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In view of Nevanlinna theory, we study the properties of meromorphic solutions of systems of a class of complex difference
equations. Some results obtained improve and extend the previous theorems given by Gao.

1. Introduction and Main Results

The purpose of this paper is to study some properties of
meromorphic solutions of complex 𝑞-shift difference equa-
tions. The fundamental results and the standard notations
of the Nevanlinna value distribution theory of meromorphic
functions will be used (see [1–3]). Besides, for meromorphic
function 𝑓, a meromorphic function 𝑎(𝑧) is called small
function with respect to 𝑓 if 𝑇(𝑟, 𝑎(𝑧)) = 𝑜(𝑇(𝑟, 𝑓)) =

𝑆(𝑟, 𝑓) for all 𝑟 outside a possible exceptional set 𝐸 of finite
logarithmic measure lim

𝑟→∞
∫
[1,𝑟)∩𝐸

(𝑑𝑡/𝑡) < ∞.
In recent years, it has been a heated topic to study dif-

ference equations, difference product, and 𝑞-difference in the
complex plane C. There were articles focusing on the growth
of solutions of difference equations, value distribution and
uniqueness of differences analogues of Nevanlinna’s theory
(see [4–9]). Chiang and Feng [10] andHalburd andKorhonen
[11] established a difference analogue of the logarithmic
derivative lemma independently, and Barnett et al. [5] also
established an analogue of the logarithmic derivative lemma
on 𝑞-difference operators. By applying these theorems, a
number of results on meromorphic solutions of complex
difference and 𝑞-difference equations were obtained (see [12–
19]).

In 2011, Korhonen [20] investigated the properties of
finite-order meromorphic solution of the equation

𝐻 (𝑧, 𝜔) 𝑃 (𝑧, 𝜔) = 𝑄 (𝑧, 𝜔) , (1)

where 𝑃(𝑧, 𝜔) = 𝑃(𝑧, 𝜔(𝑧), 𝜔(𝑧 + 𝑐
1
), . . . , 𝜔(𝑧 + 𝑐

𝑛
)), 𝑐
1
, . . . ,

𝑐
𝑛

∈ C and obtained the following result.

Theorem 1 (see [20]). Let 𝜔(𝑧) be a finite-order meromorphic
solution of (1), where𝑃(𝑧, 𝜔) is a homogeneous difference poly-
nomial withmeromorphic coefficients and𝐻(𝑧, 𝜔) and𝑄(𝑧, 𝜔)

are polynomials in 𝜔(𝑧) with meromorphic coefficients having
no common factors. If max{deg

𝜔
(𝐻), deg

𝜔
(𝑄) − deg

𝜔
(𝑃)} >

min{deg
𝜔

(𝑃), ord
0
(𝑄)} − ord

0
(𝑃), then 𝑁(𝑟, 𝜔) ̸= 𝑆(𝑟, 𝜔),

where ord
0
(𝑃) denotes the order of zero of 𝑃(𝑧, 𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
)

at 𝑥
0

= 0 with respect to the variable 𝑥
0
.

Let 𝑐
𝑗

∈ C for 𝑗 = 1, . . . , 𝑛, and let 𝐼 be a finite set of multi-
indexes 𝜆 = (𝜆

0
, . . . , 𝜆

𝑛
). Then a difference polynomial of a

meromorphic function 𝜔(𝑧) is defined as

𝑃 (𝑧, 𝜔) = 𝑃 (𝑧, 𝜔 (𝑧) , 𝜔 (𝑧 + 𝑐
1
) , . . . , 𝜔 (𝑧 + 𝑐

𝑛
))

= ∑

𝜆∈𝐼

𝑐
𝜆

(𝑧) 𝑤(𝑧)
𝜆0𝑤(𝑧 + 𝑐

1
)
𝜆1

⋅ ⋅ ⋅ 𝜔(𝑧 + 𝑐
𝑛
)
𝜆𝑛

,
(2)

where the coefficients 𝑐
𝜆
(𝑧) are small with respect to 𝜔(𝑧)

in the sense that 𝑇(𝑟, 𝑐
𝜆
) = 𝑜(𝑇(𝑟, 𝜔)) as 𝑟 tends to infinity

outside of an exceptional set 𝐸 of finite logarithmic measure.
At the same year, Zheng and Chen [21] consider the value

distribution of meromorphic solutions of zero order of a kind
of 𝑞-difference equations and obtained the following result
which is an extension of Theorem 1.
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Theorem 2 (see [21, Theorem 1]). Suppose that 𝑓 is a
nonconstant meromorphic solution of zero order of a 𝑞-
difference equation of the form

∑

𝜆∈𝐼

𝑐
𝜆

(𝑧) 𝑓(𝑞𝑧)
𝑖𝜆,1

𝑓(𝑞
2

𝑧)
𝑖𝜆,2

⋅ ⋅ ⋅ 𝑓(𝑞
𝑛

𝑧)
𝑖𝜆,𝑛

=
𝑃 (𝑧, 𝑓 (𝑧))

𝑄 (𝑧, 𝑓 (𝑧))

= (𝑎
𝑘

(𝑧) (𝑓 (𝑧))
𝑘

+ 𝑎
𝑘+1

(𝑧) (𝑓 (𝑧))
𝑘+1

+ ⋅ ⋅ ⋅

+𝑎
𝑠

(𝑧) (𝑓 (𝑧))
𝑠

)

× (𝑏
0

(𝑧) + 𝑏
1

(𝑧) 𝑓 (𝑧) + ⋅ ⋅ ⋅ + 𝑏
𝑡

(𝑧) (𝑓 (𝑧))
𝑡

)
−1

,

(3)

where 𝐼 = {(𝑖
𝜆1

, 𝑖
𝜆2

, . . . , 𝑖
𝜆𝑛

)} is a finite index set and 𝑖
𝜆1

+

𝑖
𝜆2

+ ⋅ ⋅ ⋅ + 𝑖
𝜆𝑛

= 𝜎 > 0 for all 𝜆 ∈ 𝐼 and 𝑞( ̸= 0, 1) ∈ C.
Moreover, suppose that 0 ≤ 𝑘 ≤ 𝑠, 𝑎

𝑘
(𝑧)𝑎
𝑠
(𝑧)𝑏
𝑡
(𝑧) ̸≡ 0,

the 𝑃(𝑧, 𝑓) and 𝑄(𝑧, 𝑓) have no common factors, and that all
meromorphic coefficients in (3) are of growth of 𝑜(𝑇(𝑟, 𝑓)) on
a set of logarithmic density 1. If

max {𝑡, 𝑠 − 𝜎} > min {𝜎, 𝑘} , (4)

then

𝑁 (𝑟, 𝑓) ̸= 𝑜 (𝑇 (𝑟, 𝑓)) (5)

on any set of logarithmic density 1.

Remark 3. The logarithmic density of a set 𝐹 is defined by

lim sup
𝑟→∞

1

log 𝑟
∫
[1,𝑟]∩𝐹

1

𝑡
𝑑𝑡. (6)

Recently, Gao [22–24] and others [25, 26] also investi-
gated the growth and existence of meromorphic solutions of
some systems of complex difference equations; one system
of complex difference equation is based on (1) and obtained
some interesting results.

Inspired by the idea of [21–24, 27], we will investigate the
properties of meromorphic solutions of systems of a class of
complex 𝑞-shift difference equations of the form

Ω
1

(𝑧, 𝑤
1
, 𝑤
2
) = 𝑅
1

(𝑧, 𝑤
1
) ,

Ω
2

(𝑧, 𝑤
1
, 𝑤
2
) = 𝑅
2

(𝑧, 𝑤
2
) ,

(7)

where 𝑞( ̸= 0, 1), 𝑐
𝑗

(𝑗 = 1, . . . , 𝑛) ∈ C, 𝐼, 𝐽 are two
finite sets of multi-indexes (𝑖

1
, . . . , 𝑖

𝑛
), (𝑗
1
, . . . , 𝑗

𝑛
), and

Ω
1
(𝑧, 𝑤
1
, 𝑤
2
), Ω
2
(𝑧, 𝑤
1
, 𝑤
2
) are two homogeneous differ-

ence polynomials to be defined as

Ω
1

(𝑧, 𝑤
1
, 𝑤
2
) = Ω

1
(𝑧, 𝑤
1

(𝑞𝑧 + 𝑐
1
) , 𝑤
2

(𝑞𝑧 + 𝑐
1
) ,

. . . , 𝑤
1

(𝑞
𝑛

𝑧 + 𝑐
𝑛
) , 𝑤
2

(𝑞
𝑛

𝑧 + 𝑐
𝑛
))

= ∑

(𝑖)

𝑎
(𝑖)

(𝑧)

2

∏

𝑘=1

(𝑤
𝑘

(𝑞𝑧 + 𝑐
1
))
𝑖𝑘1

⋅ ⋅ ⋅ (𝑤
𝑘

(𝑞
𝑛

𝑧 + 𝑐
𝑛
))
𝑖𝑘𝑛

,

Ω
2

(𝑧, 𝑤
1
, 𝑤
2
) = Ω

2
(𝑧, 𝑤
1

(𝑞𝑧 + 𝑐
1
) , 𝑤
2

(𝑞𝑧 + 𝑐
1
) ,

. . . , 𝑤
1

(𝑞
𝑛

𝑧 + 𝑐
𝑛
) , 𝑤
2

(𝑞
𝑛

𝑧 + 𝑐
𝑛
))

= ∑

(𝑗)

𝑏
(𝑗)

(𝑧)

2

∏

𝑘=1

(𝑤
𝑘

(𝑞𝑧 + 𝑐
1
))
𝑗𝑘1

⋅ ⋅ ⋅ (𝑤
𝑘

(𝑞
𝑛

𝑧 + 𝑐
𝑛
))
𝑗𝑘𝑛

.

(8)

The coefficients {𝑎(𝑖)}, {𝑏(𝑗)} are small with respect to 𝑤
1
,

𝑤
2
in the sense that 𝑇(𝑟, 𝑎

(𝑖)
) = 𝑜(𝑇(𝑟, 𝑤

𝑙
)), 𝑇(𝑟, 𝑏

(𝑗)
) =

𝑜(𝑇(𝑟, 𝑤
𝑙
)), 𝑙 = 1, 2, as 𝑟 tends to infinity outside of an

exceptional set 𝐸 of finite logarithmic measure. The weights
of Ω
1
(𝑧, 𝑤
1
, 𝑤
2
), Ω
2
(𝑧, 𝑤
1
, 𝑤
2
) are defined by

𝜎
11

= max
(𝑖)

{

𝑛

∑

𝑙=1

𝑖
1𝑙

} , 𝜎
12

= max
(𝑖)

{

𝑛

∑

𝑙=1

𝑖
2𝑙

} ,

𝜎
21

= max
(𝑗)

{

𝑛

∑

𝑙=1

𝑗
1𝑙

} , 𝜎
22

= max
(𝑗)

{

𝑛

∑

𝑙=1

𝑗
2𝑙

} ,

𝑅
1

(𝑧, 𝑤
1
) =

𝑃
1

(𝑧, 𝑤
1
)

𝑄
1

(𝑧, 𝑤
1
)

= (𝑐
1

𝑘1

(𝑧) (𝑤
1

(𝑧))
𝑘1

+ 𝑐
1

𝑘1+1
(𝑧) (𝑤

1
(𝑧))
𝑘1+1

+ ⋅ ⋅ ⋅

+𝑐
1

𝑠1

(𝑧) (𝑤
1

(𝑧))
𝑠1

)

× (𝑑
1

0
(𝑧) + 𝑑

1

1
(𝑧) 𝑤
1

(𝑧) + ⋅ ⋅ ⋅ ,

+𝑑
1

𝑡1

(𝑧) (𝑤
1

(𝑧))
𝑡1

)
−1

,

𝑅
2

(𝑧, 𝑤
2
) =

𝑃
2

(𝑧, 𝑤
2
)

𝑄
2

(𝑧, 𝑤
2
)

= (𝑐
2

𝑘2

(𝑧) (𝑤
2

(𝑧))
𝑘2

+ 𝑐
2

𝑘2+1
(𝑧) (𝑤

2
(𝑧))
𝑘2+1

+ ⋅ ⋅ ⋅

+𝑐
2

𝑠
(𝑧) (𝑤

2
(𝑧))
𝑠2

)

× (𝑑
2

0
(𝑧) + 𝑑

2

1
(𝑧) 𝑤
2

(𝑧) + ⋅ ⋅ ⋅

+𝑑
2

𝑡2

(𝑧) (𝑤
2

(𝑧))
𝑡2

)
−1

.

(9)
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The coefficients {𝑐
𝑖

𝑘𝑖

(𝑧)}, {𝑑
𝑖

𝑡𝑖

(𝑧)} are meromorphic functions
and small functions,

𝑆 (𝑟) = ∑ 𝑇 (𝑟, 𝑎
(𝑖)

) + ∑ 𝑇 (𝑟, 𝑏
(𝑗)

)

+ ∑ 𝑇 (𝑟, 𝑐
𝑖

𝑘𝑖

) + ∑ 𝑇 (𝑟, 𝑑
𝑖

𝑡𝑖

) .

(10)

Now, we will show our main results as follows.

Theorem 4. Let (𝑤
1
, 𝑤
2
) be meromorphic solution of systems

(7) satisfying 𝜌 = 𝜌(𝑤
1
, 𝑤
2
) = 0. Moreover, suppose

that 0 ≤ 𝑘
𝑖

≤ 𝑠
𝑖
, 𝑐
𝑖

𝑘1

(𝑧)𝑐
𝑖

𝑠1

(𝑧)𝑑
𝑖

𝑡𝑖

(𝑧) ̸≡ 0, 𝑖 = 1, 2,
the 𝑃
𝑖
(𝑧, 𝑤
𝑖
) and 𝑄

𝑖
(𝑧, 𝑤
𝑖
) are polynomials in 𝑤

𝑖
(𝑧) with

meromorphic coefficients having no common factors, and that
all meromorphic coefficients in (7) are of growth of 𝑜(𝑇(𝑟, 𝑓))

for all 𝑟 on a set of logarithmic density 1 or outside of an
exceptional set of logarithmic density 0. If

max {𝑡
1
, 𝑠
1

− 𝜎
11

} > min {𝜎
11

, 𝑘
1
} + 𝜎
11

+ 𝜎
12

,

max {𝑡
2
, 𝑠
2

− 𝜎
22

} > min {𝜎
22

, 𝑘
2
} + 𝜎
22

+ 𝜎
21

,

(11)

then 𝑁(𝑟, 𝑤
1
) = 𝑜(𝑇(𝑟, 𝑤

1
)) and 𝑁(𝑟, 𝑤

2
) = 𝑜(𝑇(𝑟, 𝑤

2
))

cannot hold both at the same time, for all 𝑟 possibly outside of
an exceptional set of logarithmic density 0, where the order of
meromorphic solution (𝑤

1
, 𝑤
2
) of systems (7) is defined by

𝜌 = 𝜌 (𝑤
1
, 𝑤
2
) = max {𝜌 (𝑤

1
) , 𝜌 (𝑤

2
)} ,

𝜌 (𝑤
𝑖
) = lim sup
𝑟→∞

log𝑇 (𝑟, 𝑤
𝑖
)

log 𝑟
, 𝑖 = 1, 2.

(12)

Theorem 5. Let (𝑤
1
, 𝑤
2
) be meromorphic solution of systems

(7) satisfying 𝜌 = 𝜌(𝑤
1
, 𝑤
2
) = 0. Moreover, suppose

that 0 ≤ 𝑘
𝑖

≤ 𝑠
𝑖
, 𝑐
𝑖

𝑘
(𝑧)𝑐
𝑖

𝑠
(𝑧)𝑑
𝑖

𝑡
(𝑧) ̸≡ 0, 𝑖 = 1, 2,

the 𝑃
𝑖
(𝑧, 𝑤
𝑖
) and 𝑄

𝑖
(𝑧, 𝑤
𝑖
) are polynomials in 𝑤

𝑖
(𝑧) with

meromorphic coefficients having no common factors, and that
all meromorphic coefficients in (7) are of growth of 𝑜(𝑇(𝑟, 𝑓))

for all 𝑟 on a set of logarithmic density 1 or outside of an
exceptional set of logarithmic density 0, and

𝐴 = 2𝜎
11

− max {𝑠
1
, 𝑡
1

+ 𝜎
11

} + min {𝜎
11

, 𝑘
1
} ,

𝐵 = 2𝜎
22

− max {𝑠
2
, 𝑡
2

+ 𝜎
22

} + min {𝜎
22

, 𝑘
2
} .

(13)

If

𝐴 < 0, 𝐵 < 0, 𝐴𝐵 > 9𝜎
21

𝜎
12

, (14)

then 𝑚(𝑟, 𝑤
𝑘
) = 𝑜(𝑇(𝑟, 𝑤

𝑘
)), 𝑘 = 1, 2 hold for 𝑟 that runs

to infinity possibly outside of an exceptional set of logarithmic
density 0.

2. Some Lemmas

Lemma 6 (Valiron-Mohon’ko) ([28]). Let 𝑓(𝑧) be a
meromorphic function. Then for all irreducible rational
functions in 𝑓,

𝑅 (𝑧, 𝑓 (𝑧)) =
∑
𝑚

𝑖=0
𝑎
𝑖
(𝑧) 𝑓(𝑧)

𝑖

∑
𝑛

𝑗=0
𝑏
𝑗

(𝑧) 𝑓(𝑧)
𝑗

, (15)

with meromorphic coefficients 𝑎
𝑖
(𝑧), 𝑏
𝑗
(𝑧), the characteristic

function of 𝑅(𝑧, 𝑓(𝑧)) satisfies that

𝑇 (𝑟, 𝑅 (𝑧, 𝑓 (𝑧))) = 𝑑𝑇 (𝑟, 𝑓) + 𝑂 (Ψ (𝑟)) , (16)

where 𝑑 = max{𝑚, 𝑛} and Ψ(𝑟) = max
𝑖,𝑗

{𝑇(𝑟, 𝑎
𝑖
), 𝑇(𝑟, 𝑏

𝑗
)}.

Lemma 7 (see [27]). Let 𝑓(𝑧) be a nonconstant zero-order
meromorphic function and 𝑞 ∈ C \ {0}. Then

𝑚 (𝑟,
𝑓 (𝑞𝑧 + 𝜂)

𝑓 (𝑧)
) = 𝑜 (𝑇 (𝑟, 𝑓)) = 𝑆 (𝑟, 𝑓) , (17)

on a set of logarithmic density 1 or outside of an exceptional set
of logarithmic density 0.

Lemma 8 (see [29]). Let 𝑓(𝑧) be a transcendental meromor-
phic function of zero order, and let 𝑞, 𝜂 be two nonzero complex
constants. Then

𝑇 (𝑟, 𝑓 (𝑞𝑧 + 𝜂)) = 𝑇 (𝑟, 𝑓 (𝑧)) + 𝑆 (𝑟, 𝑓) ,

𝑁 (𝑟, 𝑓 (𝑞𝑧 + 𝜂)) ≤ 𝑁 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) ,

(18)

on a set of logarithmic density 1 or outside of a possibly
exceptional set of logarithmic density 0.

3. The Proof of Theorem 4

From the definitions of Ω
𝑖
(𝑧, 𝑤
1
, 𝑤
2
), by Lemma 7, it follows

that

𝑚 (𝑟,
Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎11

1

) ≤ 𝜎
12

𝑚 (𝑟, 𝑤
2
) + 𝑜 (𝑇 (𝑟, 𝑤

1
)) ,

𝑟 ∉ 𝐸


1
,

(19)

𝑚 (𝑟,
Ω
2

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎22

2

) ≤ 𝜎
21

𝑚 (𝑟, 𝑤
1
) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) ,

𝑟 ∉ 𝐸


2
,

(20)

where 𝐸


1
, 𝐸


2
are two sets of logarithmic density 0. By

Lemma 6, we have

𝑇 (𝑟,
Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎11

1

) = 𝑇 (𝑟,
𝑃
1

(𝑧, 𝑤
1
)

𝑄
1

(𝑧, 𝑤
1
) 𝑤
𝜎11

1

)

= (max {𝑡
1

+ 𝜎
11

, 𝑠
1
} − min {𝜎

11
, 𝑘
1
})

× 𝑇 (𝑟, 𝑤
1
) + 𝑜 (𝑇 (𝑟, 𝑤

1
)) ,

𝑟 ∉ 𝐸


3
,

(21)
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𝑇 (𝑟,
Ω
2

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎22

2

) = 𝑇 (𝑟,
𝑃
2

(𝑧, 𝑤
2
)

𝑄
2

(𝑧, 𝑤
2
) 𝑤
𝜎22

2

)

= (max {𝑡
2

+ 𝜎
22

, 𝑠
2
} − min {𝜎

22
, 𝑘
2
})

× 𝑇 (𝑟, 𝑤
2
) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) ,

𝑟 ∉ 𝐸


4
,

(22)

where 𝐸


3
, 𝐸


4
are two sets of logarithmic density 0.Thus, from

the assumptions of Theorem 4, combining (19) and (21), (20)
and (22), respectively, we have

𝑁 (𝑟,
Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎11

1

) ≥ (1 + 𝜎
12

+ 𝜎
11

) 𝑇 (𝑟, 𝑤
1
)

− 𝜎
12

𝑚 (𝑟, 𝑤
2
) + 𝑜 (𝑇 (𝑟, 𝑤

1
)) ,

𝑟 ∉ 𝐸
1

= 𝐸


1
∪ 𝐸


3
,

𝑁 (𝑟,
Ω
2

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎22

2

) ≥ (1 + 𝜎
21

+ 𝜎
22

) 𝑇 (𝑟, 𝑤
1
)

− 𝜎
21

𝑚 (𝑟, 𝑤
1
) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) ,

𝑟 ∉ 𝐸
2

= 𝐸


2
∪ 𝐸


4
.

(23)

Since 𝜌 = 𝜌(𝑤
1
, 𝑤
2
) = 0, from Lemma 8, we have

𝑁 (𝑟,
Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎11

1

)

≤ 𝑁 (𝑟, Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)) + 𝜎

11
𝑁 (𝑟,

1

𝑤
1

)

≤ 𝜎
11

𝑁 (𝑟, 𝑤
1
) + 𝜎
12

𝑁 (𝑟, 𝑤
2
) + 𝜎
11

𝑁 (𝑟,
1

𝑤
1

)

+ 𝑜 (𝑇 (𝑟, 𝑤
1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) , 𝑟 ∉ 𝐸



5
,

𝑁 (𝑟,
Ω
2

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎22

2

)

≤ 𝑁 (𝑟, Ω
2

(𝑧, 𝑤
1
, 𝑤
2
)) + 𝜎

22
𝑁 (𝑟,

1

𝑤
2

)

≤ 𝜎
22

𝑁 (𝑟, 𝑤
2
) + 𝜎
21

𝑁 (𝑟, 𝑤
1
) + 𝜎
22

𝑁 (𝑟,
1

𝑤
2

)

+ 𝑜 (𝑇 (𝑟, 𝑤
1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) , 𝑟 ∉ 𝐸



6
,

(24)

where 𝐸


5
, 𝐸


6
are the sets of logarithmic density 0.

From (23) and (24), it follows that

(1 + 𝜎
12

+ 𝜎
11

) 𝑇 (𝑟, 𝑤
1
)

≤ 𝜎
11

𝑁 (𝑟, 𝑤
1
) + 𝜎
12

𝑁 (𝑟, 𝑤
2
) + 𝜎
11

𝑁 (𝑟,
1

𝑤
1

)

+ 𝜎
12

𝑚 (𝑟, 𝑤
2
) + 𝑜 (𝑇 (𝑟, 𝑤

1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
))

≤ 𝜎
11

𝑁 (𝑟, 𝑤
1
) + 𝜎
12

𝑇 (𝑟, 𝑤
2
) + 𝜎
11

𝑇 (𝑟, 𝑤
1
)

+ 𝑜 (𝑇 (𝑟, 𝑤
1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) , 𝑟 ∉ 𝐸

3
= 𝐸
1

∪ 𝐸


5
,

(1 + 𝜎
21

+ 𝜎
22

) 𝑇 (𝑟, 𝑤
1
)

≤ 𝜎
22

𝑁 (𝑟, 𝑤
2
) + 𝜎
21

𝑁 (𝑟, 𝑤
1
) + 𝜎
22

𝑁 (𝑟,
1

𝑤
2

)

+ 𝜎
21

𝑚 (𝑟, 𝑤
1
) + 𝑜 (𝑇 (𝑟, 𝑤

1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
))

≤ 𝜎
22

𝑁 (𝑟, 𝑤
2
) + 𝜎
21

𝑇 (𝑟, 𝑤
1
) + 𝜎
22

𝑇 (𝑟, 𝑤
2
)

+ 𝑜 (𝑇 (𝑟, 𝑤
1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) , 𝑟 ∉ 𝐸

4
= 𝐸
2

∪ 𝐸


6
.

(25)

Suppose now on the contrary to the assertion of
Theorem 4 that 𝑁(𝑟, 𝑤

1
) = 𝑜(𝑇(𝑟, 𝑤

1
)) and 𝑁(𝑟, 𝑤

2
) =

𝑜(𝑇(𝑟, 𝑤
2
)), from (25); it follows that

(1 + 𝜎
12

) 𝑇 (𝑟, 𝑤
1
) ≤ 𝜎
12

𝑇 (𝑟, 𝑤
2
) + 𝑜 (𝑇 (𝑟, 𝑤

1
))

+ 𝑜 (𝑇 (𝑟, 𝑤
2
)) ,

(1 + 𝜎
21

) 𝑇 (𝑟, 𝑤
2
) ≤ 𝜎
21

𝑇 (𝑟, 𝑤
1
) + 𝑜 (𝑇 (𝑟, 𝑤

1
))

+ 𝑜 (𝑇 (𝑟, 𝑤
2
)) ,

(26)

that is,

(1 + 𝜎
12

+ 𝑜 (1)) 𝑇 (𝑟, 𝑤
1
) ≤ (𝜎

12
+ 𝑜 (1) ) 𝑇 (𝑟, 𝑤

2
) ,

(1 + 𝜎
21

+ 𝑜 (1)) 𝑇 (𝑟, 𝑤
2
) ≤ (𝜎

21
+ 𝑜 (1)) 𝑇 (𝑟, 𝑤

1
) .

(27)

From (27), we can get that

(1 + 𝜎
12

) (1 + 𝜎
21

) ≤ 𝜎
12

𝜎
21

. (28)

From the previous inequality, we can get a contradiction.
Therefore, this completes the proof of Theorem 4.

4. The Proof of Theorem 5

Since 𝜌 = 𝜌(𝑤
1
, 𝑤
2
) = 0, from the assumptions concerning

the coefficients of systems (7), by Lemma 7, and from the
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definitions of logarithmic measure and logarithmic density,
we have

𝑁 (𝑟,
Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎11

1

) ≤ 𝜎
11

[𝑁 (𝑟, 𝑤
1
) + 𝑁 (𝑟,

1

𝑤
1

)]

+ 𝜎
12

[𝑁 (𝑟, 𝑤
2
) + 𝑁 (𝑟,

1

𝑤
2

)]

+ 𝜎
12

𝑁 (𝑟, 𝑤
2
) + 𝑜 (𝑇 (𝑟, 𝑤

1
))

+ 𝑜 (𝑇 (𝑟, 𝑤
2
)) , 𝑟 ∉ 𝐸

5
,

(29)

where 𝐸
5
is a set of logarithmic density 0.

From (29), we have

𝑁 (𝑟,
Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎11

1

) ≤ 𝜎
11

[𝑁 (𝑟, 𝑤
1
) + 𝑁 (𝑟,

1

𝑤
1

)]

+ 𝜎
12

[2𝑁 (𝑟, 𝑤
2
) + 𝑁 (𝑟,

1

𝑤
2

)]

+ 𝑜 (𝑇 (𝑟, 𝑤
1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
))

≤ 𝜎
11

[2𝑇 (𝑟, 𝑤
1
) − 𝑚 (𝑟, 𝑤

1
)]

+ 𝜎
12

[3𝑇 (𝑟, 𝑤
2
) − 2𝑚 (𝑟, 𝑤

2
)]

+ 𝑜 (𝑇 (𝑟, 𝑤
1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) ,

𝑟 ∉ 𝐸
5
.

(30)

From (19) and (29), we have

𝑁 (𝑟,
Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎11

1

) + 𝜎
12

𝑚 (𝑟, 𝑤
2
)

≥ 𝑁 (𝑟,
Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎11

1

) + 𝑚 (𝑟,
Ω
1

(𝑧, 𝑤
1
, 𝑤
2
)

𝑤
𝜎11

1

)

= 𝑇 (𝑟,
𝑃
1

(𝑧, 𝑤
1
)

𝑄
1

(𝑧, 𝑤
1
) 𝑤
𝜎11

1

)

= (max {𝑡
1

+ 𝜎
11

, 𝑠
1
} − min {𝜎

11
, 𝑘
1
})

× 𝑇 (𝑟, 𝑤
1
) + 𝑜 (𝑇 (𝑟, 𝑤

1
)) ,

𝑟 ∉ 𝐹
1

= 𝐸


1
∪ 𝐸
5
.

(31)

From the previous inequality and (30), we have for 𝑟 ∉ 𝐹
1

(max {𝑡
1

+ 𝜎
11

, 𝑠
1
} − min {𝜎

11
, 𝑘
1
}) 𝑇 (𝑟, 𝑤

1
) − 𝜎
12

𝑚 (𝑟, 𝑤
2
)

≤ 𝜎
11

[2𝑇 (𝑟, 𝑤
1
) − 𝑚 (𝑟, 𝑤

1
)]

+ 𝜎
12

[3𝑇 (𝑟, 𝑤
2
) − 2𝑚 (𝑟, 𝑤

2
)]

+ 𝑜 (𝑇 (𝑟, 𝑤
1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) .

(32)

By using the same argument as in the previously men-
tioned, there exists a set𝐹

2
of logarithmic density 0, for 𝑟 ∉ 𝐹

2
,

and we have

(max {𝑡
2

+ 𝜎
22

, 𝑠
2
} − min {𝜎

22
, 𝑘
2
}) 𝑇 (𝑟, 𝑤

2
) − 𝜎
21

𝑚 (𝑟, 𝑤
1
)

≤ 𝜎
22

[2𝑇 (𝑟, 𝑤
2
) − 𝑚 (𝑟, 𝑤

2
)]

+ 𝜎
21

[3𝑇 (𝑟, 𝑤
1
) − 2𝑚 (𝑟, 𝑤

1
)]

+ 𝑜 (𝑇 (𝑟, 𝑤
1
)) + 𝑜 (𝑇 (𝑟, 𝑤

2
)) .

(33)

From (32) and (33), we have

𝜎
11

𝑚 (𝑟, 𝑤
1
) ≤ [2𝜎

11
− (max {𝑡

1
+ 𝜎
11

, 𝑠
1
}

−min {𝜎
11

, 𝑘
1
}) + 𝑜 (1)] 𝑇 (𝑟, 𝑤

1
)

+ (3𝜎
12

+ 𝑜 (1)) 𝑇 (𝑟, 𝑤
2
) , 𝑟 ∉ 𝐹

1
,

[(max {𝑡
2

+ 𝜎
22

, 𝑠
2
} − min {𝜎

22
, 𝑘
2
}) − 2𝜎

22
+ 𝑜 (1)] 𝑇 (𝑟, 𝑤

2
)

≤ (3𝜎
21

+ 𝑜 (1)) 𝑇 (𝑟, 𝑤
1
) − 𝜎
21

𝑚 (𝑟, 𝑤
1
) , 𝑟 ∉ 𝐹

2
.

(34)

From (34), we have

𝜎
11

𝑚 (𝑟, 𝑤
1
)

≤ [2𝜎
11

− (max {𝑡
1

+ 𝜎
11

, 𝑠
1
} − min {𝜎

11
, 𝑘
1
})

+𝑜 (1)] 𝑇 (𝑟, 𝑤
1
)

+ ((3𝜎
12

+ 𝑜 (1))

× [(3𝜎
21

+ 𝑜 (1)) 𝑇 (𝑟, 𝑤
1
) − 𝜎
21

𝑚 (𝑟, 𝑤
1
)] )

× ((max {𝑡
2

+ 𝜎
22

, 𝑠
2
} − min {𝜎

22
, 𝑘
2
}) − 2𝜎

22
)
−1

,

𝑟 ∉ 𝐹 = 𝐹
1

∪ 𝐹
2
,

(35)

that is,

(𝜎
11

−
3𝜎
12

𝜎
21

𝐵
) 𝑚 (𝑟, 𝑤

1
)

≤ [𝐴 −
9𝜎
12

𝜎
21

+ 𝑜 (1)

𝐵
] 𝑇 (𝑟, 𝑤

1
) ,

𝑟 ∉ 𝐹 = 𝐹
1

∪ 𝐹
2
,

(36)

where 𝐴 = 2𝜎
11

− max{𝑠
1
, 𝑡
1

+ 𝜎
11

} + min{𝜎
11

, 𝑘
1
} and 𝐵 =

2𝜎
22

−max{𝑠
2
, 𝑡
2

+ 𝜎
22

} +min{𝜎
22

, 𝑘
2
}. From (14) and (36), we

have

𝑚 (𝑟, 𝑤
1
) = 𝑜 (𝑇 (𝑟, 𝑤

1
)) (37)

for all 𝑟 outside of 𝐹, a set of logarithmic density 0.
Similarly, we can obtain

𝑚 (𝑟, 𝑤
2
) = 𝑜 (𝑇 (𝑟, 𝑤

2
) (38)

for all 𝑟 possibly outside of 𝐹
, a set of logarithmic density 0.

Thus, this completes the proof of Theorem 5.
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