝑡+𝜔) = 𝜏

𝑖
(𝑡) for 𝑡 ≥ 𝑡

0
.

Thus, the sufficient conditions inTheorem 6 are satisfied.

Remark 8. If 𝐼
𝑘
(⋅) = 0, the model (1) is changed into

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

− 𝑐
𝑖
(𝑡) 𝑢
𝑖
(𝑡, 𝑥) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) + 𝐽

𝑖
(𝑡)

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))
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Figure 1: State response 𝑢1(𝑡, 𝑥) of model (44) without impulsive
effects.

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) +

𝑛

⋁

𝑗=1

𝐻
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω,

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑛
= 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω,

𝑢
𝑖
(𝑡
0
+ 𝑠, 𝑥) = 𝜓

𝑖
(𝑠, 𝑥) , −𝜏

𝑗
≤ 𝑠 ≤ 0, 𝑥 ∈ Ω,

(43)

which has been discussed in [22]. As Song and Wang have
pointed out, the model (43) is more general than some well-
studied fuzzy neural networks. For example, when 𝑐

𝑖
(𝑡) >

0, 𝑎
𝑖𝑗
(𝑡), 𝑏
𝑖𝑗
(𝑡), 𝛼
𝑖𝑗
(𝑡), 𝛽
𝑖𝑗
(𝑡), 𝑇
𝑖𝑗
(𝑡),𝐻
𝑖𝑗
(𝑡), 𝑣
𝑖
(𝑡), and 𝐼

𝑖
(𝑡) are all

constants, the model in (43) reduces the model which has
been studied by Huang [19]. Moreover, if 𝐷

𝑖
= 0, 𝜏

𝑖
(𝑡) = 0,

𝑓
𝑖
(𝜃) = 𝑔

𝑖
(𝜃) = (1/2)(|𝜃 + 1| − |𝜃 − 1|), (𝑖 = 1, . . . , 𝑛), then

model (42) covers the model studied by Yang et al. [4, 5] as a
special case. If𝐷

𝑖
= 0 and 𝜏

𝑗
(𝑡) is assumed to be differentiable

for 𝑖, 𝑗 = 1, 2, . . . , 𝑛, then model (43) can be specialized to
the model investigated in Liu and Tang [12] and Yuan et al.
[13]. Obviously, our results are less conservative than that of
the above-mentioned literature, because they do not consider
impulsive effects.

4. Numerical Examples

Example 9. Consider a two-neuron FIRDDCNNmodel:

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑙=1

𝜕

𝜕𝑥
𝑙

(𝐷
𝑖

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑙

)

− 𝑐
𝑖
(𝑡) 𝑢
𝑖
(𝑡, 𝑥)

6
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Figure 2: State response 𝑢1(𝑡, 𝑥) of model (44) with impulsive
effects.
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∑
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(𝑡) 𝑓
𝑗
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𝑗
(𝑡, 𝑥))

+

2

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) + 𝐽

𝑖
(𝑡)

+

2

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

2

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

+

2

⋀

𝑗=1

𝑇
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) +

2

⋁

𝑗=1

𝐻
𝑖𝑗
(𝑡) 𝑣
𝑗
(𝑡) ,

𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω,

𝑢
𝑖
(𝑡
+

𝑘
, 𝑥) = (1 − 𝛾

𝑖𝑘
) 𝑢
𝑖
(𝑡
−

𝑘
, 𝑥) ,

𝑡 = 𝑡
𝑘
, 𝑘 ∈ Z

+
, 𝑥 ∈ Ω,

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑛
= 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω,

𝑢
𝑖
(𝑡
0
+ 𝑠, 𝑥) = 𝜓

𝑖
(𝑠, 𝑥) ,

− 𝜏
𝑗
≤ 𝑠 ≤ 0, 𝑥 ∈ Ω,

(44)

where 𝑖 = 1, 2. 𝑐
1
(𝑡) = 26, 𝑐

2
(𝑡) = 20.8, 𝑎

11
(𝑡) = −1 − cos(𝑡),

𝑎
12
(𝑡) = 1 + cos(𝑡), 𝑎

21
(𝑡) = 1 + sin(𝑡), 𝑎

22
(𝑡) = −1 − sin(𝑡),

𝐷
1
= 8,𝐷

2
= 4, 𝜕𝑢

𝑖
(𝑡, 𝑥)/𝜕𝑛 = 0 (𝑡 ≥ 𝑡

0
, 𝑥 = 0, 2𝜋), 𝛾

1𝑘
= 0.4,

𝛾
2𝑘

= 0.2, 𝜓
1
(⋅) = 𝜓

1
(⋅) = 5, 𝑏

11
(𝑡) = 𝑏

21
(𝑡) = cos(𝑡), 𝑏

12
(𝑡) =

𝑏
22
(𝑡) = − cos(𝑡), 𝐽

1
(𝑡) = 𝐽

2
(𝑡) = 1, 𝐻

11
(𝑡) = 𝐻

21
(𝑡) = sin(𝑡),

𝐻
12
(𝑡) = 𝐻

22
(𝑡) = −1 + sin(𝑡), 𝑇

11
(𝑡) = 𝑇

21
(𝑡) = − sin(𝑡),

𝑇
12
(𝑡) = 𝑇

22
(𝑡) = 2 + sin(𝑡), 𝜏

1
(𝑡) = 𝜏

2
(𝑡) = 1, 𝑓

𝑗
(𝑢
𝑗
) =

𝑢
𝑗
(𝑡, 𝑥) (𝑗 = 1, 2), 𝑔

𝑗
(𝑢
𝑗
(𝑡 − 1, 𝑥)) = 𝑢

𝑗
(𝑡 − 1, 𝑥)𝑒

−𝑢
𝑗
(𝑡−1,𝑥)

(𝑗 =

1, 2), 𝛼
11
(𝑡) = −12.8, 𝛼

21
(𝑡) = 𝛼

12
(𝑡) = −1 + cos(𝑡), 𝛼

22
(𝑡) =

−10, 𝛽
11
(𝑡) = 12.8, 𝛽

12
(𝑡) = −1 + sin(𝑡) = 𝛽

21
(𝑡), 𝛽
22
(𝑡) =
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Figure 3: State response 𝑢2(𝑡, 𝑥) of model (44) without impulsive
effects.
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Figure 4: State response 𝑢2(𝑡, 𝑥) of model (44) with impulsive
effects.

10, 𝑣
𝑗
(𝑡) = sin(𝑡). We assume that there exists 𝑞 = 6 such

that 𝑡
𝑘
+ 2𝜋 = 𝑡

𝑘+𝑞
. Obviously, 𝑓

1
, 𝑓
2
, 𝑔
1
, and 𝑔

2
satisfy the

assumption (H1) with 𝐹
1
= 𝐹
2
= 𝐺
1
= 𝐺
2
= 1 and (H2) and

(H3) are satisfied with a common positive period 2𝜋

𝐶 − (𝐴 + 𝛼 + 𝛽)𝐹 =
[
[

[

2

5
0

0
4

5

]
]

]

(45)

is a nonsingular 𝑀-matrix. The conditions of Theorem 6 are
satisfied, hence there exists exactly one 2𝜔-periodic solution
of the model and all other solutions of the model converge
exponentially to it as 𝑡 → +∞. Furthermore, the exponential
converging index can be calculated as𝜆 = 0.021, because here
𝜂
𝑘
= 1 and 𝜂 = 0. The simulation results are shown in Figures

1, 2, 3, and 4, respectively.

5. Conclusions

In this paper, periodicity and global exponential stability of
a class of FIRDDCNN model with variable both coefficients

and delays have been investigated. By using Halanay’s delay
differential inequality, 𝑀-matrix theory, and analytic meth-
ods, some new sufficient conditions have been established to
guarantee the existence, uniqueness, and global exponential
stability of the periodic solution. Moreover, the exponential
convergence rate index can be estimated. An example and
its simulation have been given to show the effectiveness of
the obtained results. In particular, the differentiability of
the time-varying delays has been removed. The dynamic
behaviors of fuzzy neural networks with the property of
exponential periodicity are of great importance inmany areas
such as learning systems.
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