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We obtain a new Taylor’s formula in terms of the 𝑘 + 1 order subdifferential of a 𝐶𝑘,1 function from 𝑅𝑛 to 𝑅𝑚. As its applications
in optimization problems, we build 𝑘 + 1 order sufficient optimality conditions of this kind of functions and 𝑘 + 1 order necessary
conditions for strongly 𝐶-quasiconvex functions.

1. Introduction

For a function from 𝑅𝑛 to 𝑅, Luc [1] studied the 𝑘 + 1
order subdifferential of it, established a Taylor-type formula
in terms of such 𝑘 + 1 order subdifferential, and applied
such Taylor-type formula to consider two-order optimality
conditions in vector optimization and characterizations of
quasiconvex functions. In vector optimization, notions of
Pareto solution, weak Pareto solution, sharp minima and
weak sharp minima are very important; see [2–14] and the
references therein. Some authors have attained many neces-
sary or sufficient optimality conditions in optimization prob-
lems. In particular, Zheng and Yang provided some results
on sharp minima, and weak sharp minima for high-order
smooth vector optimization problems in Banach spaces. By
the tools of nonsmooth analysis, many optimality conditions
were obtained; for examples, one can see [6, 7, 15, 16] and
the references therein. Such optimality conditions play a key
role in many issues of mathematical programming such as
sensitivity analysis and error bounds.

Motivated by Luc [1] and Zheng and Yang [17], in this
paper, we consider the 𝑘 + 1 order subdifferential and
optimality conditions of a 𝐶𝑘,1 vector-valued function from

𝑅
𝑛 to 𝑅𝑚. We will first prove a new Taylor’s formula in the

terms of 𝑘+1 order subdifferential for𝐶𝑘,1 functions from 𝑅𝑛
to 𝑅𝑚, which is analogous to that for real-valued functions
in [1]. Then, under the positive definiteness assumption of
𝑘 + 1 order subdifferential, we will use this formula to derive
𝑘 + 1 order optimality conditions of weak Pareto and Pareto
solutions in the terms of 𝑘 + 1 order subdifferential for a
𝐶
𝑘,1 function from 𝑅𝑛 to 𝑅𝑚. Finally, we will define a kind

of strongly 𝐶-quasiconvex functions and prove a necessary
condition in the terms of (𝑘 + 1)th order subdifferential for
such kind of functions. Our results extend the corresponding
results in [1] for 𝐶𝑘,1 functions from 𝑅𝑛 to 𝑅 to that for
𝐶
𝑘,1 vector-valued functions from 𝑅𝑛 to 𝑅𝑚 and in [17] for

functions in smooth setting to that in nonsmooth setting,
respectively.

The outline of the paper is as follows. In the next section,
we give some notions and preliminary results in vector
optimization problems. In Section 3, we build our Taylor’s
formula in the terms of 𝑘 + 1 order subdifferential for a
𝐶
𝑘,1 function from 𝑅𝑛 to 𝑅𝑚. In Section 4, as applications

in optimization problems, we establish some optimality
conditions in terms of (𝑘 + 1)th order subdifferential. In
Section 5, we give a necessary condition in the terms of
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(𝑘 + 1)th order subdifferential for a strongly 𝐶-quasiconvex
vector-valued function.

2. Preliminaries

Let 𝑋,𝑌 be Banach spaces, 𝑌∗ the dual space of 𝑌, 𝐶 ⊂ 𝑌 a
closed convex cone with int(𝐶) ̸= 0, and 𝐶+ the dual cone of
𝐶; that is,

𝐶
+
= {𝑦
∗
∈ 𝑌
∗
: 0 ≤ ⟨𝑦

∗
, 𝑐⟩ ∀𝑐 ∈ 𝐶} . (1)

For 𝑦1, 𝑦2 ∈ 𝑌, we define 𝑦1<𝐶 𝑦2 and 𝑦1 ≤𝐶 𝑦2 if 𝑦2 − 𝑦1 ∈
int(𝐶) and 𝑦2 − 𝑦1 ∈ 𝐶, respectively. Let 𝐴 be a subset of 𝑌
and 𝑎 ∈ 𝐴. Recall that (i) 𝑎 is a weak Pareto point of𝐴 if there
exists no point 𝑦 ∈ 𝐴 such that 𝑦<𝐶 𝑎; (ii) 𝑎 is a Pareto point
of 𝐴 if there exists no point 𝑦 ∈ 𝐴 \ {𝑎} such that 𝑦≤𝐶 𝑎; (iii)
𝑎 is an ideal point of 𝐴 if 𝑎 ≤𝐶 𝑦 for all 𝑦 ∈ 𝐴. Let WE(𝐴, 𝐶),
𝐸(𝐴, 𝐶), and 𝐼(𝐴, 𝐶) denote the sets of all weak Pareto, Pareto,
and ideal points of 𝐴, respectively. It is easy to verify that

𝑎 ∈WE (𝐴, 𝐶) ⇐⇒ (𝑎 − int (𝐶)) ∩ 𝐴 = 0,

𝑎 ∈ 𝐸 (𝐴, 𝐶) ⇐⇒ (𝑎 − 𝐶) ∩ 𝐴 = {𝑎} ,

𝐼 (𝐴, 𝐶) ⊂ 𝐸 (𝐴, 𝐶) ⊂WE (𝐴, 𝐶) .

(2)

Let 𝑋𝑛 := {(𝑥1, . . . , 𝑥𝑛) : 𝑥𝑖 ∈ 𝑋, 𝑖 = 1, . . . , 𝑛} be equip-
ped with the norm ‖(𝑥1, . . . , 𝑥𝑛)‖ = ∑

𝑛

𝑖=1
‖𝑥𝑖‖.

Let Φ : 𝑋𝑛 → 𝑌 be 𝑛-linear and symmetric mapping
[17]; that is, for any 𝑠, 𝑡 ∈ R and 𝑥1, 𝑧1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑋,

Φ(𝑠𝑥1 + 𝑡𝑧1, 𝑥2, . . . , 𝑥𝑛)

= 𝑠Φ (𝑥1, 𝑥2, . . . , 𝑥𝑛) + 𝑡Φ (𝑧1, 𝑥2, . . . , 𝑥𝑛) ,

Φ (𝑥1, . . . , 𝑥𝑛) = Φ (𝑥𝑖
1

, . . . , 𝑥𝑖
𝑛

) ,

(3)

where (𝑖1, . . . , 𝑖𝑛) is an arbitrary permutation of (1, . . . , 𝑛). Let
𝑓 : 𝑋 → 𝑌 be a mapping. It is known that its derivative
𝑓
(𝑛)
(𝑥) is 𝑛-linear, symmetric, and continuous mapping if 𝑓

is 𝑛-time smooth.
Let𝑓 be a function from𝑅𝑛 to𝑅𝑚 and𝐶 ⊂ 𝑅𝑚 be a closed

convex cone. Consider the following vector optimization
problem

𝐶 −min
𝑥∈𝑅𝑛
𝑓 (𝑥) . (4)

A vector 𝑥 ∈ 𝑋 is said to be a local weak Pareto (resp., Pareto
and ideal) solution of (4) if there exists 𝛿 > 0 such that 𝑓(𝑥)
is a weak Pareto (resp., Pareto and ideal) point of 𝑓(𝐵(𝑥, 𝛿)),
where 𝐵(𝑥, 𝛿) denotes the open ball with center 𝑥 and radius
𝛿. We say that 𝑥 is a sharp Pareto solution of (4) of order 𝑟 if
there exist 𝜂, 𝛿 ∈ (0, +∞) such that

𝜂 ‖𝑥 − 𝑥‖ ≤ [𝑓 (𝑥) − 𝑓 (𝑥)]
𝑟

+
, ∀𝑥 ∈ 𝐵 (𝑥, 𝛿) , (5)

where [𝑓(𝑥) − 𝑓(𝑥)]+ := 𝑑(𝑓(𝑥) − 𝑓(𝑥), −𝐶).
We denote by𝐶𝑘,1, 𝑘 > 0, the class of 𝑘-time differentiable

mappings from 𝑅𝑛 to 𝑅𝑚 whose 𝑘th order derivatives are
locally Lipschitz mappings and by 𝐶0,1 the class of locally

Lipschitz functions from𝑅𝑛 to𝑅𝑚. By Rademacher’s theorem
(see [18]), for any 𝑓 ∈ 𝐶𝑘,1, 𝑓(𝑥) = (𝑓1(𝑥), . . . , 𝑓𝑚(𝑥)), its 𝑘th
order derivative 𝐷𝑘𝑓(𝑥) is a function differentiable almost
everywhere.The (𝑘+1)th order subdifferential of 𝑓 at 𝑥 ∈ 𝑅𝑛

is defined as “generalized Jacobian” of 𝐷𝑘+1𝑓 at 𝑥 in Clarke’s
sense [18] as follows:

𝜕
𝑘+1
𝑓 (𝑥) := co {lim 𝐷𝑘+1𝑓 (𝑥𝑖) : 𝑥𝑖 → 𝑥,

𝐷
𝑘+1
𝑓 (𝑥𝑖) exists at 𝑥𝑖} .

(6)

It is worthmentioning that each element in 𝜕𝑘+1𝑓(𝑥) is a 𝑘+1
linear and symmetric mapping from (𝑅𝑛)𝑘+1 to 𝑅𝑚. For more
details about 𝜕𝑘+1𝑓(𝑥), we refer the reader to [18].

It is similar to the proof of Lemma 2.1 in [1], and one can
verify the following chain rule.

Lemma 1. Let 𝑥, 𝑢 in 𝑅𝑛, 𝑔 be a function from 𝑅 to 𝑅𝑛 defined
by 𝑔(𝑡) = 𝑥 + 𝑡𝑢 for every 𝑡 ∈ 𝑅, and let 𝑓 be a 𝐶𝑘,1 function
from 𝑅𝑛 to 𝑅𝑚. Then,

𝜕
𝑘+1
(𝑓 ∘ 𝑔) (𝑡) ⊆ 𝜕

𝑘+1
𝑓 (𝑥 + 𝑡𝑢) (𝑢, . . . , 𝑢) . (7)

3. A New Taylor’s Formula in Form of
High-Order Subdifferential

By Lemma 1, we have the following Taylor-type formula for
a 𝐶𝑘,1 vector-valued function from 𝑅𝑛 to 𝑅𝑚 which will be
useful in the sequel.

Theorem 2. Let 𝑥, 𝑢, and 𝑓 be as in Lemma 1. Then, there
exists 𝐴 ∈ clco 𝜕𝑘+1𝑓(𝑥, 𝑥 + 𝑢) such that

𝑓 (𝑥 + 𝑢) − 𝑓 (𝑥) =

𝑘

∑

𝑖=1

1

𝑖!
𝐷
𝑖
𝑓 (𝑥) (𝑢

𝑖
) +

1

(𝑘 + 1)!
𝐴 (𝑢
𝑘+1
) ,

(8)

where 𝑢𝑖 denotes (𝑢, . . . , 𝑢) ∈ (𝑅𝑛)𝑖 and

clco 𝜕𝑘+1𝑓 (𝑥, 𝑥 + 𝑢) := clco( ⋃
𝑡∈(0,1)

𝜕
𝑘+1
𝑓 (𝑥 + 𝑡𝑢)) . (9)

Proof. Let 𝛼 ∈ 𝑅𝑚 be a vector satisfying

𝑓 (𝑥 + 𝑢) − 𝑓 (𝑥) =

𝑘

∑

𝑖=1

1

𝑖!
𝐷
𝑖
𝑓 (𝑥) (𝑢

𝑖
) +

1

(𝑘 + 1)!
𝛼. (10)

We only need to show that there exists 𝐴 ∈ clco 𝜕𝑘+1𝑓(𝑥, 𝑥 +
𝑢) such that

𝛼 = 𝐴 (𝑢
𝑘+1
) . (11)

Let 𝑔 be as Lemma 1. Set 𝜑(𝑡) := (𝑓 ∘ 𝑔)(𝑡) and

ℎ (𝑡) := 𝜑 (1) − 𝜑 (𝑡)

−

𝑘

∑

𝑖=1

1

𝑖!
𝐷
𝑖
𝜑 (𝑡) (1 − 𝑡)

𝑖
−

1

(𝑘 + 1)!
(1 − 𝑡)

𝑘+1
𝛼.

(12)
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Let 𝑦 ∈ 𝑅𝑚 be arbitrarily given. Since the function ⟨𝑦, ℎ(⋅)⟩
is locally Lipschitz and ℎ(0) = ℎ(1), applying Lebourg mean
value theorem [18, Theorem 2.3.7 and Theorem 2.3.9], there
exists 𝑡0 ∈ (0, 1) such that

0 ∈ 𝜕 ⟨𝑦, ℎ (𝑡0)⟩ ⊂ ⟨𝑦, 𝜕ℎ (𝑡0)⟩ . (13)

Noting that 𝜑(⋅) and each 𝐷𝑖𝜑(⋅)(1 − ⋅)𝑖 (1 ≤ 𝑖 ≤ 𝑘 − 1)
have derivatives which are continuous, it follows that they are
strictly𝐻-differentiable. We have

𝜕ℎ (𝑡0) = − 𝜕𝜑 (𝑡0) −

𝑘−1

∑

𝑖=1

1

𝑖!
𝜕 (𝐷
𝑖
𝜑 (⋅) (1 − ⋅)

𝑖
) (𝑡0)

−
1

𝑘!
𝜕 (𝐷
𝑘
𝜑 (⋅) (1 − ⋅)

𝑘
) (𝑡0)

−
1

(𝑘 + 1)!
𝜕 ((1 − ⋅)

𝑘+1
𝛼) (𝑡0)

= − 𝜑

(𝑡0)

−

𝑘−1

∑

𝑖=1

1

𝑖!
(𝐷
𝑖+1
𝜑 (𝑡0) (1 − 𝑡0)

𝑖
− 𝑖𝐷
𝑖
𝜑 (𝑡0) (1 − 𝑡0)

𝑖−1
)

−
1

𝑘!
𝜕 (𝐷
𝑘
𝜑 (⋅) (1 − ⋅)

𝑘
) (𝑡0) −

1

𝑘!
(1 − 𝑡0)

𝑘
𝛼

= −
1

(𝑘 − 1)!
𝐷
𝑘
𝜑 (𝑡0) (1 − 𝑡0)

𝑘−1

−
1

𝑘!
𝜕 (𝐷
𝑘
𝜑 (⋅) (1 − ⋅)

𝑘
) (𝑡0) −

1

𝑘!
(1 − 𝑡0)

𝑘
𝛼.

(14)

Here, the first equation holds by Propositions 7.4.3(b), and
7.3.5 in [19] and the second holds by Proposition 7.3.9 in [19].
By the chain rule [19, Theorem 7.4.5(a)], we also have

𝜕 (𝐷
𝑘
𝜑 (⋅) (1 − ⋅)

𝑘
) (𝑡0) ⊂ 𝜕

𝑘+1
𝜑 (𝑡0) (1 − 𝑡0)

𝑘

− 𝑘𝐷
𝑘
𝜑 (𝑡0) (1 − 𝑡0)

𝑘
.

(15)

Hence, we have

𝜕ℎ (𝑡0) ⊂ −
1

𝑘!
𝜕
𝑘+1
𝜑 (𝑡0) (1 − 𝑡0)

𝑘
+
1

𝑘!
(1 − 𝑡0)

𝑘
𝛼. (16)

From (13) and (16), we have

0 ∈ ⟨𝑦, −
1

𝑘!
𝜕
𝑘+1
𝜑 (𝑡0) (1 − 𝑡0)

𝑘
+
1

𝑘!
(1 − 𝑡0)

𝑘
𝛼⟩ . (17)

Together with Lemma 1, it follows that

0 ∈ ⟨𝑦, −
1

𝑘!
(1 − 𝑡0)

𝑘
𝜕
𝑘+1
𝑓 (𝑥 + 𝑡0𝑢) (𝑢

𝑘+1
) +
1

𝑘!
(1−𝑡0)

𝑘
𝛼⟩ ;

(18)

that is,

⟨𝑦, 𝛼⟩ ∈ ⟨𝑦, 𝜕
𝑘+1
𝑓 (𝑥 + 𝑡0𝑢) (𝑢

𝑘+1
)⟩

⊂ ⟨𝑦, clco 𝜕𝑘+1𝑓 (𝑥, 𝑥 + 𝑢) (𝑢𝑘+1)⟩ .
(19)

Since 𝑦 is arbitrary in 𝑅𝑛 and clco 𝜕𝑘+1𝑓(𝑥, 𝑥 + 𝑢)(𝑢𝑘+1) is
convex and compact, by the separation theorem,we can easily
show that 𝛼 ∈ clco 𝜕𝑘+1𝑓(𝑥, 𝑥 + 𝑢)(𝑢𝑘+1). Hence, we can take
𝐴 ∈ clco 𝜕𝑘+1𝑓(𝑥, 𝑥 + 𝑢) such that 𝛼 = 𝐴(𝑢𝑘+1). The proof is
completed.

Corollary 3. Let 𝑓 be as in Theorem 2 and 𝑎 ∈ 𝑅𝑛. Then, for
every 𝑥 ∈ 𝑅𝑛, there exist 𝐴𝑥 ∈ 𝜕𝑘+1𝑓(𝑎) and a (𝑘 + 1)-linear
mapping 𝑟(𝑥) from (𝑅𝑛)𝑘+1 to 𝑅𝑚 such that

lim
𝑥→𝑎
‖𝑟 (𝑥)‖ = 0,

𝑓 (𝑥) = 𝑓 (𝑎) +

𝑘

∑

𝑖=1

1

𝑖!
𝐷
𝑖
𝑓 (𝑎) (𝑥 − 𝑎)

𝑖

+
1

(𝑘 + 1)!
𝐴𝑥(𝑥 − 𝑎)

𝑘+1
+ 𝑟 (𝑥) (𝑥 − 𝑎)

𝑘+1
.

(20)

Proof. By Theorem 2, for a given 𝑥 ∈ 𝑅𝑛, there exists 𝐵𝑥 ∈
clco 𝜕𝑘+1𝑓(𝑎, 𝑎 + 𝑥) such that

𝑓 (𝑥) = 𝑓 (𝑎) +

𝑘

∑

𝑖=1

1

𝑖!
𝐷
𝑖
𝑓 (𝑎) (𝑥 − 𝑎)

𝑖
+

1

(𝑘 + 1)!
𝐵𝑥(𝑥 − 𝑎)

𝑘+1
.

(21)

Let 𝐴𝑥 ∈ 𝜕
𝑘+1
𝑓(𝑎) be an element minimizing the distance

from 𝐵𝑥 to the convex and compact set 𝜕𝑘+1𝑓(𝑎). Set

𝑟 (𝑥) :=
𝐵𝑥 − 𝐴𝑥

(𝑘 + 1)!
. (22)

Then, from (21), we obtain the formula of the corollary.
Moreover, since the mapping 𝜕𝑘+1𝑓 is upper continuous,
nonempty, convex, and compact valued (see [18]), for any
𝜀 > 0, there exists 𝛿 > 0 such that, for all 𝑦 ∈ 𝑎 + 𝛿𝐵𝑅𝑛 (where
𝐵𝑅𝑛 denotes the closed unit ball of 𝑅𝑛),

𝜕
𝑘+1
𝑓 (𝑦) ⊂ 𝜕

𝑘+1
𝑓 (𝑎) + (𝑘 + 1)!𝜀𝐵

𝐿((𝑅𝑛)
𝑘+1
,𝑅𝑚)
, (23)

where 𝐵
𝐿((𝑅𝑛)

𝑘+1
, 𝑅𝑚)

denotes the closed unit ball of the space
𝐿((𝑅
𝑛
)
𝑘+1
, 𝑅
𝑚
) of all bounded linear operators from (𝑅𝑛)𝑘+1

to 𝑅𝑚. If 𝑥 ∈ 𝑎 + 𝛿𝐵𝑅𝑛 , then

clco 𝜕𝑘+1𝑓 (𝑎, 𝑎 + 𝑥) ⊂ 𝜕𝑘+1𝑓 (𝑎) + (𝑘 + 1)!𝜀𝐵
𝐿((𝑅𝑛)

𝑘+1
,𝑅𝑚)
.

(24)

With this we obtain ‖𝑟(𝑥)‖ ≤ 𝜀. The proof is completed.

4. The Positive Definiteness of High-Order
Subdifferential and Optimality Conditions

Recall [17] that 𝑛-linear symmetric mapping Φ : 𝑋𝑛 → 𝑌

is said to be positively definite (resp., positively semidefinite)
with respect to the ordering cone 𝐶 if

0 <𝐶Φ(𝑥
𝑛
) (resp., 0 ≤𝐶Φ(𝑥

𝑛
)) , ∀𝑥 ∈ 𝑋 \ {0} , (25)
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where 𝑥𝑛 denotes (𝑥, . . . , 𝑥). If 𝑛 is odd and the ordering cone
𝐶 is pointed (i.e., 𝐶 ∩ (−𝐶) = {0}), then Φ is positively
semidefinite if and only if Φ = 0; see [17].

By the separation theorem, it is easy to verify that a 𝑛-
linear symmetric mapping Φ is positively semidefinite with
respect to the ordering cone 𝐶 if and only if the composite
𝑐
∗
∘ Φ is positively semidefinite for any 𝑐∗ ∈ 𝐶+. Recall that a

mapping 𝑓 : 𝑋 → 𝑌 is 𝐶-convex if

𝑓 (𝑡𝑥1 + (1 − 𝑡) 𝑥2) ≤𝐶 𝑡𝑓 (𝑥1) + (1 − 𝑡) 𝑓 (𝑥2) ,

∀𝑥1, 𝑥2 ∈ 𝑋, ∀𝑡 ∈ [0, 1] .

(26)

Noting that 𝑓 is 𝐶-convex if and only if 𝑐∗ ∘ 𝑓 is convex for
all 𝑐∗ ∈ 𝐶+, one can see that a twice differentiable function 𝑓
is 𝐶-convex if and only if 𝑓(𝑥) is positively semidefinite for
all 𝑥 ∈ 𝑋.

Inspired by the notion of positive definiteness, we intro-
duce positive definiteness of the (𝑘+1)th order subdifferential
for 𝐶𝑘,1 functions.

Definition 4. Let 𝑓 be a 𝐶𝑘,1 function from 𝑅𝑛 to 𝑅𝑚 and 𝐶
a closed convex cone of 𝑅𝑚. We say that the (𝑘 + 1)th order
subdifferential mapping 𝜕𝑘+1𝑓 is positively definite at 𝑥 ∈ 𝑅𝑛

with respect to the ordering cone 𝐶 if each 𝐴 ∈ 𝜕𝑘+1𝑓(𝑥) is
positively definite with respect to 𝐶.

Proposition 5. Let 𝑓 be a 𝐶𝑘,1 function from 𝑅𝑛 to 𝑅𝑚,
and let 𝐶 be a closed convex cone of 𝑅𝑚. Suppose that the
subdifferential mapping 𝜕𝑘+1𝑓 is positively definite at 𝑥 ∈ 𝑅𝑛
with respect to 𝐶. Then, there exists 𝜂 > 0 such that

𝐴(𝑥
𝑘+1
) + 𝜂𝐵𝑅𝑚 ⊂ 𝐶, ∀𝐴 ∈ 𝜕

𝑘+1
𝑓 (𝑥) , 𝑥 ∈ 𝑆𝑅𝑛 , (27)

where 𝑆𝑅𝑛 := {𝑥 ∈ 𝑅𝑛 : ‖𝑥‖ = 1}.

Proof. From [17, Proposition 3.4], for any𝐴 ∈ 𝜕𝑘+1𝑓(𝑥), there
exists 𝜂𝐴 > 0 such that

𝐴(𝑥
𝑘+1
) + 𝜂𝐴𝐵𝑅𝑚 ⊂ 𝐶, ∀𝑥 ∈ 𝑆𝑅𝑛 . (28)

If the conclusion is not true, then, for every natural number 𝑖,
there exist 𝐴 𝑖 ∈ 𝜕

𝑘+1
𝑓(𝑥), 𝑥𝑖 ∈ 𝑆𝑅𝑛 and 𝑏𝑖 ∈ 𝐵𝑅𝑛 such that

𝐴 𝑖 (𝑥
𝑘+1

𝑖
) +
1

𝑖
𝑏𝑖 ∉ 𝐶. (29)

Since 𝜕𝑘+1𝑓(𝑥) and 𝑆𝑅𝑛 are compact, we can assume that
𝐴 𝑖 → 𝐴0 ∈ 𝜕

𝑘+1
𝑓(𝑥), 𝑥𝑖 → 𝑥0 ∈ 𝑆𝑅𝑛 (passing to a subse-

quence if necessary). Then,

𝐴0 (𝑥
𝑘+1

0
) + (𝐴 𝑖 (𝑥

𝑘+1

𝑖
) − 𝐴0 (𝑥

𝑘+1

0
)) +

1

𝑖
𝑏𝑖 ∉ 𝐶 (30)

for all 𝑖. But from (28), for large enough 𝑖, we have

𝐴0 (𝑥
𝑘+1

0
) + (𝐴 𝑖 (𝑥

𝑘+1

𝑖
) − 𝐴0 (𝑥

𝑘+1

0
))

+
1

𝑖
𝑏𝑖 ∈ 𝐴0 (𝑥

𝑘+1

0
) + 𝜂𝐴

0

𝐵𝑅𝑚 ⊂ 𝐶,

(31)

which is a contradiction with (29). The proof is completed.

Under the positive definiteness assumption, we will pro-
vide a (𝑘 + 1)th order sufficient condition for 𝑥 to be a sharp
local Pareto solution of (4) for a 𝐶𝑘,1 function 𝑓.

Theorem6. Let𝑓 be a𝐶𝑘,1 function from𝑅𝑛 to𝑅𝑚,𝐶 a closed
convex cone of 𝑅𝑚, and 𝑥 ∈ 𝑅𝑛. Suppose that there exists 𝑐∗ ∈
𝐶
+ with ‖𝑐∗‖ = 1 such that∑𝑘

𝑖=1
(1/𝑖!)𝑐

∗
∘𝐷
𝑖
𝑓(𝑥) = 0, and that

𝜕
(𝑘+1)
𝑓 is positively definite at 𝑥 with respect to the ordering

cone𝐶. Then, 𝑥 is a local Pareto solution of (4), and there exist
𝜂, 𝛿 ∈ (0, +∞) such that

𝜂 ‖𝑥 − 𝑥‖ ≤ [𝑓 (𝑥) − 𝑓 (𝑥)]
1/(𝑘+1)

+
, ∀𝑥 ∈ 𝐵 (𝑥, 𝛿) . (32)

Proof. Since 𝜕(𝑘+1)𝑓(𝑥) is positively definite with respect to𝐶,
by Proposition 5, there exists 𝜂 > 0 such that

1

(𝑘 + 1)!
𝜕
(𝑘+1)
𝑓 (𝑥) (ℎ

𝑘+1
) + 2𝜂

𝑘+1
𝐵𝑅𝑚 ⊂ 𝐶, ∀ℎ ∈ 𝑆𝑅𝑛 .

(33)

Noting that 𝑐∗ ∈ 𝐶+ and ‖𝑐∗‖ = 1, we have that

1

(𝑘 + 1)!
⟨𝑐
∗
, 𝐴ℎ
𝑘+1
⟩ ≥ 2𝜂

𝑘+1
‖ℎ‖
𝑘+1
,

∀𝐴 ∈ 𝜕
(𝑘+1)
𝑓 (𝑥) , ℎ ∈ 𝑅

𝑛
.

(34)

Let 𝜙(𝑥) := ⟨𝑐∗, 𝑓(𝑥)⟩ for all 𝑥 ∈ 𝑋. Since𝑓 is a𝐶𝑘,1 function,
so is 𝜙. Noting that𝐷(𝑖)𝜙(𝑥) = 𝑐∗ ∘𝐷(𝑖)𝑓(𝑥) with Corollary 3,
there exist 𝐴𝑥 ∈ 𝜕

𝑘+1
𝑓(𝑥) and (𝑘 + 1)-linear mapping 𝑟(𝑥)

with lim𝑥→𝑥‖𝑟(𝑥)‖ = 0 such that

𝜙 (𝑥) = 𝜙 (𝑥) +

𝑘

∑

𝑖=1

1

𝑖!
𝐷
(𝑖)
𝜙 (𝑥) ((𝑥 − 𝑥)

𝑖
) +

1

(𝑘 + 1)!

× ⟨𝑐
∗
, 𝐴𝑥(𝑥−𝑥)

𝑘+1
⟩+⟨𝑐
∗
, 𝑟 (𝑥) (𝑥−𝑥)

𝑘+1
⟩.

(35)

It follows that there exists 𝛿 > 0 such that

𝜙 (𝑥) − 𝜙 (𝑥) −

𝑘

∑

𝑖=1

1

𝑖!
𝐷
(𝑖)
𝜙 (𝑥) ((𝑥 − 𝑥)

𝑖
)

−
1

(𝑘 + 1)!
⟨𝑐
∗
, 𝐴𝑥(𝑥 − 𝑥)

𝑘+1
⟩

≥ − 𝜂
𝑘+1
‖𝑥 − 𝑥‖

𝑘+1
,

(36)

for all 𝑥 ∈ 𝐵(𝑥, 𝛿). Since ∑𝑘
𝑖=1
(1/𝑖!)𝑐

∗
∘ 𝐷
𝑖
𝑓(𝑥) = 0, it follows

from (34) and (36) that

𝜂
𝑘+1
‖𝑥 − 𝑥‖

𝑘+1
≤ 𝜙 (𝑥) − 𝜙 (𝑥) , ∀𝑥 ∈ 𝐵 (𝑥, 𝛿) . (37)

On the other hand, for any 𝑐 ∈ 𝐶, one has

𝜙 (𝑥) − 𝜙 (𝑥) = ⟨𝑐
∗
, 𝑓 (𝑥) − 𝑓 (𝑥)⟩

≤ ⟨𝑐
∗
, 𝑓 (𝑥) − 𝑓 (𝑥) + 𝑐⟩ ≤

𝑓 (𝑥) − 𝑓 (𝑥) + 𝑐
 .

(38)
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This implies that (32) holds. It remains to show that𝑥 is a local
Pareto solution of (4). Let 𝑥 ∈ 𝐵(𝑥, 𝛿) such that𝑓(𝑥) ≤𝐶𝑓(𝑥).
Then, ‖𝑓(𝑥)−𝑓(𝑥)‖+ = 0. It follows from (32) that 𝑥 = 𝑥, and
hence𝑓(𝑥) = 𝑓(𝑥).This shows that𝑥 is a local Pareto solution
of (4).

In Theorem 6, if 𝑓 is a 𝐶-convex 𝐶𝑘,1 function, then 𝑥 is
a global Pareto solution of (4).

Theorem 7. Let 𝑓 be a 𝐶-convex 𝐶𝑘,1 function from 𝑅𝑛 to 𝑅𝑚,
𝐶 a closed convex cone of 𝑅𝑚, and 𝑥 ∈ 𝑅𝑛. Suppose that there
exists 𝑐∗ ∈ 𝐶+ with ‖𝑐∗‖ = 1 such that∑𝑘

𝑖=1
(1/𝑖!)𝑐

∗
∘𝐷
𝑖
𝑓(𝑥) =

0 and that 𝜕𝑘+1𝑓(𝑥) is positively definite. Then, 𝑥 is a global
Pareto solution of (4), and there exists 𝜂0 ∈ (0, +∞) such that

𝜂0 ‖𝑥 − 𝑥‖ ≤ max {[𝑓 (𝑥) − 𝑓 (𝑥)]1/(𝑘+1)
+

,

[𝑓 (𝑥) − 𝑓 (𝑥)]
+
} , ∀𝑥 ∈ 𝑅

𝑛
.

(39)

Proof. Similar to the proof of Theorem 6, one can show that
(39) implies that𝑥 is a global Pareto solution of (4). It remains
to show that (39) holds. By Theorem 6, there exist 𝜂, 𝛿 ∈
(0, +∞) such that (32) holds. Since 𝑓 is 𝐶-convex, it is easy
to verify that 𝑥 → [𝑓(𝑥) − 𝑓(𝑥)]+ is a convex function. Let
𝑥 ∈ 𝑅

𝑛
\ 𝐵(𝑥, 𝛿). Then,

𝜂
𝑘+1
𝛿
𝑘+1
≤ [𝑓(𝑥 + 𝛿

𝑥 − 𝑥

‖𝑥 − 𝑥‖
) − 𝑓 (𝑥)]

+

≤ (1 −
𝛿

‖𝑥 − 𝑥‖
) [𝑓 (𝑥) − 𝑓 (𝑥)]

+

+
𝛿

‖𝑥 − 𝑥‖
[𝑓 (𝑥) − 𝑓 (𝑥)]

+

=
𝛿

‖𝑥 − 𝑥‖
[𝑓 (𝑥) − 𝑓 (𝑥)]

+
.

(40)

Hence, 𝜂𝑘+1𝛿𝑘‖𝑥 − 𝑥‖ ≤ [𝑓(𝑥) − 𝑓(𝑥)]+. Letting 𝜂0 :=
min{𝜂, 𝜂𝑘+1𝛿𝑘}, it follows from (32) that (39) holds.The proof
is completed.

With ∑𝑘
𝑖=1
(1/𝑖!)𝑐

∗
∘ 𝐷
𝑖
𝑓(𝑥) = 0 in Theorem 7 replaced

by a stronger assumption, we have the following sufficient
condition for sharp ideal solutions of (4).

Theorem 8. Let 𝑓 be a 𝐶𝑘,1 function from 𝑅𝑛 to 𝑅𝑚, 𝐶
a closed convex cone of 𝑅𝑚, and 𝑥 ∈ 𝑅

𝑛. Suppose that
∑
𝑘

𝑖=1
(1/𝑖!)𝐷

𝑖
𝑓(𝑥) = 0 and that 𝜕𝑘+1𝑓 is positively definite at

𝑥 with respect to the ordering cone 𝐶. Then, there exist 𝜂, 𝛿 ∈
(0, +∞) such that

𝑓 (𝑥) ≤𝐶𝑓 (𝑥) , ∀𝑥 ∈ 𝐵 (𝑥, 𝛿) , (41)

𝜂 ‖𝑥 − 𝑥‖ ≤ [𝑓 (𝑥) − 𝑓 (𝑥)]
1/(𝑘+1)

+
, ∀𝑥 ∈ 𝐵 (𝑥, 𝛿) . (42)

Proof. By Theorem 6, we need only to show that there exists
𝛿 > 0 such that (41) holds. Since 𝜕𝑘+1𝑓(𝑥) is positively
definite, there exists 𝜂 > 0 such that

1

(𝑘 + 1)!
𝜕
𝑘+1
𝑓 (𝑥) (ℎ

𝑘+1
) + 2𝜂𝐵𝑅𝑚 ⊂ 𝐶, ∀ℎ ∈ 𝑆𝑅𝑚 . (43)

It follows that
1

(𝑘 + 1)!
𝜕
𝑘+1
𝑓 (𝑥) (𝑥

𝑘+1
) + 𝜂‖𝑥‖

𝑘+1
𝐵𝑅𝑚 ⊂ 𝐶, ∀𝑥 ∈ 𝑅

𝑚
.

(44)

On the other hand, since ∑𝑘
𝑖=1
(1/𝑖!)𝐷

𝑖
𝑓(𝑥) = 0, with Corol-

lary 3, we can assume that for any 𝑥 ∈ 𝑅𝑛 close to 𝑥, there
exists 𝑛-linear symmetric and continuousmapping 𝑟(𝑥) from
(𝑅
𝑛
)
𝑘+1 to 𝑅𝑚 such that lim𝑥→𝑥𝑟(𝑥) = 0 and

𝑓 (𝑥) − 𝑓 (𝑥) ∈
1

(𝑘 + 1)!
𝜕
(𝑘+1)
𝑓 (𝑥) ((𝑥 − 𝑥)

𝑘+1
)

+ 𝑟 (𝑥) (𝑥 − 𝑥)
𝑘+1
.

(45)

Hence, there exists 𝛿 > 0 such that

𝑓 (𝑥) − 𝑓 (𝑥) ∈
1

(𝑘 + 1)!
𝜕
𝑘+1
𝑓 (𝑥) ((𝑥 − 𝑥)

𝑘+1
)

+ 𝜂‖𝑥 − 𝑥‖
𝑘+1
𝐵𝑅𝑚 , ∀𝑥 ∈ 𝐵 (𝑥, 𝛿) .

(46)

This and (44) imply that (41) holds. The proof is completed.

5. (𝑘+1)th Order Necessary Conditions for
Strongly 𝐶-Quasiconvex Functions

We recall that a function 𝑓 from 𝑅𝑛 to 𝑅 is quasiconvex if,
for every 𝑥, 𝑦 ∈ 𝑅𝑛 and for every 𝜆 ∈ (0, 1), one has 𝑓(𝜆𝑥 +
(1 − 𝜆)𝑦) ≤ max{𝑓(𝑥), 𝑓(𝑦)}. Inspired by this, we introduce
the notion of strong 𝐶-quasiconvexity for functions from 𝑅𝑛
to 𝑅𝑚. A function 𝑓 from 𝑅𝑛 to 𝑅𝑚 is said to be strongly 𝐶-
quasiconvex if, for every 𝑥, 𝑦 ∈ 𝑅𝑛 and for every 𝜆 ∈ (0, 1),
one has

𝑓 (𝜆𝑥 + (1 − 𝜆) 𝑦) ∈ {𝑓 (𝑥) , 𝑓 (𝑦)} − 𝐶. (47)

Using the generalized Hessian (see [20]), Luc [1] gave a
second-order criterion for quasiconvex functions. We will
give a (𝑘 + 1)th order necessary codition for a function to be
strongly 𝐶-quasiconvex.

Theorem 9. Let 𝑓 be a strongly 𝐶-quasiconvex function from
𝑅
𝑛 to 𝑅𝑚, 𝑘 an odd number and 𝐶 ⊂ 𝑅𝑚 the closed pointed

ordering cone. Then, for any 𝑥, 𝑢 ∈ 𝑅𝑛 with 𝐷𝑖𝑓(𝑥)(𝑢𝑖) =
0 (𝑖 = 1, . . . , 𝑘), there exists 𝐴0 ∈ 𝜕𝑘+1𝑓(𝑥) such that
𝐴0(𝑢
𝑘+1
) ∈ 𝐶.

Proof. Suppose that the conclusion is not true. Then, there
exist some 𝑥, 𝑢 ∈ 𝑅𝑛, with𝐷𝑖𝑓(𝑥)(𝑢𝑖) = 0 (𝑖 = 1, . . . , 𝑘) such
that 𝜕𝑘+1𝑓(𝑥)(𝑢𝑘+1) ⊂ 𝑅𝑚 \ 𝐶. Since 𝑅𝑚 \ 𝐶 is open and 𝜕𝑘+1

𝑓(𝑥)(𝑢
𝑘+1
) is compact, there exists 𝜀 > 0 such that

𝜕
𝑘+1
𝑓 (𝑥) (𝑢

𝑘+1
) + 𝜀𝐵

𝐿((𝑅𝑛)
𝑘+1
,𝑅𝑚)
(𝑢
𝑘+1
) ⊂ 𝑅
𝑚
\ 𝐶. (48)

Since 𝜕𝑘+1𝑓(⋅) is upper continuous, for the previous 𝜀, there
exists 𝑡0 > 0 such that

𝜕
𝑘+1
𝑓 (𝑥 + 𝑡𝑢) ⊂ 𝜕

𝑘+1
𝑓 (𝑥) + 𝜀𝐵

𝐿((𝑅𝑛)
𝑘+1
,𝑅𝑚)
, (49)
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for any 𝑡 ∈ [−𝑡0, 𝑡0]. Noting that 𝜕𝑘+1𝑓(𝑥) is closed convex,
from (48) and (49), we have

clco 𝜕𝑘+1𝑓 (𝑥 − 𝑡𝑢, 𝑥 + 𝑡𝑢) (𝑢𝑘+1)

⊂ 𝜕
𝑘+1
𝑓 (𝑥) (𝑢

𝑘+1
) + 𝜀𝐵

𝐿((𝑅𝑛)
𝑘+1
,𝑅𝑚)
(𝑢
𝑘+1
) ⊂ 𝑅
𝑚
\ 𝐶.

(50)

From Theorem 2, for any 𝑡 ∈ [−𝑡0, 𝑡0], we can take 𝐴 𝑡 ∈
clco 𝜕𝑘+1𝑓(𝑥, 𝑥 + 𝑡𝑢) such that

𝑓 (𝑥+𝑡𝑢)−𝑓 (𝑥) =

𝑘

∑

𝑖=1

1

𝑖!
𝑡
𝑖
𝐷
𝑖
𝑓 (𝑥) (𝑢

𝑖
)+

1

(𝑘 + 1)!
𝑡
𝑘+1
𝐴 𝑡 (𝑢
𝑘+1
)

=
1

(𝑘 + 1)!
𝑡
𝑘+1
𝐴 𝑡 (𝑢
𝑘+1
) ∈ 𝑅
𝑚
\ 𝐶.

(51)

Noting that 𝑘 + 1 is even, we have 𝑓(𝑥 + 𝑡𝑢) − 𝑓(𝑥) ∈ 𝑅𝑚 \ 𝐶
and 𝑓(𝑥 − 𝑡𝑢) − 𝑓(𝑥) ∈ 𝑅𝑚 \ 𝐶, for all 𝑡 ∈ [−𝑡0, 𝑡0].

On the other hand, since 𝑓 is 𝐶-quasiconvex and 𝑓(𝑥) =
𝑓((1/2)(𝑥+ 𝑡𝑢)+ (1/2)(𝑥− 𝑡𝑢)), one has 𝑓(𝑥+ 𝑡𝑢)−𝑓(𝑥) ∈ 𝐶
or 𝑓(𝑥 − 𝑡𝑢) − 𝑓(𝑥) ∈ 𝐶. This is a contradiction.

If 𝑚 = 1 and 𝐶 = 𝑅+, then 𝐶
+
= 𝑅+. We have the

following.

Corollary 10 (see [1]). Let 𝑓 be a quasiconvex function from
𝑅
𝑛 to 𝑅 and 𝑘 an odd number. Then, for any 𝑥, 𝑢 ∈ 𝑅𝑛 with
𝐷
𝑖
𝑓(𝑥)(𝑢

𝑖
) = 0 (𝑖 = 1, . . . , 𝑘), one has𝐷𝑘+1

+
𝑓(𝑥; 𝑢) ≥ 0, where

𝐷
𝑘+1

+
𝑓(𝑥; 𝑢) := max{𝐴(𝑢, . . . , 𝑢) : 𝐴 ∈ 𝜕𝑘+1𝑓(𝑥)}.
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