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The medium through which the groundwater moves varies in time and space. The Hantush equation describes the movement of
groundwater through a leaky aquifer. To include explicitly the deformation of the leaky aquifer into the mathematical formulation,
we modify the equation by replacing the partial derivative with respect to time by the time-fractional variable order derivative.
The modified equation is solved numerically via the Crank-Nicolson scheme. The stability and the convergence in this case are
presented in details.

1. Introduction

An aquifer is an underground layer of water-bearing perme-
able rock or unconsolidated materials (gravel, sand, or silt)
from which groundwater can be extracted using a water well.
The study of water flow in aquifers and the characterization
of aquifers is called hydrogeology. Related terms include
aquitard, which is a bed of low permeability along an
aquifer, see [1] and aquiclude (or aquifuge), which is a solid,
impermeable area underlying or overlying an aquifer. If the
impermeable area overlies the aquifer, pressure could cause it
to become a confined aquifer. There are two end members in
the spectrum of types of aquifers: confined and unconfined
(with semiconfined being in between). Unconfined aquifers
are sometimes also called water table or phreatic aquifers,
because their upper boundary is the water table or phreatic
surface. Typically but not always, the shallowest aquifer at
a given location is unconfined, meaning that it does not
have a confining layer (an aquitard or an aquiclude) between
it and the surface. When a leaky aquifer is pumped, the
piezometric level of the aquifer in the well is lowered. This
lowering spreads radially outward as pumping continues,
creating a difference in hydraulic head between the aquifer

and the aquitards. Consequently, the groundwater in the
aquitards will start moving vertically downward to join the
water in the aquifer. The aquifer is thus partially recharged
by downward percolation from the aquitards. As pumping
continues, the percentage of the total discharge derived from
this percolation increases. After a certain period of pumping,
equilibrium will be established between the discharge rate of
the pump and the recharge rate by vertical flow through the
aquitards. This steady state will be maintained as long as the
water table in the aquitards is kept constant. Figure 1 shows
the piezometric level after the start of pumping in a leaky
aquifer.

Hantush was the first to derive a partial differential
equation describing such phenomena. However, due to the
deformation of some aquifers, the Hantush equation is not
able to account for the effect of the changes in the mathe-
matical formulation. The purpose of this work is therefore
devoted to the discussion underpinning the description of the
groundwater flow through the deformable leaky aquifer, on
one hand. On the other hand, we present the derivation of the
approximate solution of themodified equation via the Crank-
Nicolson scheme. We will start with the definition of the
variational order derivative and the problem modification.
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Figure 1: Leaky aquifer.

2. Definition and Problem Modification

For the readers that are not acquaintedwith the concept of the
variational order derivative, we start this section. We present
the basic definition of this derivative.

2.1. Variational Order of Differential Operator. Let 𝑓 : R →
R, 𝑥 → 𝑓(𝑥) denote a continuous but necessary differen-
tiable; let 𝛼(𝑥) be a continuous function in (0, 1]. Then its
variational order differential is defined as

𝐷𝛼(𝑥)
0
(𝑓 (𝑥)) =

1

Γ (1 − 𝛼 (𝑥))
∫
𝑥

0

(𝑥 − 𝑡)
−𝛼(𝑡)

𝑑𝑓 (𝑡)

𝑑𝑡
𝑑𝑡. (1)

The above derivative is called the Caputo variational
order differential operator; additionally the derivative of the
constant is zero.

2.2. Problem Formulation. Groundwater models describe the
groundwater flow and transport processes using mathemat-
ical equations based on certain simplifying assumptions.
These assumptions typically involve the direction of flow,
geometry of the aquifer, and the heterogeneity or anisotropy
of sediments or bedrock within the aquifer. This geological
formation through which the groundwater flows changes in
time and space.

The simplest generalization of groundwater flow equa-
tion, which incidentally is also in accord with true physics
of the phenomenon, is to assume that water level is not in
a steady but transient state. In 1935, Theis [2] was the first
to develop a formula for unsteady-state flow that introduces
the time factor and the storativity. He noted that when a
well penetrating an extensive confined aquifer is pumped at a
constant rate, the influence of the discharge extends outward
with time. The rate of decline of head, multiplied by the
storativity and summed over the area of influence, equals the
discharge. The unsteady-state (orTheis) equation, which was
derived from the analogy between the flow of groundwater
and the conduction of heat, is perhaps the most widely used
partial differential equation in groundwater investigations

𝑆𝐷
𝑡
Φ (𝑟, 𝑡) = 𝑇𝐷

𝑟𝑟
Φ (𝑟, 𝑡) +

1

𝑟
𝐷
𝑟
Φ (𝑟, 𝑡) . (2)

The above equation is classified under parabolic equa-
tions. However, very few geological formations are com-
pletely impermeable to fluids. Leakage of the water could
thus occur, should a confined aquifer be over- or underlain
by another aquifer. The behaviour of such an aquifer, often
referred to as a leaky or semiconfined aquifer, needs thus not
be the same as that of a confined aquifer. Although the nature
of a semiaquifer differs from that of a true aquifer, it is still
possible to use the basic principles of confinedflow to arrive at
the governing equation for such aquifer. This is in particular
true in those situations where the confining layer between the
two aquifers is not too thick and the flow is mainly in the
vertical direction.

According toHantush and Jacob [3, 4], the drawdowndue
to pumping a leaky aquifer can be described by the following
equation:

𝑆𝐷
𝑡
𝑠 (𝑟, 𝑡) = 𝑇𝐷

𝑟𝑟
𝑠 (𝑟, 𝑡) +

1

𝑟
𝐷
𝑟
𝑠 (𝑟, 𝑡) +

𝑠 (𝑟, 𝑡)

𝜆2
, (3)

where 𝑠 is the drawdown or change in the level of water; 𝑆 is
the specific storativity of the aquifer, and𝑇 is the transmissiv-
ity:

𝜆2 =
𝐵

𝐾󸀠
, (4)

with 𝐾 and 𝐾󸀠 as the hydraulic conductivities of the main
and confining layers, respectively, 𝐵 and 𝑑 are the thicknesses
of the main and confining layers, respectively, and 𝑄 is
the discharge rate of the pumping. This partial differential
equation describing the movement of water through the
geological formation during the pumping is subjected to the
following initial and boundary conditions:

𝑠 (𝑟, 0) = Φ
0
, lim

𝑟→∞

Φ (𝑟, 𝑡) = Φ
0
,

𝑄 =
2𝜋𝑛/2

Γ (𝑛/2)
𝑟𝑛−1
𝑏
𝐾𝑑3−𝑛𝜕

𝑟
𝑠 (𝑟
𝑏
, 𝑡) .

(5)

However, when we consider the diffusion process in the
porous medium, if the medium structure or external field
changes with time, in this situation, the ordinary integer-
order and constant-order fractional diffusion equationmodel
cannot be used to well characterize such phenomenon [5, 6].
This is the case of the groundwater flow in the deformable
aquifer, the medium through which the flow occurs changes
with time and space [7, 8]. Feature that equation Hantush
cannot handle this case. One of the purposes of this work
is therefore devoted to the discussion underpinning the
description of water flowing through a deformable leaky
aquifer, on one hand. In order to include explicitly the
variability of themedium through which the flow takes place,
the standard version of the partial derivative with respect to
time is replaced here with variable-order (VO) fractional to
obtain

𝑆𝐷
𝑡

𝛼(𝑥,𝑡)𝑠 (𝑟, 𝑡) = 𝑇𝐷
𝑟𝑟
𝑠 (𝑟, 𝑡) +

1

𝑟
𝐷
𝑟
𝑠 (𝑟, 𝑡) +

𝑠 (𝑟, 𝑡)

𝜆2
,

0 < 𝛼 (𝑥, 𝑡) ≤ 1.

(6)
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3. Numerical Solution

Environmental phenomena, such as groundwater flow
described by variational order derivative, are highly complex
phenomena, which do not lend themselves readily to analysis
of analytical models. The discussion presented in this section
will therefore be devoted to the derivation of numerical
solution to the modified Hantush equation (6).

Solving difficult equations with numerical scheme has
been passionate exercise for many scholars [9–20]. However,
there exists numerous of this scheme in the literature [14–
20]. Some of these numerical techniques are very accurate
while approximating solutions of difficult equations. These
numerical methods yield approximate solutions to the gov-
erning equation through the discretization of space and time
[7]. Within the discredited problem domain, the variable
internal properties, boundaries, and stresses of the sys-
tem are approximated. Deterministic, distributed-parameter,
numerical models can relax the rigid idealised conditions
of analytical models or lumped-parameter models, and they
can therefore be more realistic and flexible for simulating
fields conditions [7]. Recently Atangana and Botha [7] have
extended the groundwater flow model to the concept of
time-fractional variable order derivative; they solved the
resulting equation via Crank-Nicolson numerical scheme.
The finite difference schemes for constant-order time- or
space-fractional diffusion equations have beenwidely studied
in [9–14]. Recently, Sun et al. [21] studied the solution
of the advection dispersion equation with time-fractional
variable order derivative. The study of the implicit difference
approximation scheme for constant-order time-fractional
diffusion equations was presented in [15]. Recently, the
weighted average finite difference method was introduced
[16]. The matrix approach for fractional diffusion equations
was proposed [17], and Hanert proposed a flexible numerical
scheme for the discretization of the space-time fractional
diffusion equation (see [18]). Recently, the numerical scheme
for VO space-fractional advection-dispersion equation was
considered [19]. The investigation of the explicit scheme for
VO nonlinear space-fractional diffusion equation was done
(see [20]).

3.1. Crank-Nicolson Scheme [22]. Before performing the
numerical methods, we assume that (3) has a unique and
sufficiently smooth solution. To establish the numerical
schemes for the above equation, we let 𝑥

𝑙
= 𝑙ℎ, 0 ≤ 𝑙 ≤

𝑀, 𝑀ℎ = 𝐿, 𝑡
𝑘
= 𝑘𝜏, 0 ≤ 𝑘 ≤ 𝑁, 𝑁𝜏 = 𝑇, ℎ is the

step and 𝜏 is the time size, and𝑀 and𝑁 are grid points. We
introduce the Crank-Nicolson scheme as follows. Firstly, the
discretization of first- and second-order space derivative is
stated as

𝜕𝑠

𝜕𝑟
=
1

2
((
𝑠 (𝑟
𝑙+1
, 𝑡
𝑘+1
) − Φ (𝑟

𝑙−1
, 𝑡
𝑘+1
)

2 (ℎ)
)

+(
𝑠 (𝑟
𝑙+1
, 𝑡
𝑘
) − 𝑠 (𝑟

𝑙−1
, 𝑡
𝑘
)

2 (ℎ)
)) + 𝑂 (ℎ) ,

(7)

𝜕2𝑠

𝜕𝑟2
=
1

2
((
𝑠 (𝑟
𝑙+1
, 𝑡
𝑘+1
) − 2𝑠 (𝑟

𝑙
, 𝑡
𝑘+1
) + 𝑠 (𝑟

𝑙−1
, 𝑡
𝑘+1
)

(ℎ)2
)

+(
𝑠 (𝑟
𝑙+1
, 𝑡
𝑘
) − 2𝑠 (𝑟

𝑙
, 𝑡
𝑘
) + 𝑠 (𝑟

𝑙−1
, 𝑡
𝑘
)

(ℎ)2
))

+ 𝑂(ℎ2) ,

(8)

𝑠 =
1

2
(𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
) + 𝑠 (𝑟

𝑙
, 𝑡
𝑘
)) . (9)

The Crank-Nicolson scheme for the VO time-fractional
diffusion model can be stated as follows:

𝜕𝛼
𝑘+1

𝑙 𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
)

𝜕𝑡𝛼
𝑘+1

𝑙

=
𝜏−𝛼
𝑘+1

𝑙

Γ (2 − 𝛼𝑘+1
𝑙
)
(𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
) − 𝑠 (𝑟

𝑙
, 𝑡
𝑘
)

+
𝑘

∑
𝑗=1

[𝑠 (𝑟
𝑙
, 𝑡
𝑘+1−𝑗

) − 𝑠 (𝑟
𝑙
, 𝑡
𝑘−𝑗
)]

× [(𝑗 + 1)
1−𝛼
𝑘+1

𝑙 − (𝑗)
1−𝛼
𝑘+1

𝑙 ]) .

(10)

Now replacing (7), (8), (9), and (10) in (6), we obtain the
following:

[
𝑆𝜏−𝛼

𝑘+1

𝑙

Γ (2 − 𝛼𝑘+1
𝑙
)
(𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
) − 𝑠 (𝑟

𝑙
, 𝑡
𝑘
)

+
𝑘

∑
𝑗=1

[𝑠 (𝑟
𝑙
, 𝑡
𝑘+1−𝑗

) − 𝑠 (𝑟
𝑙
, 𝑡
𝑘−𝑗
)]

× [(𝑗 + 1)
1−𝛼
𝑘+1

𝑙 − (𝑗)
1−𝛼
𝑘+1

𝑙 ])]

= 𝑇[
1

2
((
𝑠 (𝑟
𝑙+1
, 𝑡
𝑘+1
) − 2𝑠 (𝑟

𝑙
, 𝑡
𝑘+1
) + 𝑠 (𝑟

𝑙−1
, 𝑡
𝑘+1
)

(ℎ)2
)

+(
𝑠 (𝑟
𝑙+1
, 𝑡
𝑘
) − 2𝑠 (𝑟

𝑙
, 𝑡
𝑘
) + 𝑠 (𝑟

𝑙−1
, 𝑡
𝑘
)

(ℎ)2
))]

+
1

𝑟
𝑙

[
1

2
((
𝑠 (𝑟
𝑙+1
, 𝑡
𝑘+1
) − 𝑠 (𝑟

𝑙−1
, 𝑡
𝑘+1
)

2 (ℎ)
)

+(
𝑠 (𝑟
𝑙+1
, 𝑡
𝑘
) − 𝑠 (𝑟

𝑙−1
, 𝑡
𝑘
)

2 (ℎ)
))]

+
1

2𝜆2
(𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
) + 𝑠 (𝑟

𝑙
, 𝑡
𝑘
)) .

(11)
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For simplicity, let us put

𝑏𝑙,𝑘+1
𝑗

= (𝑗 + 1)
1−𝛼
𝑘+1

𝑙 − (𝑗)
1−𝛼
𝑘+1

𝑙 ,

𝑇𝑘+1
𝑙
=
Γ (2 − 𝛼𝑘+1

𝑙
) 𝜏𝛼
𝑘+1

𝑙

𝑆ℎ2
𝑇, 𝐺𝑘+1

𝑙
=
Γ (2 − 𝛼𝑘+1

𝑙
) 𝜏𝛼
𝑘+1

𝑙

𝑆ℎ
,

𝜆𝑙,𝑘+1
𝑗

= 𝑏𝑙,𝑘+1
𝑗−1

− 𝑏𝑙,𝑘+1
𝑗
, Γ𝑘+1

𝑙
=
Γ (2 − 𝛼𝑘+1

𝑙
) 𝜏𝛼
𝑘+1

𝑙

2𝜆2
.

(12)

Equation (11) becomes

𝑠𝑘+1
𝑙
(1 + 2𝑇𝑘+1

𝑙
− Γ𝑘+1
𝑙
)

= 𝑠𝑘+1
𝑙+1
(𝑇𝑘+1
𝑙
+
𝐺𝑘+1
𝑙

𝑟
𝑙

) + 𝑠𝑘+1
𝑙−1
(𝑇𝑘+1
𝑙
−
𝐺𝑘+1
𝑙

𝑟
𝑙

)

+ 𝑠𝑘
𝑙+1
(𝑇𝑘+1
𝑙
−
𝐺𝑘+1
𝑙

𝑟
𝑙

) + 𝑠𝑘+1
𝑙
(1 + 2𝑇𝑘+1

𝑙
)

+
𝑘

∑
𝑗=1

(𝑠
𝑘+1−𝑗

𝑙
− 𝑠
𝑘−𝑗

𝑙
) 𝜆𝑙,𝑘+1
𝑗
𝐺𝑘+1
𝑙

+ 𝑠𝑘
𝑙
(1 − Γ𝑘+1

𝑙
+ 𝑇𝑘+1
𝑙
) .

(13)

4. Stability Analysis of
the Crank-Nicolson Scheme

In this section, we will analyze the stability conditions of
the Crank-Nicolson scheme for the Hantush equation for a
deformable aquifer.

Let Υ𝑘
𝑙
= 𝑠𝑘
𝑙
− 𝑆𝑘
𝑙
, where 𝑆𝑘

𝑙
is the approximate solution at

the point (𝑥
𝑙
, 𝑡
𝑘
), (𝑘 = 1, 2, . . . , 𝑁, 𝑙 = 1, 2, . . . ,𝑀 − 1), and

in addition,Υ𝑘 = [Υ𝑘
1
, Υ𝑘
2
, . . . , Υ𝑘

𝑀−1
]
𝑇

, and the function 𝜁𝑘(𝑥)
is chosen to be

Υ𝑘 (𝑥)

=
{{
{{
{

Υ𝑘
𝑙

if 𝑥
𝑙
−
ℎ

2
< 𝑥 ≤ 𝑥

𝑙
+
ℎ

2
, 𝑙 = 1, 2, . . . ,𝑀 − 1

0 if 𝐿 − ℎ
2
< 𝑥 ≤ 𝐿.

(14)

Then, the function Υ𝑘(𝑥) can be expressed in Fourier
series as follows:

Υ𝑘 (𝑥) =
𝑚=∞

∑
𝑚=−∞

𝛿
𝑚
(𝑚) exp [2𝑖𝜋𝑚𝑘

𝐿
] ,

𝛿
𝑘
(𝑥) =

1

𝐿
∫
𝐿

0

Υ𝑘 (𝑥) exp [2𝑖𝜋𝑚𝑥
𝐿

] 𝑑𝑥.

(15)

It was established by [15] that

󵄩󵄩󵄩󵄩󵄩Υ
2
󵄩󵄩󵄩󵄩󵄩
2

2

=
𝑚=∞

∑
𝑚=−∞

󵄩󵄩󵄩󵄩𝛿𝑘(𝑚)
󵄩󵄩󵄩󵄩
2

. (16)

Observe that for all 𝑘, 𝑙 ≥ 1, 0 ≤ 1−𝛼𝑘+1
𝑙
< 1, and in addi-

tion, according to the problem in point, the velocity seepage V,
the dispersion coefficient𝐷, the retardation factor 𝑅, and the
radioactive decay constant 𝜆 are positive constants. Then the
following properties of the coefficients 𝑇𝑘+1

𝑙
, 𝐺𝑘+1
𝑙
, 𝜆𝑙,𝑘+1
𝑗
𝑏𝑘+1
𝑙

,
and Γ𝑘+1
𝑙

can be established.

(1) 𝐺𝑘+1
𝑙
, 𝑇𝑘+1
𝑙

, and Γ𝑘+1
𝑙

are positive for all 𝑙 = 1, 2, . . . ,
𝑀 − 1,

(2) 0 < 𝜆𝑙,𝑘
𝑗
≤ 𝜆𝑙,𝑘
𝑗−1
≤ 1 for all 𝑙 = 1, 2, . . . ,𝑀 − 1,

(3) 0 ≤ 𝑏𝑙,𝑘
𝑗
≤ 1, ∑

𝑘−1

𝑗=0
𝑏𝑙,𝑘+1
𝑗+1

= 1−𝜆𝑙,𝑘+1
𝑘

for all 𝑙 = 1, 2, . . . ,
𝑀 − 1.

It is customary in groundwater investigations to choose a
point on the centreline of the pumped borehole as a reference
for the observations, and therefore, neither the drawdown
nor its derivatives will vanish at the origin, as required
[7]. In such situation, the distribution of the piezometric
head in the aquifer is a decreasing function of the distance
from the borehole, the expression (1/𝑟

𝑙
) → 0 [7]. Under

this situation, the error committed while approximating the
solution of the generalized advection dispersion equation
with Crank-Nicolson scheme can be presented as follows:

Υ𝑘+1
𝑙
(1 + 2𝑇𝑘+1

𝑙
− Γ𝑘+1
𝑙
)

= Υ𝑘+1
𝑙+1
(𝑇𝑘+1
𝑙
) + Υ𝑘+1
𝑙−1
(𝑇𝑘+1
𝑙
)

+ Υ𝑘
𝑙+1
(𝑇𝑘+1
𝑙
) + Υ𝑘
𝑙
(1 + 2𝑇𝑘+1

𝑙
− Γ𝑘+1
𝑙
)

+
𝑘

∑
𝑗=1

(Υ
𝑘+1−𝑗

𝑙
− Υ
𝑘−𝑗

𝑙
) 𝜆𝑙,𝑘+1
𝑗
𝐺𝑘+1
𝑙
.

(17)

If we assume that Υ𝑘
𝑙
in (17) can be put in the delta-

exponential form as follows [21]:

Υ𝑘
𝑙
= 𝛿
𝑘
exp [𝑖𝜑𝑙𝑘] , (18)

where 𝜑 is a real spatial wave number, now replacing the
above equation (18) in (17) we obtain

[1 + 4𝑇1
𝑙
sin2 (

𝜑ℎ

2
) − 2sin2 (

𝜑ℎ

2
) Γ1
𝑙
] 𝛿
1

= [1 − 4𝑇1
𝑙
sin2 (

𝜑ℎ

2
) − 2sin2 (

𝜑ℎ

2
) Γ1
𝑙
] 𝛿
0

for 𝑘 = 0,

[1 + 4𝑇1+𝑘
𝑙

sin2 (
𝜑ℎ

2
) − 2sin2 (

𝜑ℎ

2
) Γ1+𝑘
𝑙
] 𝛿
𝑘+1

= [1 − 4𝑇1+𝑘
𝑙

sin2 (
𝜑ℎ

2
) − 𝜆𝑙,𝑘+1

1
− 2sin2 (

𝜑ℎ

2
) Γ1+𝑘
𝑙
] 𝛿
𝑘

+
𝑘−1

∑
𝑗=0

𝜆𝑙,𝑘+1
𝑗+1
𝛿
𝑘−𝑗
+ 𝜆𝑙,𝑘+1
𝑘
𝛿
0
, for 𝑘 = 1, 2, . . . , 𝑁 − 1.

(19)
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Equation (19) can be written in the following form:

𝛿
1
=
[1 − 4𝑇1

𝑙
sin2 (𝜑ℎ/2) − 2sin2 (𝜑ℎ/2) Γ1

𝑙
] 𝛿
0

[1 + 4𝑇1
𝑙
sin2 (𝜑ℎ/2) − 2sin2 (𝜑ℎ/2) Γ1

𝑙
]
,

𝛿
𝑘+1
= ([1 − 4𝑇1+𝑘

𝑙
sin2 (

𝜑ℎ

2
) − 𝑒𝑙,𝑘+1
1

−2sin2 (
𝜑ℎ

2
) Γ1+𝑘
𝑙
] 𝛿
𝑘

+
𝑘−1

∑
𝑗=0

𝜆𝑙,𝑘+1
𝑗+1
𝛿
𝑘−𝑗
+ 𝜆𝑙,𝑘+1
𝑘
𝛿
0
)

× [1 + 4𝑇1+𝑘
𝑙

sin2 (
𝜑ℎ

2
) − 2sin2 (

𝜑ℎ

2
) Γ1+𝑘
𝑙
]
−1

.

(20)

Our next concern here is to show that for all 𝑘 =
1, 2, . . . , 𝑁 − 1 the solution of (19) satisfies the following
condition:

󵄨󵄨󵄨󵄨𝛿𝑘
󵄨󵄨󵄨󵄨 <
󵄨󵄨󵄨󵄨𝛿0
󵄨󵄨󵄨󵄨 . (21)

To achieve this, we make use of the recurrence technique
on the natural number 𝑘.

For 𝑘 = 1, and remembering that 𝑑𝑘+1
𝑙

, 𝑏𝑘+1
𝑙

are positive
for all 𝑙 = 1, 2, . . . ,𝑀 − 1, then we obtain

󵄨󵄨󵄨󵄨𝛿1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛿0
󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[1 − 4𝑇1
𝑙
sin2 (𝜑ℎ/2) − 2sin2 (𝜑ℎ/2) Γ1

𝑙
]

[1 + 4𝑇1
𝑙
sin2 (𝜑ℎ/2) − 2sin2 (𝜑ℎ/2) Γ1

𝑙
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1. (22)

Assuming that for𝑚 = 2, 3, . . . , 𝑘 the property is verified,
then

󵄨󵄨󵄨󵄨𝛿𝑘+1
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

( [1 − 4𝑇1+𝑘
𝑙

sin2 (
𝜑ℎ

2
) − 𝑒𝑙,𝑘+1
1

−2sin2 (
𝜑ℎ

2
) Γ1+𝑘
𝑙
] 𝛿
𝑘

+
𝑘−1

∑
𝑗=0

𝜆𝑙,𝑘+1
𝑗+1
𝛿
𝑘−𝑗
+ 𝜆𝑙,𝑘+1
𝑘
𝛿
0
)

×[1 + 4𝑇1+𝑘
𝑙

sin2 (
𝜑ℎ

2
) − 2sin2 (

𝜑ℎ

2
) Γ1+𝑘
𝑙
]
−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(23)

Making use of the triangular inequality, we obtain

󵄨󵄨󵄨󵄨𝛿𝑘+1
󵄨󵄨󵄨󵄨 ≤ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 − 4𝑏1+𝑘

𝑙
sin2 (

𝜑ℎ

2
) − 𝑒𝑙,𝑘+1
1

−2sin2 (
𝜑ℎ

2
) Γ1+𝑘
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛿𝑘
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘−1

∑
𝑗=0

𝑝𝑙,𝑘+1
𝑗+1
𝛿
𝑘−𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨𝑒
𝑙,𝑘+1

𝑘
𝛿
0

󵄨󵄨󵄨󵄨󵄨)

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 + 4𝑇1+𝑘

𝑙
sin2 (

𝜑ℎ

2
) − 2sin2 (

𝜑ℎ

2
) Γ1+𝑘
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1

.

(24)

Using the recurrence hypothesis, we have

󵄨󵄨󵄨󵄨𝛿𝑘+1
󵄨󵄨󵄨󵄨 ≤ ((

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 − 4𝑇1+𝑘

𝑙
sin2 (

𝜑ℎ

2
) − 2sin2 (

𝜑ℎ

2
) Γ1+𝑘
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘−1

∑
𝑗=0

𝜆𝑙,𝑘+1
𝑗+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 + 4𝑇1+𝑘

𝑙
sin2 (

𝜑ℎ

2
)

−2sin2 (
𝜑ℎ

2
) Γ1+𝑘
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1

)
󵄨󵄨󵄨󵄨𝛿0
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝛿𝑘+1
󵄨󵄨󵄨󵄨 ≤ (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 + 4𝑇1+𝑘

𝑙
sin2 (

𝜑ℎ

2
) − 2sin2 (

𝜑ℎ

2
) Γ1+𝑘
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1 + 4𝑇1+𝑘

𝑙
sin2 (

𝜑ℎ

2
)

−2sin2 (
𝜑ℎ

2
) Γ1+𝑘
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1

)
󵄨󵄨󵄨󵄨𝛿0
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝛿𝑘+1
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝛿0
󵄨󵄨󵄨󵄨

(25)

which completes the proof that starts at (21) and ends at (25).

5. Convergence Analysis of
the Crank-Nicolson Scheme

If we assume that 𝑠(𝑟
𝑙
, 𝑡
𝑘
) (𝑙 = 1, 2, . . . ,𝑀, 𝑘 = 1, 2, . . . , 𝑁−1)

is the exact solution of our problem at the point (𝑟
𝑙
, 𝑡
𝑘
), by

letting 𝐻𝑘
𝑙
= 𝑠(𝑟
𝑙
, 𝑡
𝑘
) − 𝑆𝑘
𝑙
and 𝐻𝑘 = (0,𝐻𝑘

1
, 𝐻𝑘
2
, . . . , 𝐻𝑘

𝑀−1
)

substituting this in (17), we obtain

𝐻1
𝑙
(1 + 2𝑇1

𝑙
− Γ1
𝑙
) − 𝐻1

𝑙+1
(𝑇1
𝑙
) − 𝐻1

𝑙−1
(𝑇1
𝑙
)

= 𝑅1
𝑙

for 𝑘 = 0,

𝐻1+𝑘
𝑙
(1 + 2𝑇1+𝑘

𝑙
− Γ1+𝑘
𝑙
) − 𝐻𝑘+1

𝑙+1
(𝑇1+𝑘
𝑙
) − 𝐻1+𝑘

𝑙−1
(𝑇1+𝑙
𝑙
)

= 𝑅1+𝑘
𝑙
+
𝑘−1

∑
𝑗=0

𝐻
𝑘−𝑗

𝑙
𝜆𝑙,𝑘+1
𝑗+1

for 𝑘 ≥ 1.

(26)
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Here,

𝑅1+𝑘
𝑙
= 𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
) −
𝑘−1

∑
𝑗=0

𝑠 (𝑟
𝑙
, 𝑡
𝑘−𝑗
) 𝜆𝑙,𝑘+1
𝑗+1

+ 𝑏𝑙,𝑘+1
1
𝑠 (𝑟
𝑙
, 𝑡
0
)

+ (Γ1+𝑘
𝑙
− 𝑇1+𝑘
𝑙
) [𝑠 (𝑟

𝑙+1
, 𝑡
𝑘+1
)

− 2𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
) +𝑠 (𝑟

𝑙−1
, 𝑡
𝑘+1
)] .

(27)

From (8) and (9), we have

𝜕2𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
)

𝜕𝑟2
+ ℎ2𝑉

1

=
1

2
(
(𝑠 (𝑟
𝑙+1
, 𝑡
𝑘+1
) − 2𝑠 (𝑟

𝑙
, 𝑡
𝑘+1
) + 𝑠 (𝑟

𝑙−1
, 𝑡
𝑘+1
))

ℎ2

+
(𝑠 (𝑟
𝑙+1
, 𝑡
𝑘
) − 2𝑠 (𝑟

𝑙
, 𝑡
𝑘
) + 𝑠 (𝑟

𝑙−1
, 𝑡
𝑘
))

ℎ2
) ,

𝜕𝛼
𝑘+1

𝑙 𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
)

𝜕𝑡𝛼
𝑘+1

𝑙

+ 𝜏𝑉
2

=
𝜏−𝛼
𝑘+1

𝑙

Γ (2 − 𝛼𝑘+1
𝑙
)
(𝑠 (𝑟
𝑙
, 𝑡
𝑘+1
) − 𝑠 (𝑟

𝑙
, 𝑡
𝑘
)

+
𝑘

∑
𝑗=1

[𝑠 (𝑟
𝑙
, 𝑡
𝑘+1−𝑗

) − 𝑠 (𝑟
𝑙
, 𝑡
𝑘−𝑗
)] 𝜆𝑙,𝑘
𝑗
) .

(28)

From the above, we have that

𝑅𝑘+1
𝑙
≤ 𝐾(𝜏1+𝛼

𝑘+1

𝑙 + ℎ2𝜏𝛼
𝑘

𝑙 ) , (29)

where 𝐾
1
, 𝐾
2
, and 𝐾 are constants. Taking into account

Caputo-type fractional derivative, the detailed error analysis
on the above schemes can refer to the work done in [21] and
further work done in [21, 23].

Lemma 1. The following inequality ‖𝐻𝑘+1‖
∞
≤ 𝐾(𝜏1+𝛼

𝑘+1

𝑙 +

ℎ2𝜏𝛼
𝑘

𝑙 )(𝐻𝑙,𝑘+1
𝑗
)
−1

is true for (𝑘 = 0, 1, 2, . . . , 𝑁 − 1) where
‖𝐻𝑘‖
∞
= max

1≤𝑙≤𝑀−1
(𝐻𝑘), 𝐾 is a constant. In addition,

𝜙𝜖 (𝑎, 𝑏) =
{
{
{

min
1≤𝑙≤𝑀−1

𝛼
𝑙

𝑘+1 if 𝜏 < 1

max
1≤𝑙≤𝑀−1

𝛼
𝑙

𝑘+1 if 𝜏 > 1.
(30)

This can be achieved via the recurrence technique on the
natural number 𝑘.

When 𝑘 = 0, we have the following:

󵄨󵄨󵄨󵄨󵄨𝐻
1

𝑙

󵄨󵄨󵄨󵄨󵄨 ≤ (𝑇
1

𝑙
)
󵄨󵄨󵄨󵄨󵄨𝐻
1

𝑙+1

󵄨󵄨󵄨󵄨󵄨 + (𝑇
1

𝑙
)
󵄨󵄨󵄨󵄨󵄨𝐻
1

𝑙−1

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨𝐹
1

𝑙

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑉 (𝜏
1+𝛼
𝑘+1

𝑙 + ℎ2𝜏𝛼
𝑘

𝑙 ) (𝜆𝑙,𝑘+1
𝑗
)
−1

.
(31)

Now suppose that ‖𝐻𝑖+1‖
∞
≤ 𝐾(𝜏1+𝛼

𝑖+1

𝑙 + ℎ2𝜏𝛼
𝑖

𝑙 )(𝜆𝑙,𝑖+1
𝑗
)
−1

,

𝑖 = 1, . . . , 𝑁 − 2. Then,
󵄨󵄨󵄨󵄨󵄨𝐻
1+𝑘

𝑙

󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨𝐻
1+𝑘

𝑙
(1 + 2𝑇1+𝑘

𝑙
− Γ1+𝑘
𝑙
)

−𝐻𝑘+1
𝑙+1
(𝑇1+𝑘
𝑙
) − 𝐻1+𝑘

𝑙−1
(𝑇1+𝑙
𝑙
)
󵄨󵄨󵄨󵄨󵄨

≤ (𝑇1+𝑘
𝑙
)
󵄨󵄨󵄨󵄨󵄨𝐻
𝑘+1

𝑙+1

󵄨󵄨󵄨󵄨󵄨 + (𝑇
1+𝑘

𝑙
)
󵄨󵄨󵄨󵄨󵄨𝐻
𝑘+1

𝑙−1

󵄨󵄨󵄨󵄨󵄨

+ (1 + 2𝑇1+𝑘
𝑙
− Γ1+𝑘
𝑙
)
󵄨󵄨󵄨󵄨󵄨𝐻
𝑘+1

𝑙

󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑅𝑘+1
𝑙
+
𝑘

∑
𝑖=1

(𝐻𝑘−𝑖
𝑙
) 𝜆𝑙,𝑘+1
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨𝑅
𝑘+1

𝑙

󵄨󵄨󵄨󵄨󵄨 +
𝑘

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝐻
𝑘−𝑖

𝑙

󵄨󵄨󵄨󵄨󵄨 𝜆
𝑙,𝑘+1

𝑗

≤ 𝐾(𝜏1+𝛼
𝑘+1

𝑙 + ℎ2𝜏𝛼
𝑘

𝑙 ) +
𝑘

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝐻
𝑘−𝑖

𝑙

󵄩󵄩󵄩󵄩󵄩∞𝜆
𝑙,𝑘+1

𝑗

≤ 𝐾(𝜏1+𝛼
𝑘+1

𝑙 + ℎ2𝜏𝛼
𝑘

𝑙 ) (𝜆𝑙,𝑘+1
𝑗

+ 𝜆𝑙,𝑘+1
0

− 𝜆𝑙,𝑘+1
𝑗
)

× (𝜆𝑙,𝑘+1
𝑗
)
−1

≤ 𝑉(𝜏1+𝛼
𝑘+1

𝑙 + ℎ2𝜏𝛼
𝑘

𝑙 ) (𝜆𝑙,𝑘+1
0
) (𝜆𝑙,𝑘+1
𝑗
)
−1

≤ 𝑉(𝜏1+𝛼
𝑘+1

𝑙 + ℎ2𝜏𝛼
𝑘

𝑙 ) (𝜆𝑙,𝑘+1
𝑗
)
−1

,

(32)

which completes the proof of Lemma 1.

Theorem 2. The Crank-Nicolson scheme is convergent, and
there exists a positive constant 𝑉 such that

󵄨󵄨󵄨󵄨󵄨𝑆
𝑘

𝑙
− 𝑠 (𝑥

𝑙
, 𝑡
𝑘
)
󵄨󵄨󵄨󵄨󵄨 ≤ 𝐾 (𝜏 + ℎ

2) ,

𝑙 = 1, 2, . . . ,𝑀 − 1, 𝑘 = 1, 2, . . . , 𝑁.
(33)

An interesting and detailed research can be found on the
solvability of the Crank-Nicolson scheme in the work [7, 8,
22]. Therefore, the details of the proof of Theorem 2 (33) will
not be presented in this paper.

6. Numerical Simulations

In this section, we present the numerical simulation of the
solution of the modified Hantush equation obtained via the
Crank-Nicolson scheme. Here let us consider the following
equation:

𝑆𝐷
𝑡

𝛼(𝑥,𝑡)𝑠 (𝑟, 𝑡) = 𝑇𝐷
𝑟𝑟
𝑠 (𝑟, 𝑡) +

1

𝑟
𝐷
𝑟
𝑠 (𝑟, 𝑡) +

𝑠 (𝑟, 𝑡)

𝜆2
,

𝛼 (𝑥, 𝑡) = 1 − sin (𝑥 + 𝑦) ,

𝑠 (𝑟, 0) = 𝑠
0
, lim

𝑟→∞

𝑠 (𝑟, 𝑡) = 𝑠
0
,

𝑄 =
2𝜋𝑛/2

Γ (𝑛/2)
𝑟𝑛−1
𝑏
𝐾𝑑3−𝑛𝜕

𝑟
𝑠 (𝑟
𝑏
, 𝑡) .

(34)

Figure 2 shows the numerical simulation for an aquifer
thickness of 1000 feet, a transmissivity 𝑇 = 10000 feet/day, a
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Figure 2: Numerical comparison of the observed data and solution
of the modified equation for different values of time.
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Figure 3: Numerical simulation of the water flowing in the leaky
aquifer.

hydraulic conductivity of the main aquifer of 𝐾 = 8 feet/day,
and a hydraulic conductivity of the leaky 𝐾

𝑙
= 0.4 feet/day.

A storativity 𝑆 = 0.001, the leaky factor is 0.00081/day,
and finally the flow rate = 4200 feet/day. The red shows the
simulation for a distance of 𝑟 = 400 feet. The black shows the
simulation for a distance of 𝑟 = 200 feet, and finally the blue is
the simulation for 𝑟 = 3650 feet. Figure 3 shows the numerical
simulation of the water flowing in the variable leaky aquifer.

7. Conclusion

The main purpose of this paper was to consider the defor-
mation of the leaky aquifer in the mathematical formulation.
However, there are some leaky aquifers that change in time
and space. Feature that the Hantush equation cannot be
used to describe such situation. Recently, the variational
order derivative was found very useful to describe efficiently
such situation. We then modified the Hantush equation by
replacing the partial derivative with respect to time by the

variational order derivative. The result equation was solved
numerically using the Crank-Nicolson scheme. The stability
and convergence were presented in details. We compared the
numerical simulation together with the observed drawdown
from field observation. The comparison shows that the
modified equation predicts more accurately the real field
observation.
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