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We first construct all the homomorphisms from the Heisenberg group to the 3-sphere. Also, defining a topology on these
homomorphisms, we regard the set of these homomorphisms as a topological space. Next, using the kernels of homomorphisms,
we define an equivalence relation on this topological space. We finally show that the quotient space is a topological group which is
isomorphic to S1.

1. Introduction

Discrete and continuous forms of the Heisenberg group have
been studied in mathematics and physics such as analysis [1–
3], geometry [4–6], topology [3, 7], and quantum physics [8–
14]. An introductory review can be also found in [15].

In [16–18], it was shown that the Heisenberg group H

is nilpotent, and any arbitrary nilpotent subgroup of 𝑆𝑈(2)

is conjugate to a subgroup of 𝑈(1), which is identified with
the set of diagonal matrices in 𝑆𝑈(2). Since groups can be
considered as metric spaces, it leads us to examine if there
exists any geometry in these groups.

It is known that the matrices

(
1 𝑥

0 1
) , 𝑥 ∈ R (1)

forma linear groupwhich is isomorphic toR1.TheLie groups
R1 and S1 are related, for the mapping 𝜌 : R1 → S1 defined
by 𝜌(𝑥) = 𝑒

2𝜋𝑖𝑥 is a continuous homomorphism fromR1 onto
S1 [10].TheLie algebrasR1 andS1 are trivially isomorphic. In
this work, we search if there is a similar relationship between
the only other sphere Lie group S3 and the linear group of
matrices which is diffeomorphic to R3 [17].

The subgroup H of GL(3,R) formed by the matrices of
type

(

1 𝑥 𝑧

0 1 𝑦

0 0 1

) , 𝑥, 𝑦, 𝑧 ∈ R (2)

is called three-dimensional Heisenberg group. It is conve-
nient to denote the elements of this group by three-tuples
of numbers. Using this convention, that is, H = {(𝑥, 𝑦, 𝑧) :

𝑥, 𝑦, 𝑧 ∈ R}, the multiplicative operation of elements can be
expressed as

(𝑥, 𝑦, 𝑧) ⋅ (𝑥

, 𝑦

, 𝑧

) = (𝑥 + 𝑥


, 𝑦 + 𝑦


, 𝑧 + 𝑧


+ 𝑥𝑦

) .

(3)

The identity element of this group is (0, 0, 0), and the
inverse of an element (𝑥, 𝑦, 𝑥) is (−𝑥, −𝑦, −𝑧).

This Lie group is diffeomorphic to R3 [17].
Moreover, the Lie groups 𝑆𝑈(2) and S3 are isomorphic,

and they are diffeomorphic as manifolds. Since the respective
Lie algebrasℎ and 𝑠𝑢(2)ofH and 𝑆𝑈(2) are three-dimensional
real vector spaces, they are isomorphic as real vector spaces.
But they are not isomorphic as Lie algebras, because there
is no Lie algebra isomorphism between a compact and
a noncompact Lie algebra. However, there may be a Lie
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algebra homomorphism between them. We try to find the
relationship between ℎ and 𝑠𝑢(2) as Lie algebras.

Consider the following matrices:

𝑈
1
=−

1

2
(
0 𝑖

𝑖 0
) , 𝑈

2
=
1

2
(
0 −1

1 0
) , 𝑈

3
=
1

2
(
−𝑖 0

0 𝑖
)

(4)

which span the Lie algebra 𝑠𝑢(2) of the Lie group 𝑆𝑈(2), and
also consider the following matrices:

𝑉
1
=(

0 1 0

0 0 0

0 0 0

) , 𝑉
2
=(

0 0 0

0 0 1

0 0 0

) , 𝑉
3
=(

0 0 1

0 0 0

0 0 0

)

(5)

which span the Lie algebra ℎ of the Heisenberg group H.
Using the exponential map from ℎ to H we may convert

our equations in ℎ to equations inH. Letting𝑉
𝑖
= exp(𝑉

𝑖
) for

each 𝑖, we see that

𝑉
1
=(

1 1 0

0 1 0

0 0 1

) , 𝑉
2
=(

1 0 0

0 1 1

0 0 1

) , 𝑉
3
=(

1 0 1

0 1 0

0 0 1

) .

(6)

The standard generating set for the Heisenberg group is
{𝑉
1
, 𝑉
2
, 𝑉
1

−1

, 𝑉
2

−1

}, and the group has the relation

𝑉
1
𝑉
2
𝑉
1

−1

𝑉
2

−1

= 𝑉
2
𝑉
1

−1

𝑉
2

−1

𝑉
1

= 𝑉
1

−1

𝑉
2

−1

𝑉
1
𝑉
2
= 𝑉
2

−1

𝑉
1
𝑉
2
𝑉
1

−1

= 𝑉
3
.

(7)

In the above, the notations 𝑉
1

−1 and 𝑉
2

−1 denote the
inverses of the elements 𝑉

1
and 𝑉

2
in the Heisenberg group.

From (4) and (5), we find that

[𝑈
1
, 𝑈
2
] = 𝑈
3
, [𝑈

2
, 𝑈
3
] = 𝑈
1
, [𝑈

3
, 𝑈
1
] = 𝑈
2
,

[𝑉
1
, 𝑉
2
] = 𝑉
3
, [𝑉

2
, 𝑉
3
] = [𝑉

3
, 𝑉
1
] = 0.

(8)

It was shown in ([13, 16]) that there is no nontrivial Lie
algebra homomorphism from 𝑠𝑢(2) to ℎ. Here, we study Lie
algebra homomorphisms from ℎ to 𝑠𝑢(2). We observe that
there exists a nontrivial Lie algebra homomorphism from ℎ to
𝑠𝑢(2). Moreover, we describe all Lie algebra homomorphisms
from ℎ to 𝑠𝑢(2).

2. Homomorphisms from H to 𝑆𝑈(2)

Let 𝜑 : ℎ → 𝑠𝑢(2) be a Lie algebra homomorphism. Suppose
that

𝜑 (𝑉
𝑖
) =

3

∑

𝑗=1

𝛼
𝑖𝑗
𝑈
𝑗
, 𝑖 = 1, 2, 3 (9)

for some real numbers 𝛼
𝑖𝑗
.

By using (8) and the following commutators:

𝜑 [𝑉
1
, 𝑉
2
] = [𝜑𝑉

1
, 𝜑𝑉
2
] , 𝜑𝑉

3
= [𝜑𝑉

1
, 𝜑𝑉
2
] ,

𝜑 [𝑉
1
, 𝑉
3
] = [𝜑𝑉

1
, 𝜑𝑉
3
] , 𝜑 [𝑉

1
, 𝑉
3
] = 0,

𝜑 [𝑉
2
, 𝑉
3
] = [𝜑𝑉

2
, 𝜑𝑉
3
] , 𝜑 [𝑉

2
, 𝑉
3
] = 0,

(10)

we obtain the system of equations of coefficients in the real
constants 𝛼

𝑖𝑗
’s

𝛼
12
𝛼
23

− 𝛼
13
𝛼
22

= 𝛼
31
, 𝛼

13
𝛼
21

− 𝛼
11
𝛼
23

= 𝛼
32
,

𝛼
11
𝛼
22

− 𝛼
12
𝛼
21

= 𝛼
33
, 𝛼

12
𝛼
33

− 𝛼
13
𝛼
32

= 0,

𝛼
13
𝛼
31

− 𝛼
11
𝛼
33

= 0, 𝛼
11
𝛼
32

− 𝛼
12
𝛼
31

= 0,

𝛼
21
𝛼
32

− 𝛼
22
𝛼
31

= 0, 𝛼
23
𝛼
31

− 𝛼
21
𝛼
33

= 0,

𝛼
22
𝛼
33

− 𝛼
23
𝛼
32

= 0.

(11)

By using the Mathematica program, we may solve the
system (11). We write below only two of the non-trival
solutions, because a group homomorphism induced by any of
the other solutions will be equal to a group homomorphism
induced by one of the solutions given below.Here, a nontrivial
solution means a solution in which at least one of the
constants 𝛼

𝑖𝑗
is nonzero.

(1) 𝛼
22

= 𝛼
12
𝛼
21
/𝛼
11
, 𝛼
23

= 𝛼
13
𝛼
21
/𝛼
11
, 𝛼
31

= 𝛼
32

=

𝛼
33

= 0, 𝛼
11

̸= 0, 𝛼
12
, 𝛼
13
, 𝛼
21
arbitrary.

(2) 𝛼
23

= 𝛼
13
𝛼
22
/𝛼
12
, 𝛼
11

= 𝛼
21

= 𝛼
31

= 𝛼
32

= 𝛼
33

=

0, 𝛼
12

̸= 0, 𝛼
13
, 𝛼
22
arbitrary.

Also, in the system of (11), if 𝛼
11

̸= 0 and 𝛼
12

= 0, then the
first set of solutions is obtained. If 𝛼

12
̸= 0 and 𝛼

11
= 0, then

the second set of solutions is obtained. Moreover, if 𝛼
11

and
𝛼
12
are both 0, then (11) has trivial solution.
In the set of solutions, we consider 𝛼

22
and 𝛼

23
in terms

of the other arbitrary constants 𝛼
11
, 𝛼
12
, 𝛼
13
, and 𝛼

21
and

obtain that the group homomorphism is spanned by elements
{𝑈
1
, 𝑈
2
, 𝑈
3
} or {𝑈

2
, 𝑈
3
}. If another configuration, say 𝛼

11
, 𝛼
13
,

was chosen, then we see that the homomorphism would be
spanned by the same elements.

Since 𝜑 is a Lie algebra homomorphism, we observe from
solution sets 1 and 2 that the subalgebra of 𝑠𝑢(2) is only
generated by 𝑎

1
𝑈
1
+ 𝑎
2
𝑈
2
+ 𝑎
3
𝑈
3
or 𝑎𝑈

2
+ 𝑏𝑈
3
and not by

𝑎
1
𝑈
1
+ 𝑎
2
𝑈
3
.

As we will use the constants 𝛼
𝑖𝑗
frequently, to simplify the

notations we put 𝑎
1
, 𝑎
2
, 𝑎
3
, and 𝑏 for the coefficients 𝛼

11
, 𝛼
12
,

𝛼
13
, and 𝛼

21
, respectively, and, 𝑎, 𝑏, and 𝑐 for 𝛼

12
, 𝛼
13
, and 𝛼

22
.

Hence, for the first set of solutions, 𝜑 has the following
form:

𝜑 (𝑉
1
) = 𝑎
1
𝑈
1
+ 𝑎
2
𝑈
2
+ 𝑎
3
𝑈
3
,

𝜑 (𝑉
2
) =

𝑏

𝑎
1

𝜑 (𝑉
1
) , 𝑎

1
̸= 0,

𝜑 (𝑉
3
) = 0.

(12)

We note that the rank of 𝜑 is one, and thus, 𝜑(ℎ) is a
one-dimensional Lie subalgebra of 𝑠𝑢(2) generated by 𝑎

1
𝑈
1
+

𝑎
2
𝑈
2
+ a
3
𝑈
3
.
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For the second set of the solutions, 𝜑 is of the following
form:

𝜑 (𝑉
1
) = 𝑎𝑈

2
+ 𝑏𝑈
3
,

𝜑 (𝑉
2
) =

𝑐

𝑎
𝜑 (𝑉
1
) , 𝑎 ̸= 0,

𝜑 (𝑉
3
) = 0.

(13)

Here, we note again that the rank of 𝜑 is one, and thus,
𝜑(ℎ) is a one-dimensional Lie subalgebra of 𝑠𝑢(2) generated
by 𝑎𝑈

2
+ 𝑏𝑈
3
.

It is known from ([8, 18]) that if Φ : H → 𝑆𝑈(2) is a
homomorphism, then the following diagram commutes:

𝑑Φ

Φ

ℎ 𝑠𝑢(2)

𝑆𝑈(2),

expexp

H

(14)

where 𝑑Φ is the differential of Φ, and it is a Lie algebra
homomorphism. It is also known that for the matrix groups
the exponential map is given by the exponentiation of
matrices. In our notation, 𝜑 = 𝑑Φ for some Φ, and we will
determine Φ.

By using (5), for any element of 𝑉 = 𝑐
1
𝑉
1
+𝑐
2
𝑉
2
+𝑐
3
𝑉
3
∈ ℎ

we have

𝑉 = (

0 𝑐
1

𝑐
3

0 0 𝑐
2

0 0 0

) , 𝑉
2
= (

0 0 𝑐
1
𝑐
2

0 0 0

0 0 0

) ,

𝑉
3
= (

0 0 0

0 0 0

0 0 0

) , 𝑐
1
, 𝑐
2
, 𝑐
3
∈ R.

(15)

By using (15), we obtain exp(𝑉) as

exp (𝑉) = 1 + 𝑉 +
1

2
𝑉
2
+

1

3!
𝑉
3
+ ⋅ ⋅ ⋅ = (

1 𝑐
1

𝑐
3
+
𝑐
1
𝑐
2

2
0 1 𝑐

2

0 0 1

) .

(16)

To guarantee that

exp (𝑉) = (

1 𝑥 𝑧

0 1 𝑦

0 0 1

) = (𝑥, 𝑦, 𝑧) (17)

we must take𝑉 = 𝑥𝑉
1
+𝑦𝑉
2
+ (𝑧−𝑥𝑦/2)𝑉

3
∈ ℎ. Here, we put

(𝑥, 𝑦, 𝑧) for the matrix (2) for any real 𝑥, 𝑦, and 𝑧.
For the first set of solutions, we obtain

𝜑 (𝑉) = 𝜑 (𝑥𝑉
1
+ 𝑦𝑉
2
+ (𝑧 −

𝑥𝑦

2
)𝑉
3
)

= (𝑥 +
𝑏

𝑎
1

𝑦) (𝑎
1
𝑈
1
+ 𝑎
2
𝑈
2
+ 𝑎
3
𝑈
3
) .

(18)

Thus, the kernel of 𝜑 is the plane 𝑥 + (𝑏/𝑎
1
)𝑦 = 0 in R3.

For 𝑉 ∉ Ker𝜑, we obtain

exp𝜑 (𝑉)=𝐼 cos𝐴(𝑥+ 𝑏

𝑎
1

𝑦)

+
1

𝐴(𝑥+(𝑏/𝑎
1
) 𝑦)

sin(𝐴(𝑥+ 𝑏

𝑎
1

𝑦))𝜑 (𝑉),

(19)

where 𝐼 is the 2 × 2 identity matrix, and 𝐴 = (1/2)
√𝑎
1

2 + 𝑎
2

2 + 𝑎
3

2.
In this case, Φ is of the following form:

(𝑥, 𝑦, 𝑧) → 𝐼 cos𝐴(𝑥+
𝑏

𝑎
1

𝑦)

+
1

𝐴
sin(𝐴(𝑥+

𝑏

𝑎
1

𝑦)) (𝑎
1
𝑈
1
+𝑎
2
𝑈
2
+𝑎
3
𝑈
3
) .

(20)

For the second set of solutions, we obtain

𝜑 (𝑉) = (𝑥 +
𝑐

𝑎
𝑦) (𝑎𝑈

2
+ 𝑏𝑈
3
) . (21)

From (21), the kernel of 𝜑 is the plane 𝑥 + (𝑐/𝑎)𝑦 = 0 in
R3.

For 𝑉 ∉ Ker𝜑, we have

exp𝜑 (𝑉) = 𝐼 cos𝐴(𝑥 +
𝑐

𝑎
𝑦)

+
1

𝐴 (𝑥 + (𝑐/𝑎) 𝑦)
sin(𝐴(𝑥 +

𝑐

𝑎
𝑦))𝜑 (𝑉) ,

(22)

where 𝐼 is the 2 × 2 identity matrix, and 𝐴 = (1/2)√𝑎2 + 𝑏2.
In this case, Φ is of the form

(𝑥, 𝑦, 𝑧) → 𝐼 cos𝐴(𝑥 +
𝑐

𝑎
𝑦)

+
1

𝐴
sin(𝐴(𝑥 +

𝑐

𝑎
𝑦)) (𝑎𝑈

2
+ 𝑏𝑈
3
) .

(23)

Hence, we can state the following theorem.

Theorem 1. Any nontrivial homomorphism from the Heisen-
berg group to the 3-sphere is one of (20) and (23).

Wenow observe the following properties for the first type
of homomorphisms. It can be shown that same observations
are valid for the second set of solutions.

(a) By considering Φ as a map from R3 to R4, we can
write

Φ : (x, 𝑦, 𝑧) → (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
) , (24)

where

𝑢
1
= cos𝐴𝑡, 𝑢

2
= −

𝑎
3

2𝐴
sin𝐴𝑡, 𝑢

3
= −

𝑎
2

2𝐴
sin𝐴𝑡,

𝑢
4
= −

𝑎
1

2𝐴
sin𝐴𝑡, 𝑡 = 𝑥 +

𝑏

𝑎
1

𝑦.

(25)
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Then,we find that the image of the planes𝑃
𝑡
inH, with

the equation 𝑥 + 𝑏/𝑎
1
= 𝑡, is a periodic (closed) curve

in S3.
(b) In the first case, every homomorphism Φ from H to

𝑆𝑈(2) depends on four parameters, namely, 𝑎
1
, 𝑎
2
, 𝑎
3
,

and 𝑏 with 𝑎
1

̸= 0.
We now concentrate on the parameters 𝑎

1
and 𝑏, since

they are involved in the kernel of Φ. To each kernel
𝑥 + (𝑏/𝑎

1
)𝑦 = 0, we associate a point (𝑏, −𝑎

1
) in

the 𝑥𝑦-plane. Furthermore, we normalize the vector
(𝑏, −𝑎

1
) as (𝑏/√𝑏2 + 𝑎

2

1
, −𝑎
1
/√𝑏2 + 𝑎

2

1
)which can also

be considered as a point of S1 in the 𝑥𝑦-plane.
By considering the principal value of arctan(−𝑏/𝑎

1
),

we define a topology on the set H of all homomor-
phisms from H to 𝑆𝑈(2) as follows.
For any Φ

1
(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑏) ∈ H, Φ

2
(𝑎


1
, 𝑎


2
, 𝑎


3
, 𝑏

) ∈

H is in the 𝜖-neighborhood of Φ
1
, if and only if

| arctan(−𝑏/𝑎
1
) − arctan(−𝑏/𝑎

1
)| < 𝜖, |𝑎

2
− 𝑎


2
| < 𝜖,

and |𝑎
3
− 𝑎


3
| < 𝜖.

Now let us define an equivalence relation on H. For
Φ
1
, Φ
2

∈ H, Φ
1
is equivalent to Φ

2
if and only if

Φ
1
and Φ

2
have the same kernel. Denote the set of

equivalence classes by H̃. We define a multiplication
on H̃ such that, for any Φ̃

1
and Φ̃

2
in H̃, Φ̃

1
. Φ̃
2
denotes

the element of H̃ whose kernel is the plane obtained
by the product of the elements ofS1 corresponding to
Φ
1
and Φ

2
. This multiplication makes H̃ into a group

which is isomorphic to S1.
(c) The set of the kernels of all the homomorphisms

from H to S3 is a subset of the Grassmann manifold
of 2 planes in R3. It is known that the Grassmann
manifold of 2 planes in R3 is diffeomorphic to S1.
Any point 𝑝 of S1 corresponds to the plane which
is orthogonal to the normal of S1 at 𝑝 and which
contains the 𝑧-axis. Hence, there exists a 1-1 corre-
spondence between the set of the kernels of all the
homomorphisms from H to S3 and the equator S1 of
S2.

Thus, we state the following theorem.

Theorem 2. The set of all homomorphisms from the Heisen-
berg group to the 3-sphere is isomorphic (up to a certain
equivalence relation concerning kernels) with the topological
group S1.

3. Conclusion

In this paper, our aim is to construct all homomorphisms
between the Heisenberg group and the 3-sphere which is
isomorphic to 𝑆𝑈(2). In the literature, it has been shown
that no nontrivial Lie algebra homomorphism from 𝑠𝑢(2) to
ℎ exists ([8, 11, 17]). So, a natural question arises: is there
a homomorphism from ℎ to 𝑠𝑢(2)? Here, we answer this
question completely.

We here observe that there are nontrivial homomor-
phisms from the Heisenberg group to the 3-sphere, and they
can be only in the form of (20) or (23).

Also, we use these maps to define a topology in order to
construct an equivalence relation, and we show that quotient
space is isomorphic to S1.
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